
CSC2/455 Software Analysis and Improvement
Live variable analysis

Sreepathi Pai

URCS

January 28, 2019



Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript



Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript



What we know how to do so far

I Basic blocks to Control Flow Graphs
I Section 5.4.3 in Cooper and Turczon

I Local optimizations (Value Numbering)



Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript



Motivation

void example(int x) {
int a = 0;
int b = 0;

if(x > 1) {
a = b;

} else {
a = x;

}

return a;
}

Must the compiler emit code to initialize a to 0?



Motivation

void example(int x) {
int a = 0;
int b = 0;

if(x > 1) {
a = b;

} else {
a = x;

}

return a;
}

a is defined (i.e. written) thrice in the code above. Which
definitions are “alive” at return a?



Terminology

I A variable x is live at a definition (i.e. a write) if there is a
subsequent read of the variable along a program path from
that definition.

I Can we identify live variables just by analyzing basic blocks
(i.e. local analysis)?



More Motivation(?)

void test() {
int i;

// begin delay
for(i = 0; i < 10000; i++);
// end delay

}



GCC without optimization

test():
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 0

.L3:
cmp DWORD PTR [rbp-4], 9999
jg .L4
add DWORD PTR [rbp-4], 1
jmp .L3

.L4:
nop
pop rbp
ret

Code courtesy Compiler Explorer at godbolt.org (this is more
convenient than gcc -Wa if you have the Internet)

godbolt.org


GCC with -O3

test():
ret

Code courtesy Compiler Explorer at godbolt.org

godbolt.org


Example 1

x = 0;

if(y > 0)
x = 2;

else
x = 3;

printf("%d\n", x);

ENTRY

x=0

EXIT

y > 0

x=2 x=3

printf("%d", x)



Example 2

x = 0
i = 0
while(i++ < 10) {

if(i % 3 == 0) {
x = 0;

}

x = x + 1;
}

I Which definition(s) of x are
live at entry of loop?

I Which definition(s) of x are
live in the loop?

I Which definition(s) of x are
live at exit of loop?

ENTRY

x=0
i=0

EXIT

i++ < 10

i % 3 == 0

x = 0

x = x + 1



Relook at the Loop example

i = 1;
L1:

if(!(i < 10000)) goto L2;
i++;
goto L1;

L2:
return

Where in the CFG must i be “dead” to eliminate it?



Some Definitions

For a basic block s:

I DEF(s) (for “defined”) is the set of variables written by s

I USE(s) is the set of variables read by s

For the blocks below, what are the DEF and USE sets?

BB_eg_0:
i = i + 1

BB_eg_1:
a = x;
x = 3;

BB2_eg_2:
t = a;



Effects of definitions and reads

BB_eg_3:
a = x;
x = y;

I What happens to a definition of a in a basic block that is
before BB eg 3 on some path through the CFG?

I What can we say about definitions of y in other basic blocks
that are before BB eg 3 on some path through the CFG?



More definitions

I Upwardly exposed UE(s) are those variables that are read
before they are written to in basic block s.

I A variable is alive in a basic block if it is in the set:
I ?

I A variable is killed in a basic block if it is in the set:
I ?



Finding out if a definition is live

I Start from the definition, and see if it “reaches” a use
I i.e., it is not killed on some path (in the CFG) to a use

I Start from a use, and walk backwards to see if you can reach
the definition
I Repeat for all uses

When does enumerating paths work in practice?



A More Practical Way: Iterative Data flow Analysis

I Setup data flow equations

I Solve these data flow equations



Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript



Equations for Live Variables

I Remember that each basic block has “incoming” edges (from
predecessors) and “outgoing” edges (to successors).

I When is an “incoming” variable live “into” a block?
I it is in UE for that block

I When is a variable live out of a block?
I it is live into a successor block
I first try: LIVEOUT(n) = ∪mUE(m) (where m ∈ succ(n))
I what are we missing?



Complete equation

LIVEOUT(n) = ∪m∈succ(n)UE(m) ∪ (LIVEOUT(m) ∩DEF(m))

The variables live out of block n must:

I be upwardly exposed in a successor m

I OR be live out of m and NOT be killed by m (i.e. DEF(m))
I note this is equivalent to (LIVEOUT(m)−DEF(m))

How would you begin solving this equation?



Iterative Data flow Analysis Algorithm for Live Variables

I Live variables is a backwards dataflow analysis
I ‘Facts” flow from a node’s successors to it

I Initialization:
I Compute DEF(s) for all blocks s
I Compute UE(s) for all blocks s
I Set LIVEOUT(s) = ∅ for all s

I Repeat (iterate):
I Compute LIVEOUT(s) for all blocks s
I Until no set LIVEOUT(s) changes – i.e. until a fixpoint is

reached.



Termination and correctness

I Termination
I Note LIVEOUT(s) only increases in size or remains the same

in every iteration
I What is the maximum size of LIVEOUT(s)?

I Correctness
I When the algorithm terminates, all computed LIVEOUT(s)

sets satisfy the equation
I and hence meet the definition of “liveness”.



Quality of solution?

How does the iterative solution differ from the path-based solution?



Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript



References

I Chapter 8 of Cooper and Turczon
I Section 8.6.1

I Also recommended:
I Aho, Lam, Sethi and Ullman, Chapter 9, Section 9.2.5


	Review
	Live Variable Analysis
	Live Variables using Iterative Data flow Analysis
	Postscript

