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What we know how to do so far

I Basic blocks to Control Flow Graphs
I Section 5.4.3 in Cooper and Turczon

I Local optimizations (Value Numbering)
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Motivation

void example(int x) {
int a = 0;
int b = 0;

if(x > 1) {
a = b;

} else {
a = x;

}

return a;
}

Must the compiler emit code to initialize a to 0?



Motivation

void example(int x) {
int a = 0;
int b = 0;

if(x > 1) {
a = b;

} else {
a = x;

}

return a;
}

a is defined (i.e. written) thrice in the code above. Which
definitions are “alive” at return a?



Terminology

I A variable x is live at a definition (i.e. a write) if there is a
subsequent read of the variable along a program path from
that definition.

I Can we identify live variables just by analyzing basic blocks
(i.e. local analysis)?



More Motivation(?)

void test() {
int i;

// begin delay
for(i = 0; i < 10000; i++);
// end delay

}



GCC without optimization

test():
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 0

.L3:
cmp DWORD PTR [rbp-4], 9999
jg .L4
add DWORD PTR [rbp-4], 1
jmp .L3

.L4:
nop
pop rbp
ret

Code courtesy Compiler Explorer at godbolt.org (this is more
convenient than gcc -Wa if you have the Internet)

godbolt.org


GCC with -O3

test():
ret

Code courtesy Compiler Explorer at godbolt.org

godbolt.org


Example 1

x = 0;

if(y > 0)
x = 2;

else
x = 3;

printf("%d\n", x);

ENTRY

x=0

EXIT

y > 0

x=2 x=3

printf("%d", x)



Example 2

x = 0
i = 0
while(i++ < 10) {

if(i % 3 == 0) {
x = 0;

}

x = x + 1;
}

I Which definition(s) of x are
live at entry of loop?

I Which definition(s) of x are
live in the loop?

I Which definition(s) of x are
live at exit of loop?

ENTRY

x=0
i=0

EXIT

i++ < 10

i % 3 == 0

x = 0

x = x + 1



Relook at the Loop example

i = 1;
L1:

if(!(i < 10000)) goto L2;
i++;
goto L1;

L2:
return

Where in the CFG must i be “dead” to eliminate it?



Some Definitions

For a basic block s:

I DEF(s) (for “defined”) is the set of variables written by s

I USE(s) is the set of variables read by s

For the blocks below, what are the DEF and USE sets?

BB_eg_0:
i = i + 1

BB_eg_1:
a = x;
x = 3;

BB2_eg_2:
t = a;



Effects of definitions and reads

BB_eg_3:
a = x;
x = y;

I What happens to a definition of a in a basic block that is
before BB eg 3 on some path through the CFG?

I What can we say about definitions of y in other basic blocks
that are before BB eg 3 on some path through the CFG?



More definitions

I Upwardly exposed UE(s) are those variables that are read
before they are written to in basic block s.

I A variable is alive in a basic block if it is in the set:
I ?

I A variable is killed in a basic block if it is in the set:
I ?



Finding out if a definition is live

I Start from the definition, and see if it “reaches” a use
I i.e., it is not killed on some path (in the CFG) to a use

I Start from a use, and walk backwards to see if you can reach
the definition
I Repeat for all uses

When does enumerating paths work in practice?



A More Practical Way: Iterative Data flow Analysis

I Setup data flow equations

I Solve these data flow equations
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Equations for Live Variables

I Remember that each basic block has “incoming” edges (from
predecessors) and “outgoing” edges (to successors).

I When is an “incoming” variable live “into” a block?
I it is in UE for that block

I When is a variable live out of a block?
I it is live into a successor block
I first try: LIVEOUT(n) = ∪mUE(m) (where m ∈ succ(n))
I what are we missing?



Complete equation

LIVEOUT(n) = ∪m∈succ(n)UE(m) ∪ (LIVEOUT(m) ∩DEF(m))

The variables live out of block n must:

I be upwardly exposed in a successor m

I OR be live out of m and NOT be killed by m (i.e. DEF(m))
I note this is equivalent to (LIVEOUT(m)−DEF(m))

How would you begin solving this equation?



Iterative Data flow Analysis Algorithm for Live Variables

I Live variables is a backwards dataflow analysis
I ‘Facts” flow from a node’s successors to it

I Initialization:
I Compute DEF(s) for all blocks s
I Compute UE(s) for all blocks s
I Set LIVEOUT(s) = ∅ for all s

I Repeat (iterate):
I Compute LIVEOUT(s) for all blocks s
I Until no set LIVEOUT(s) changes – i.e. until a fixpoint is

reached.



Termination and correctness

I Termination
I Note LIVEOUT(s) only increases in size or remains the same

in every iteration
I What is the maximum size of LIVEOUT(s)?

I Correctness
I When the algorithm terminates, all computed LIVEOUT(s)

sets satisfy the equation
I and hence meet the definition of “liveness”.



Quality of solution?

How does the iterative solution differ from the path-based solution?
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References

I Chapter 8 of Cooper and Turczon
I Section 8.6.1

I Also recommended:
I Aho, Lam, Sethi and Ullman, Chapter 9, Section 9.2.5
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