
CSC2/455 Software Analysis and

Improvement

Dead Code Elimination

Sreepathi Pai

February 19, 2020

URCS



Outline

Review

Dead Code Elimination

Postscript



Outline

Review

Dead Code Elimination

Postscript



So far

• Source code

• Three-address form

• Control-flow graphs

• SSA form

• Data flow analyses



Outline

Review

Dead Code Elimination

Postscript



Definitions

• Dead code

• Useless operation: Not externally visible

• Unreachable code: Cannot be executed

• Critical operation: (Direct) “Useful operation”

• Operation that computes return value

• Operation that stores to memory (i.e. is externally visible)

• Operation that performs I/O

• ...



Two Steps: Step 1

• Find all directly useful operations and mark them

• Find all indirectly useful operations and mark them

• I.e. those that feed into directly useful operations

• Iterate until all operations that ultimately feed into directly

useful operations have been found and marked



Two Steps: Step 2

• Remove all operations that remain unmarked



Example #1

void swap(int *x, int *y) {
int t;

t = *x;
*x = *y;
*y = t;

}



Example #2

int min(int x, int y) {
int r;

if (x > y) {
r = y;

} else {
r = x;

}

return r;
}



Example #2: 3AC

int min(int x, int y) {
int r;
int t;

t = x > y;
if(t == 0) goto L1;

r = y;
goto L2;

L1:
r = x;

L2:
return r;

}



Example #2: With useless operations removed

int min(int x, int y) {
int r;

r = y;
r = x;

return r;
}

• Marking and removing useless operations uses only dataflow

information

• Must also preserve control flow (i.e. control dependences)

• How to identify useful branches?



Handling Control Flow

• Assume all “jumps” (unconditional branches) are useful

• i.e. goto Lx

• What about conditional branches?



Conditional Branches: Example

int first_N_sum(int N) {
int s = 0;

for(int i = 1; i <= N; i++)
s = s + i;

return N * (N + 1) / 2;
}



3AC code for conditional branches

int first_N_sum(int N) {
int s = 0;
int i, t;

i = 1;
L1:

t = i <= N;
if(t == 0) goto L2;

s = s + i;
i++;
goto L1;

L2:
return N * (N + 1) / 2;

}

How do we recognize that the conditional branch is useless in this

case?



GCC 8.2 for x86-64 (-O0)

first_N_sum(int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-4], 0 ; s = 0
mov DWORD PTR [rbp-8], 1 ; i = 1

.L3:
mov eax, DWORD PTR [rbp-8]
cmp eax, DWORD PTR [rbp-20]
jg .L2
; s = s + i
mov eax, DWORD PTR [rbp-8]
add DWORD PTR [rbp-4], eax
add DWORD PTR [rbp-8], 1
jmp .L3

.L2:
mov eax, DWORD PTR [rbp-20]
add eax, 1
imul eax, DWORD PTR [rbp-20]
mov edx, eax
shr edx, 31
add eax, edx
sar eax
pop rbp
ret



GCC 8.2 for x86-64 (-O1)

first_N_sum(int):
test edi, edi
jle .L2
lea edx, [rdi+1]
mov eax, 1 ; i = 1

.L3:
add eax, 1 ; i = i + 1
cmp eax, edx
jne .L3

.L2:
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret



GCC 8.2 for x86-64 (-O2)

first_N_sum(int):
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret

All compiler output examples obtained using the Compiler Explorer.

https://www.godbolt.org


Conditional Branches

• A conditional branch is useful only if:

• A useful operation depends on it

• Control dependence

• (informal) an operation O is dependent on a branch B if the

direction of the branch B affects if O is executed

• CFG property



Example of control dependence

t = x > y
if(t == 0) goto L1

r = y;
goto L2;

L1:
r = x;

L2:
return r;

The assignments to r are dependent on if(t == 0), but return

r is not



Control dependence in the CFG

ENTRY

t = x > y

EXIT

r = y r = x

return r



Control Dependence: Formal Definition

• Postdominance

• A node n postdominates m if it occurs on all paths from m to

EXIT

• A node k is control dependent on i if:

• For a path i → j0 → j1 → ...→ k , k postdominates all jx
• k does not strictly postdominate i



Control Dependence: Example #1

• Consider k : r = y

• Is it control dependent on i :

t = x > y?

• Only one path i → k

• r = y post-dominates r

= y

• r = y does not strictly

postdominate i

• Because it is not a

post-dominator of i , and

k 6= i

• So k is control-dependent

on i

ENTRY

t = x > y

EXIT

r = y r = x

return r



Control Dependence: Example #2

• Now, consider k: return r

• i is still t = x > y

• Two paths, first path
i → j0 → k

• j0 is r = y

• return r post-dominates

r = y and itself

• return r strictly

postdominates i

• Because it is a

post-dominator of i , and

k 6= i

• So k is not

control-dependent on i

ENTRY

t = x > y

EXIT

r = y r = x

return r



Path #2 of Example #2

• Second path is i → j1 → k

• j1 is r = x

• Similar arguments show that k is control-dependent on i



Using Reverse Dominance Frontiers (RDF)

• Given that return r is

useful, so are r = x and r

= y

• We can see that t = x > y

is in the reverse dominance
frontier (RDF ) of r = x

and r = y

• RDF is DF on

edge-reversed CFG.

• Indeed, RDFs identify

control dependences

ENTRY

t = x > y

EXIT

r = y r = x

return r



Marking unconditional branches useful

• If node k contains useful operations,

• And if k is control-dependent on node i ,

• Then the (conditional) branch in i is useful.

• Operationalized as:

• If block k contains useful operations

• Mark all conditional branches in k ’s reverse dominance frontier

RDF(k) as useful

• RDF computed as DF on edge-reversed CFG



Dead Code Elimination: High-level algorithm

• Mark all directly useful operations

• Repeat until convergence

• Mark all indirectly useful operations

• Mark all conditional branches in RDFs of useful operations as

useful

• Remove all unmarked operations

• Remove empty nodes in CFG / remove all useless control flow

See algorithms in Figure 10.1 and 10.2 in Turczon and Cooper.



Outline

Review

Dead Code Elimination

Postscript



References

• Chapter 10 of Torczon and Cooper

• Section 10.2


	Review
	Dead Code Elimination
	Postscript

