Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Logic

- OED Definition: Reasoning conducted or assessed according to strict principles of validity.
- Particularly relevant to this lecture:
 - A particular system or codification of the principles of proof and inference.
Propositional Logic

• Recall, propositions (identified by symbols)
 • The connectives $\lor, \land, \implies, \iff$ and the operation \neg

• Tautologies
 • A formula that is always true

• Contradiction
 • A formula that is always false

• Equivalence: two formulae A and B are equivalent if $A \iff B$ is a tautology

• Proof technique in propositional logic
 • Enumerate all possible values of variables and check if the final result is always true
• \(p \iff q \) is equivalent to \(\neg q \iff \neg p \)
 • contrapositive (theorem)
• \(p \implies q \) is not necessarily equivalent to \(q \implies p \)
 • converse
Valid Arguments

- An argument is valid if and only if
 \[P_1 \land P_2 \land \cdots \land P_n \implies P_{n+1} \text{ is a tautology} \]
 - this means that \(P_1 \land P_2 \land \cdots \land P_n \land P_{n+1} \) is true
Rules of Inference: Modus Ponens

\[p \]
\[p \rightarrow q \]

\[q \]

- \((p \land (p \rightarrow q)) \rightarrow q\) is a tautology
- Example:
 - \(p\) is “it is raining”
 - \(p \rightarrow q\) is “if it is raining, roads are wet”
 - \(q\), so “roads are wet”
Rules of Inference: Modus Tollens

\[p \implies q \]
\[\neg q \]

\[\therefore \neg p \]

- \((p \implies q) \land (\neg q)) \implies \neg p\) is a tautology

Example:
- \(p \implies q\) is “if \(a\) is even, \(a + 1\) is odd”
- \(\neg q\) is “\(a + 1\) is not odd”
- \(\neg p\), so “\(a\) is not even”
Invalid Rule of Inference: Affirming the Consequent

\[p \implies q \]

\[q \]

\[p \]

• \(((p \implies q) \land q) \implies p \text{ is not a tautology}\)
Proof System for Propositional Logic

- System L
- Lines of proof in this system must be:
 - an axiom of L (an axiom of L is a tautology)
 - an application of Modus Ponens
 - a hypothesis (a hypothesis G_n is assumed to be true)
 - a lemma (a previously proven theorem)
- The last line of a proof is a theorem
 - $G_1, G_2, \ldots, G_n \vdash_L A$
- This proof system is both:
 - Sound: Only tautologies can be proved
 - Complete: All tautologies can be proved

From Hirst and Hirst, A Primer for Logic and Proof.
Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

\[\{P\} C \{Q\} \]

- \(P\) is a precondition
- \(C\) is a statement, function or program
- \(Q\) is a postcondition
- Both \(P\) and \(Q\) are logical statements, e.g., what you would put in an assert

Read as: If \(P\) holds, and \(C\) executes (and terminates), then \(Q\) holds. \(P\) and \(Q\) are assertions, usually over program state, and usually we need to prove that \(Q\) holds.
Recall: Partial and Total Correctness

- If C does not terminate, Q may or may not be true
 - This is the notion of *partial correctness*
- If C can be shown (formally) to terminate, then we achieve a proof of *total correctness*

Total correctness = Termination + Partial Correctness
Some examples of assertions

- \(\{ X = 1 \} Y := X \{ Y = 1 \} \)
- \(\{ X = 1 \} Y := X \{ Y = 2 \} \)
- \(\{ \text{true} \} C \{ Q \} \)
- \(\{ P \} C \{ \text{true} \} \)
- \(\{ P \} C \{ \text{false} \} \)

Note: not all of the above are valid, they are just assertions to be checked.
Formal Proof

- (informally) Proofs at the level of rigour that even a computer could understand!
- Usually, each step in the proof is *explicitly* annotated as to how it was obtained from the previous steps
 - Makes it easy to check (esp. for computers)
 - Either the use of an *axiom* or a *rule of inference*
- Painful to construct by hand
 - Interactive proof assistants like Coq and Isabelle usually make it more fun
 - (if you’ve disliked writing proofs, try them!)
The assignment axiom of Hoare Logic

- The *assignment axiom* states that

 \[\vdash \{ P[E/V] \} \; V := E \; \{ P \} \]

- \(P[E/V] \) is read as \(P \) with all instances of \(V \) replaced by \(E \)

 - \(P \) with \(E \) for \(V \)

 - \(\{X = 1\}[Y/X] \) leads to \(\{ Y = 1 \} \)

- Usage example: if \(X = 6 \), prove \(Y > 15 \) after \(Y := X \times 3 \)

 - Postcondition \(P \) to prove: \(\{ Y > 15 \} \)

 - Use assignment axiom: \(\{X \times 3 > 15\} \; Y := X \times 3 \; \{ Y > 15 \} \)

 - Given that \(X = 6 \), so \(X \times 3 = 6 \times 3 = 18 \)

 - \(X \times 3 = 18 \implies X \times 3 > 15 \)
Two incorrect assignment axiom forms

- \(\{P\} V := E\{P[E/V]\} \)
- \(\{P\} V := E\{P[V/E]\} \)
Precondition strengthening

If ⊢\{P'\} C \{Q\} and P \implies P', then we can write ⊢\{P\} C \{Q\}

- \{X + 1 = n + 1\} X := X + 1 \{X = n + 1\} (assignment axiom)
- ⊢ X = n \implies X + 1 = n + 1 (from arithmetic)
- \{X = n\} X := X + 1 \{X = n + 1\} (precondition strengthening)
If $\vdash \{P\} C \{Q'\}$, and $Q' \implies Q$, then we can write $\vdash \{P\} C \{Q\}$

- $\{R = X \land 0 = 0\} Q := 0 \{R = X \land Q = 0\}$ (assignment axiom)
- $R = X \land Q = 0 \implies R = X + (Y \times Q)$
- $\{R = X\} Q := 0 \{R = X + (Y \times Q)\}$ (postcondition weakening)
Conjunctions and Disjunctions

• If $\vdash \{P_1\} \land \{Q_1\}$ and $\vdash \{P_2\} \land \{Q_2\}$, then $\vdash \{P_1 \land P_2\} \land \{Q_1 \land Q_2\}$

• If $\vdash \{P_1\} \lor \{Q_1\}$ and $\vdash \{P_2\} \lor \{Q_2\}$, then $\vdash \{P_1 \lor P_2\} \lor \{Q_1 \lor Q_2\}$
Sequencing Rule

- If \(\vdash \{ P \} \ C_1 \ \{ Q \} \) and \(\vdash \{ Q \} \ C_2 \ \{ R \} \), then \(\vdash \{ P \} \ C_1 ; \ C_2 \ \{ R \} \)

- You can combine the sequencing rule and the rules of consequence (i.e. precondition strengthening and postcondition weakening) to extend this to multiple statements.
The Conditional Rule

- If $\vdash \{P \land S\} C_1 \{Q\}$ and $\vdash \{P \land \neg S\} C_2 \{Q\}$, then
 - $\vdash \{P\} \text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{Q\}$
The While Rule

- If \(\{ P \land S \} \mathcal{C} \{ P \} \) then
 - \(\vdash \{ P \} \text{WHILE } S \text{ DO } C \text{ ENDDO } \{ P \land \neg S \} \)

- Here, \(P \) is the *inductive loop invariant*, recall:
 - It is true on entry into and exit out of the loop
 - It is true after every iteration of the loop
More rules

- FOR-rule
- Handling arrays
 - variant of assignment, due to McCarthy
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Example 1

\[X = x \land Y = y \]

\[R := X; \]
\[X := Y; \]
\[Y := R; \]

\[X = y \land Y = x \]
A verification condition is a mechanically generated proof goal from the program and program specifications.

For example, suppose \(\{ P \} \ V := E \{ Q \} \) exists in the program

- \(P \) is programmer-supplied precondition (or annotation)
- \(Q \) is programmer-supplied postcondition

The verification condition for this statement is

\[P \implies Q[E/V] \]
Why the VC for assignment works

• From Hoare Logic, we have:
 • ⊢\{Q[E/V]\} \text{ V := E \{Q\}}

• If we prove \(P \implies Q[E/V] \), then by precondition strengthening, we have:
 • ⊢\{P\} \text{ V := E \{Q\}}

• Which is what we had to prove.

What if we can't prove \(P \implies Q[E/V] \)? Does that mean \(\{P\} C\{Q\} \) does not hold?
• VCs are \textit{sufficient}, but not necessary
 • There may be other ways to prove \(\{P\} C \{Q\} \)
• Mechanical provers cannot prove everything
 • Gödel’s Incompleteness Theorem
Verification conditions for our example

\{X = x \land Y = y\} \quad R := X;
X := Y;
Y := R; \quad \{X = y \land Y = x\}

• The verification conditions for a sequence ending in an assignment \{P\} C1; \ V := E \{Q\} are those generated by:
 • \{P\} C1 \{Q[E/V]\}
Verification conditions for our example: 2

\{ X = x \land Y = y \} \quad R := X;
\quad X := Y; \quad \{ X = y \land R = x \}

- Because \(\{ X = y \land Y = x \}[R/Y] \), following from VC for sequences ending in an assignment.
Verification conditions for our example: 3

\[\{ X = x \land Y = y \} \quad R := X; \quad \{ Y = y \land R = x \} \]

- \(P = \{ X = x \land Y = y \} \)
- \(Q = \{ Y = y \land R = x \} \)
- Using VC for assignment:
 - \(Q[E/V] = \{ Y = y \land R = x \}[X/R] = \{ Y = y \land X = x \} \)
 - Here, \(P \quad \Longrightarrow \quad Q[E/V] \) trivially (identical)
Example 2

\[k \geq 0 \]

\[
\begin{align*}
x &:= k; \\
c &:= 0;
\end{align*}
\]

\[
\text{while}(x > 0) \{ \\
\quad x := x - 1; \\
\quad c := c + 1;
\}
\]

\[x = 0 \land c = k \]
• The verification conditions for a While statement \{P\} WHILE S DO C {Q} are
 • \(P \implies R \) (where \(R \) is the loop invariant)
 • \(R \land \neg S \implies Q \)
 • recursively, all VCs from \{R \land S\} C {R}
• The verification conditions for a sequence not ending in an assignment \{P\} C1; C2; C(n-1); Cn {Q}, assuming \{R\} C(n) {Q} are those generated by:
 • \{R\} Cn {Q}
 • \{P\} C1; C2; C(n-1) {R}
Verification Conditions for While loop and body

```plaintext
while(x > 0) {
  x := x - 1;
  c := c + 1;
}
/* Q: x = 0 ∧ c = k */
```

- **loop invariant**: \(x + c = k \)
- **(VC1)** \(x + c = k ∧ \neg(x > 0) \implies x = 0 ∧ c = k \)
 - (from \(R ∧ \neg S \implies Q \))
- **(VC2)** \(P \implies x + c = k \) (from \(P \implies R \))
- **(VC3)** \(x + c = k ∧ x > 0 \implies x - 1 + c + 1 = k \) (VC from assignment)
 - Recursively from body:
 - \(\{x + c = k ∧ x > 0\} x := x - 1; c := c + 1 \{x + c = k\} \)
 - \(\{x + c = k ∧ x > 0\} x := x - 1 \{x + c + 1 = k\} \) (from sequence ending with assignment)
/* k >= 0 */
x := k;
c := 0;
/* P */

- Let's assume $P = R$, so P is $x + c = k$
- $(VC0) \; k \geq 0 \implies k = k$
 - $\{k \geq 0\} \; x := k; \; c := 0 \{x + c = k\}$
 - $\{k \geq 0\} \; x := k; \{x + 0 = k\}$ (from sequence ending with assignment)
 - $Q[E/V]$ is $k + 0 = k$
Verification Conditions

- (VC0) \(k \geq 0 \implies k = k \)
- (VC1) \(x + c = k \land \neg(x > 0) \implies x = 0 \land c = k \)
- (VC2) \(x + c = k \implies x + c = k \)
- (VC3) \(x + c = k \land x > 0 \implies x + c = k \)

- We need to show that \(VC_0 \land VC_1 \land VC_2 \land VC_3 \) is true.
- Are there values \(x, c, k \) that simultaneously make all true?
from z3 import *

s = Solver()
x, k, c = Ints('x k c')

vc0 = Implies(k >= 0, k == k)
v1 = Implies(And(x + c == k, Not(x > 0)), And(x == 0, c == k))
v2 = Implies(x + c == k, x + c == k)
v3 = Implies(And(x + c == k, x > 0), x + c == k)

s.add(And(And(And(vc0, vc1), vc2), vc3))

if s.check() == sat:
 print("SAT", s.model())
else:
 print("UNSAT")

SAT [c = 0, k = 0, x = 0]
Program Verification Procedure

- Generate specifications (aka annotations or assert statements)
- Generate verification conditions
 - Usually mechanical, e.g. Dafny or CBMC
- Prove verification conditions
 - By hand or
 - Automated Theorem Prover
• Generating VCs for other statements in language
• Soundness?
• Completeness?
• Decidability?
• Pointers: Separation logic
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
• Background Reading on Hoare Logic, by Mike Gordon
 • The reference for this lecture
• Textbooks
 • Software Foundations: Vol 1: Logical Foundations,
 • Software Foundations: Vol 2: Programming Language Foundations
 • Concrete Semantics