CSC2/455 Software Analysis and
Improvement
Dominators and SSA Form - Il

Sreepathi Pai
February 22, 2021

URCS

Review
Dominance Frontiers and Dominator Trees
Emitting code for SSA form

Postscript

Review

Dominators

e A node n in the CFG dominates a node m iff:

e nis on all paths from entry to m
e by definition, a node n always dominates itself
e if n % m, then n strictly dominates m

e Computed using a dataflow-style analysis

e Each node annotated with a set of its dominators

Static Single Assignment Form

e Simple algorithm to generate SSA form

e Introduce ¢ functions
e Rename variables using Reaching Definitions

e Algorithm can generate excessive ¢ functions

e TODAY: Use dominance frontiers to place the minimal
number of ¢ functions

e Also today: Removing ¢ functions

e Machines don't support ¢ functions, so we must emulate them

Maximal SSA Form

e Insert ¢ nodes for each definition at every join node
e Rename LHS

e Rename RHS using reaching definitions

Reducing the number of phi nodes

e Why insert ¢ nodes at only join nodes?

e Can we skip inserting ¢ nodes for a definition at some join
node?

Dominance Frontiers and Dominator Trees

Dominance Frontiers

The dominance frontier of a node n (DF(n)) is a set of nodes
A node m € DF(n) iff:

e n does not strictly dominate m

e n dominates g where g € pred(m)

Note that dominance frontiers only contain join nodes

e l.e. nodes with multiple predecessors

Computing the dominance frontier of each node:

e |terative Data-flow analysis?

Dominance Frontiers: Direct algorithm

Direct calculation of dominance frontiers using dominator trees.

Immediate Dominators

e The immediate dominator of
a node m (IDOM(m)) is the

node n:

. ENTRY {ENTRY}
e such that n strictly

dominates m, and
e n does not strictly Bl {ENIRY, BI}
dominate o where {
o € (DOM(m) — {m}) B2 {ENTRY, BI, B2}

e in some sense, n is the

“closest” dominator in EXIT {ENTRY, B1, B2, EXIT}
the CFG to m.

e By definition, ENTRY has
no immediate dominator

Not Strictly Dominates

e n strictly dominates m

e SDOM(n,m)=ne DOM(m)An+# m
e n does not strictly dominate m

e —=SDOM(n,m)=n¢& DOM(m)V n=m

Dominator Tree

e Note that each node in the
CFG can have only one
immediate dominator

ENTRY

e Can you see why?
e Create a graph G = (V,E),
where:
e V is the set of basic V
B2
blocks
e There is an edge (n, m) in
E if nis the immediate

y
EXIT

dominator of m (i.e.
IDOM(m) = n)

Example: CFG and its dominator tree

ENTRY

| |
\ Bl
Bf /BS J/ l\

B2 B3

AV iz

B4 B5 B6 EXIT

<+

EXIT

Computing the dominance frontier

e Find all join nodes in CFG, e.g. j

e For all nodes n that dominate predecessors of j (in the CFG)
e If n does not strictly dominate j, add j to DF(n)

e This last step can be operationalized over all predecessors p of
J in the CFG:

e Start traversing the dominator tree p
e If pis IDOMY(/), stop. Otherwise add j to DF(p)

e Repeat by moving up the dominator tree until you reach
IDOM(j)

Example: Non-redundant ¢ functions

v_1=o¢(y0, v 4)
v_1l>3

Placing ¢ functions

e For each definition d in basic block n:

e Place a ¢ function for d in all nodes m where m € DF(n)
e Note that each ¢ function is also a definition!
e Repeat, until no more ¢ functions need to be inserted

e This is the minimal number of ¢ functions for a definition d
structurally

e Can we further reduce the overall number of ¢ functions?

e (Figure 9.9 in Cooper and Turczon)

Other optimizations

e Dead definitions
e Definitions that are not read (i.e. overwritten) do not need ¢
functions
e Two forms:
e Semi-pruned SSA form, using “globals” names (those variables

that are live in to a block)
e Pruned SSA form, using LIVEOUT information

Emitting code for SSA form

Renaming variables

e SSA form introduced “subscripts’ for each variable
e Should we drop them when generating code?

x_ 0+ y_0
a_0

17

a_0

Problem with dropping subscripts

a=x+y

b =a

a = 17

c=a # WRONG!

Handling subscripts

e Each definition becomes a new variable
e l.e. Do NOT drop subscripts
e Preserves data dependences

e Esp. important when we aggressively move code from basic
blocks (e.g. very busy expressions, loop invariant code motion,
etc.)

Code for ¢ functions

e Introduce copies along each incoming edge to a join node

i2 =

l_/

i 4 = (i 2, i_3)

Inserting appropriate copies along incoming edges

NS

LT
-
o
w
I
I)
[+
haliel

-

/\
\\H‘ll

Critical edges

e Executing ¢ functions by inserting copies into predecessor
blocks is not always correct

e |f such a predecessor block has multiple successors, then the ¢
function may execute when it shouldn't

e This may be harmless, but not always
e Edges connecting such predecessors to the block containing

the ¢ function are called critical edges

Critical Edges: Example

Splitting critical edges

e Such edges need to be split by inserting a block on that edge
e See the discussion in Cooper and Turczon for more details and

an example

Postscript

References

e Chapter 9 of Cooper and Turczon

e Section 9.2.1
e Section 9.3

	Review
	Dominance Frontiers and Dominator Trees
	Emitting code for SSA form
	Postscript

