Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Outline

Review

Dominance Frontiers and Dominator Trees

 Emitting code for SSA form

Postscript
A node \(n \) in the CFG dominates a node \(m \) iff:

- \(n \) is on all paths from entry to \(m \)
- by definition, a node \(n \) always dominates itself
- if \(n \neq m \), then \(n \) strictly dominates \(m \)

Computed using a dataflow-style analysis

- Each node annotated with a set of its dominators
Static Single Assignment Form

- Simple algorithm to generate SSA form
 - Introduce ϕ functions
 - Rename variables using Reaching Definitions
- Algorithm can generate excessive ϕ functions
 - TODAY: Use dominance frontiers to place the minimal number of ϕ functions
- Also today: Removing ϕ functions
 - Machines don’t support ϕ functions, so we must emulate them
Maximal SSA Form

- Insert ϕ nodes for each definition at every join node
- Rename LHS
- Rename RHS using reaching definitions
Reducing the number of \(\phi \) nodes

- Why insert \(\phi \) nodes at only join nodes?
- Can we skip inserting \(\phi \) nodes for a definition at some join node?
• The dominance frontier of a node n ($\text{DF}(n)$) is a set of nodes
• A node $m \in \text{DF}(n)$ iff:
 • n does not strictly dominate m
 • n dominates q where $q \in \text{pred}(m)$
• Note that dominance frontiers only contain join nodes
 • I.e. nodes with multiple predecessors
• Computing the dominance frontier of each node:
 • Iterative Data-flow analysis?
Dominance Frontiers: Direct algorithm

Direct calculation of dominance frontiers using dominator trees.
Immediate Dominators

- The *immediate* dominator of a node m (IDOM(m)) is the node n:
 - such that n strictly dominates m, and
 - n does not strictly dominate o where $o \in (\text{DOM}(m) - \{m\})$
 - in some sense, n is the “closest” dominator in the CFG to m.

- By definition, ENTRY has no immediate dominator
Not Strictly Dominates

- n strictly dominates m
 - $SDOM(n, m) = n \in DOM(m) \land n \neq m$
- n does not strictly dominate m
 - $\neg SDOM(n, m) = n \notin DOM(m) \lor n = m$
Note that each node in the CFG can have only one immediate dominator
- Can you see why?

Create a graph $G = (V, E)$, where:
- V is the set of basic blocks
- There is an edge (n, m) in E if n is the immediate dominator of m (i.e. $\text{IDOM}(m) = n$)
Example: CFG and its dominator tree
Computing the dominance frontier

- Find all join nodes in CFG, e.g. j
- For all nodes n that dominate predecessors of j (in the CFG)
 - If n does not strictly dominate j, add j to $DF(n)$
- This last step can be operationalized over all predecessors p of j in the CFG:
 - Start traversing the dominator tree p
 - If p is $IDOM(j)$, stop. Otherwise add j to $DF(p)$
 - Repeat by moving up the dominator tree until you reach $IDOM(j)$
Example: Non-redundant ϕ functions

ENTRY

\[y_0 = x_0 + 1 \]
\[x_1 = 2 \]

\[y_1 = \phi(y_0, y_4) \]
\[y_1 > 3 \]

\[y_2 = 3 \]
\[a = 3 \]

\[y_3 = \phi(y_1, y_2) \]
\[y_4 = x_1 + y_3 + 2 \]

EXIT
Placing ϕ functions

- For each definition d in basic block n:
 - Place a ϕ function for d in all nodes m where $m \in DF(n)$
 - Note that each ϕ function is also a definition!
 - Repeat, until no more ϕ functions need to be inserted

- This is the minimal number of ϕ functions for a definition d structurally
 - Can we further reduce the overall number of ϕ functions?

- (Figure 9.9 in Cooper and Turczon)
Other optimizations

- Dead definitions
 - Definitions that are not read (i.e. overwritten) do not need ϕ functions

- Two forms:
 - *Semi-pruned* SSA form, using “globals” names (those variables that are live in to a block)
 - *Pruned* SSA form, using \texttt{LIVEOUT} information
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Renaming variables

- SSA form introduced “subscripts” for each variable
- Should we drop them when generating code?

```
a_0 = x_0 + y_0
b_0 = a_0
a_1 = 17
c_0 = a_0
```
Problem with dropping subscripts

\[
a = x + y \\
b = a \\
a = 17 \\
c = a \quad \# \ \text{WRONG!}
\]
Handling subscripts

- Each definition becomes a new variable
 - I.e. Do NOT drop subscripts
- Preserves data dependences
 - Esp. important when we aggressively move code from basic blocks (e.g. very busy expressions, loop invariant code motion, etc.)
Code for ϕ functions

- Introduce copies along each incoming edge to a join node

```
i_2 = 1 
i_3 = a + b
i_4 = \phi(i_2, i_3)
...
```
Inserting appropriate copies along incoming edges

\begin{align*}
i_2 &= 1 \\
i_4 &= i_2 \\
i_3 &= a + b \\
i_4 &= i_3
\end{align*}
Critical edges

- Executing \(\phi \) functions by inserting copies into predecessor blocks is not always correct.
- If such a predecessor block has multiple successors, then the \(\phi \) function may execute when it shouldn’t.
 - This *may* be harmless, but not always.
- Edges connecting such predecessors to the block containing the \(\phi \) function are called *critical* edges.
Critical Edges: Example

\[i_2 = 1 \]
\[i_4 = i_2 \]

\[i_3 = a + b \]
\[i_4 = i_3 \]

...A...

...B...
Such edges need to be split by inserting a block on that edge. See the discussion in Cooper and Turczon for more details and an example.
References

- Chapter 9 of Cooper and Turczon
 - Section 9.2.1
 - Section 9.3