CSC2/455 Software Analysis and Improvement Foundations of Data Flow Analysis - II

Sreepathi Pai

March 1, 2021

URCS

Proofs

Constant Propagation

Proofs

Constant Propagation

Part I of Foundations

- Methods to solve dataflow analysis equations
 - IDEAL
 - Meet over paths (MOP)
 - Maximum Fixed Point (MFP)
 - IDEAL \subseteq MOP \subseteq MFP
- (Semi)lattice-based framework
 - (D, V, \wedge, F) , dataflow analysis
 - (V, \wedge) , meet semilattice
 - (V, \leq) , partial order, where $x \leq y$ iff $x \wedge y = x$
 - Monotone framework
- Greatest Lower Bound
 - $z \leq x$ and $z \leq y$, where $z = x \land y$

Monotone Framework

- A given (D, V, ∧, F) is monotone if for all x, y ∈ V, and f ∈ F:
 - $x \leq y \rightarrow f(x) \leq f(y)$
 - equivalently, $x \leq y \rightarrow f(x \wedge y) \leq f(x) \wedge f(y)$
 - The proof of equivalence is in the textbook.
- In addition, the framework is *distributive* if:

•
$$f(x \wedge y) = f(x) \wedge f(y)$$

- Note that these properties do not necessarily arise automatically, *F* must be designed to have these properties
 - And proofs must be written to show that F does.
 - We'll see this for a complicated example today.

} while(some OUT changes value)

- Does this calculate the solution to the dataflow problem?
- Does this algorithm terminate?
- Does this algorithm calculate the *maximum* fixed point i.e. the most precise solution admissible?

- Proofs that answer these three questions
- Relationships between IDEAL, MOP and MFP in terms of the framework
- Examples of:
 - a non-distributive framework (from Dragon 9.4, Constant Propagation)
 - lattices containing infinite values
 - possibly some proof writing exercises (from Dragon 9.3)

Proofs

Constant Propagation

Proof #1

```
do {
   for each basic block B except ENTRY:
        # this calculates the meet over predecessors, /\p OUT[p]
        IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
        OUT[B] = f_transfer(IN[B])
} while(some OUT changes value)
```

The iterative algorithm computes the solution to the dataflow

problem.

- The iterative algorithm performs an unbounded number of iterations as long as IN and OUT change
- When it terminates, IN and OUT have not changed for an iteration
- The values of IN and OUT therefore satisfy the equations
 - Hence they are solutions of the dataflow problem

The iterative algorithm terminates (i.e. converges to a fix point).

 $\bullet\,$ When we apply the \wedge operator, we obtain the glb

• i.e.
$$z = x \land y$$
 and $z \le x$ and $z \le y$

- Since the framework is monotone:
 - $f(x) \leq f(y)$ if $x \leq y$
 - i.e. OUT values are no greater than the IN values
- At each step, these values decrease or remain the same
 - When they all remain the same, we terminate
- If values decrease, recall the lattice has finite height
 - Implies a finite number of steps before we reach \perp
 - x ∧ ⊥ = ⊥ and f(⊥) = ⊥ (i.e once a value becomes ⊥, it no longer changes)
 - We terminate in this case as well

The fixed point solution computed by the iterative algorithm is the *maximum* fixed point.

Proof By induction, for forward analyses

(BASIS) After the first iteration, values of IN[B] and OUT[B] are \leq their initial values.

- At initialization, OUT[B] is \top for all blocks B except ENTRY
- After the first iteration, in a monotone framework, all values will be \leq those at initialization by definitions of the \wedge and transfer functions

Assume that:

- $\operatorname{IN}[B]^k \leq \operatorname{IN}[B]^{k-1}$
- $\operatorname{OUT}[B]^k \leq \operatorname{OUT}[B]^{k-1}$

Show that:

- $\operatorname{IN}[B]^{k+1} \leq \operatorname{IN}[B]^k$
- $\operatorname{OUT}[B]^{k+1} \leq \operatorname{OUT}[B]^k$

- To obtain $\operatorname{IN}[B]$ we must apply \wedge to all $\operatorname{OUT}[P]$
 - P is a predecessor of B
 - This implies $IN[B] \leq OUT[P]$ (\land yields glb)
 - From our inductive hypothesis, $\operatorname{OUT}[P]^k \leq \operatorname{OUT}[P]^{k-1}$
 - applying \wedge on both sides over all P, $\mathrm{IN}[B]^{k+1} \leq \mathrm{IN}[B]^k$
- Now, $\operatorname{OUT}[B] = f(\operatorname{IN}[B])$
 - In the monotone framework, $f(x) \leq f(y)$ when $x \leq y$
 - We have shown $IN[B]^{k+1} \leq IN[B]^k$
 - Therefore, after applying f to both sides, by monotonicity, we have OUT[B]^{k+1} ≤ OUT[B]^k

- Any solution greater than IDEAL is incorrect (or unsafe)
- Any solution less than or equal to IDEAL is conservative¹, or safe.

To see why, consider IDEAL solution $x = p_1 \land p_2 \land ... \land p_n$:

- How can we obtain a value $z = p_1 \land ...$ greater than x?
- How can we obtain a value $y = p_1 \land ...$ less than x?

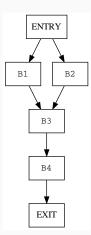
(recall the relationship between the results of the meet operator and its operands)

¹In the English sense

- MOP considers a superset of all executable paths
 - MOP solution $y = p_1 \wedge p_2 \wedge ... \wedge p_n \wedge p_{n+1}...$
- What is the relationship between MOP (y) and IDEAL (z)?

Relationship between MOP and MFP

- $MOP[B_4] = ((f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{entry})$
 - i.e., compose transfer functions over a path and then apply meet (e.g. f_{B3}(f_{B1}(v_{entry})))
- IN[B_4] = $f_{B_3}(f_{B_1}(v_{entry}) \wedge f_{B_2}(v_{entry}))$
 - i.e. apply meet at join nodes



In a distributive framework, MOP = MFP

- $\operatorname{MOP}[B_4] = ((f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{entry})$
- $\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{entry}) \wedge f_{B_2}(v_{entry}))$

If $f(x \wedge y) = f(x) \wedge f(y)$ (i.e. distributive):

•
$$IN[B_4] = f_{B_3}(f_{B_1}(v_{entry})) \wedge f_{B_3}(f_{B_2}(v_{entry}))$$

- If the framework is distributive, then MOP solution = MFP solution
 - Otherwise by monotonicity $\mathsf{MFP} \leq \mathsf{MOP}$
- In either case,
 - MFP \leq MOP \leq IDEAL
 - So all methods produce "safe" solutions

Proofs

Constant Propagation

- Live variable analysis
- Available Expressions
- Reaching Definitions
- These are all distributive (implies monotonicity)
- Their lattices contain a finite number of values
- Their lattices have finite height

- Does this variable have a constant value at this point in the program?
 - Used to perform constant folding (i.e. evaluate constant expressions at compile time)
- Data flow analysis framework
 - Direction?
 - Values?
 - Meet operator?
 - Transfer function?

- Direction: Forward
- Values:
 - UNDEF: variable is undefined so far
 - c: variable is constant value c
 - NAC: variable is not a constant
- Meet operators and transfer functions are slightly more complicated.

- UNDEF $\land v = ?$
- NAC $\wedge v = ?$
- $c \wedge c = ?$
- $c_1 \wedge c_2 = ? (c_1 \neq c_2)$

- UNDEF $\land v = v$
 - UNDEF is \top
- NAC $\wedge v =$ NAC
 - NAC is \perp
- $c \wedge c = c$
- $c_1 \wedge c_2 = \text{NAC}$

What does the lattice for constant propagation look like?

The lattice for constant propagation



- OUT[s] = f(IN[s]) for a statement s
 - Slightly easier to understand if we use statements instead of basic blocks
- Observe that non-assignment statements do not change values
 - f is simply the identify function f(x) = x for such statements
- What about assignment statements?
 - x = c, where x is a variable, and c is a constant
 - x = y + z, where + is any binary operator
 - $x = *y \text{ or } x = f(\ldots)$, where f is a function call

The Transfer Function - II

- Note that IN (and OUT) are maps (i.e. dictionaries)
 - From variables to their current dataflow values (UNDEF, *c*, or NAC)
 - Let's call this map *m*, so that *m*(*x*) returns the dataflow value for variable *x*
- x = c, changes $m(x) \leftarrow c$

• x = y + z, where + is any binary operator (not just addition)

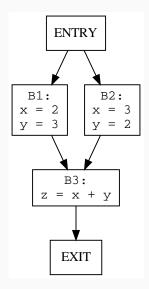
- $m(x) \leftarrow m(y) + m(z)$ if m(y) and m(z) are constants
- $m(x) \leftarrow \text{NAC}$ if either m(y) or m(z) is NAC
- $m(x) \leftarrow \text{UNDEF}$ otherwise
- $x = *y \text{ or } x = f(\ldots), m(x) \leftarrow \text{NAC} (\text{conservatively})$
- Note that $m(v) \leftarrow m(v)$ for all $v \neq x$
 - I.e. the other values of the map remain unchanged

Is $\text{OUT}[s] \leq \text{IN}[s]$ for every s?

- For the two cases below, it is "surely ... monotone":
 - $m(x) \leftarrow c$
 - $m(x) \leftarrow \text{NAC}$
- What about x = y + z?
 - Need to show that m(x) does not get greater as m(y) (and/or) m(z) get smaller
 - Show by case analysis and symmetry

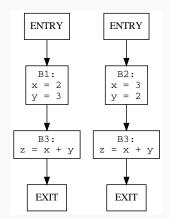
m(y)	m(z)	output $m(x)$
	UNDEF	UNDEF
UNDEF	<i>c</i> ₂	
	NAC	
	UNDEF	
<i>c</i> ₁	<i>c</i> ₂	
	NAC	
NAC	UNDEF	
	<i>C</i> ₂	
	NAC	NAC

m(y)	m(z)	output $m(x)$
UNDEF	UNDEF	UNDEF
	<i>c</i> ₂	UNDEF
	NAC	NAC
<i>c</i> ₁	UNDEF	UNDEF
	<i>c</i> ₂	$c_1 + c_2$
	NAC	NAC
NAC	UNDEF	NAC
	<i>c</i> ₂	NAC
	NAC	NAC

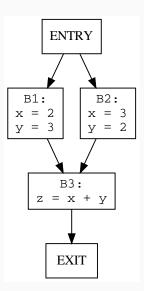


MOP solution

- Path 1 (x = 2; y = 3; z = x + y)
 - m(z) = 5, so z is a constant
- Path 2 (x = 3; y = 2; z = x + y)
 - m(z) = 5, so z is a constant
- Meet over Path 1 and Path 2
 - $m(z) = 5 \land 5$, so z is a constant



- At end of block B_1
 - m(x) = 2 and m(y) = 3
- At end of block B₂
 - m(x) = 3 and m(y) = 2
- Meet before block B₃
 - $m(x) = 2 \land 3$ (i.e. case $c_1 \land c_2$)
 - $m(y) = 3 \wedge 2$
- Conclusion?



- For constant propagation, in most non-trivial programs
 - $\bullet \ \mathrm{MFP} < \mathrm{MOP}$

Proofs

Constant Propagation

- Chapter 9 of the Dragon book
 - Section 9.3, 9.4