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Why Loop Transformations

� Potentially lots of computation

� A few operations execute many times

� Potentially lots of memory accesses

� Array-based data structures show up frequently

� Matrices, vectors, etc.

� Loops are naturally paired with arrays

� FORTRAN

� FORMula TRANslator

� World’s first high-level programming language



Important Applications

� Scientific Computing/Computational Science

� Simulation of Galaxies, Molecules, etc.

� Drug Discovery

� Audio/Video Processing

� Signal Processing

� Compression

� Machine Learning (specifically Deep Learning)

� Recognizing cats

� Showing targeted ads



Matrix Multiply – IJK

� Multiplying two matrices:

� A (m × n)

� B (n × k)

� C (m × k) [result]

� Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Performance of the two versions?

� on 1024x1024 matrices of ints

� which is faster?

� by how much?



Performance of the two versions

� on 1024x1024 matrices

� Time for IJK: 0.554 s ± 0.003s (95% CI)

� Time for IKJ: 6.618 s ± 0.032s (95% CI)



What caused the nearly 12X slowdown?

� Matrix Multiply has a large number of arithmetic operations

� But the number of operations did not change

� Matrix Multiply also refers to a large number of array
elements

� Order in which they access elements changed

� Memory hierarchy/Caches affect cost of each access



Loop Analysis

Which iterations of a loop depend on other iterations?

� Once dependences are identified

� can change order

� can vectorize

� can redistribute across processors
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Dependences

� Definition: Two dynamic statements have a dependence if:

� Both access same location (memory or register)

� And one of the accesses is a write

� Dynamic required, since we’re talking about loops (examples

later)



Dependence types

S1 occurs “earlier” than S2 (in the dynamic trace)

� True dependence

� S1δS2
� S1 writes, S2 reads

� Anti-dependence

� S1δ
−1S2

� S1 reads, S2 writes

� Output dependence

� S1δ
oS2

� Both S1 and S2 write



Loop-independent dependence

� What are the dependences in the loop body below?

� Can you change the order of the statements in the loop body?

DO I = 0, 9
A(I) = A(I) + B
C(I) = A(I) + D

ENDDO

� Can you change the (execution) order of loop iterations?

Note: FORTRAN uses parentheses in array references: e.g., A(I).

FORTRAN arrays usually start at 1, but for this lecture, we will

assume they start at 0.



Loop-independent dependences visualized

A(0) = A(0) + B

C(0) = A(0) + D

A(1) = A(1) + B

C(1) = A(1) + D

A(2) = A(2) + B

C(2) = A(2) + D

A(3) = A(3) + B

C(3) = A(3) + D

NOTE: Only dependences from first four iterations visualized.



Loop-carried dependences

� What are the dependences in the loop body below?

� Can you change the order of the statements in the loop body?

DO I = 0, 9
A(I + 1) = A(I) + B
C(I) = A(I) + D

ENDDO

� Can you change the (execution) order of loop iterations?



Loop-carried dependences visualized

A(0 + 1) = A(0) + B

A(1 + 1) = A(1) + B C(1) = A(1) + D

C(0) = A(0) + D

A(2 + 1) = A(2) + B C(2) = A(2) + D

NOTE: Only dependences from first three iterations visualized.



Dependence Level for Loop-Carried Dependences

DO I = 0, 9
DO J = 0, 1

A(I + 1, J) = A(I, J) + 1
ENDDO

ENDDO

� Can you change the order of inner loop?

� Can you change the order of the outer loop?



Dependences Visualized

A(0 + 1, 0) = A(0, 0) + 1

A(1 + 1, 0) = A(1, 0) + 1

A(2 + 1, 0) = A(2, 0) + 1

A(0 + 1, 1) = A(0, 1) + 1

A(1 + 1, 1) = A(1, 1) + 1

A(2 + 1, 1) = A(2, 1) + 1

NOTE: Only dependences from first three iterations visualized.



Loop Dependences

� Loop-independent dependence

� In same iteration, independent of loops

� Loop-carried dependence

� Across different iterations of atleast one loop

� Dependence Level of a Loop-carried Dependence

� The nesting level k of loop that carries the dependence

� S1δkS2



Iteration Spaces

DO I = 1, 2
DO J = 1, 2

S
ENDDO

ENDDO

� S has four instances (I , J): (1, 1), (1, 2), (2, 1), (2, 2)

� Each of these values represents an iteration vector

� Particular values of loop indices

� Ordered from outermost loop to innermost loop



Iteration Space Example

DO J = 1, 10
DO I = 1, 10
A(I+1, J) = A(I, J) + X
ENDDO

ENDDO

Assuming A starts from 1. FORTRAN allows you to change the “origin” of arrays.



Iteration Space Figure
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Iteration Vector Ordering (Definition)

For two vectors i = (i1, i2, ..., in) and j = (j1, j2, ..., jn), each

containing n elements, i < j if there exists m ∈ [0, n), such that:

� ix = jx for x < m

� im < jm



Iteration Vector Ordering (Code)

For two vectors i and j , each containing n elements, i < j is

defined as:

def lessthan(i, j, n):
if n == 1:

return i[0] < j[0]

# test prefix for elementwise-equality
if i[0:n-1] == j[0:n-1]:

return i[n-1] < j[n-1]
else:

return lessthan(i, j, n-1)

Can similarly define other order relations.



Loop dependence

Dependence from Statement S1 (source) to statement S2 (sink) if:

� There exist iteration vectors i and j such that i < j or i = j

� There is a path from S1 to S2 in the loop

� S1 accesses memory location M in iteration i

� S2 accesses memory location M in iteration j

� and one of the accesses is a write
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Generalizing Loop Indices

DO I_1 = ...
DO I_2 = ...

...
DO I_N = ...

A(f1, f2, f3, ..., fM) = ...
... = A(g1, g2, g3, ..., gM)

ENDDO
ENDDO

ENDDO

where A is M-dimensional array, and fX and gX are index

functions of the form

� fX (I 1, I 2, ..., I N)

� gX (I 1, I 2, ..., I N)

� 1 <= X <= M



Dependence using Iteration Vectors

Let α and β be iteration vectors:

� α = (i1, i2, i3, ..., iN)

� β = (i ′1, i
′
2, i

′
3, ..., i

′
N)

Then a dependence exists if:

� (vectors) α < β

� fX (α) = gX (β), for 1 <= X <= M



Example

DO J = 0, 9
DO I = 0, 9
A(I+1, J) = A(I, J) + X
ENDDO

ENDDO

� f 1(J, I ) = I + 1, f 2(J, I ) = J

� g1(J, I ) = I , g2(J, I ) = J

� For α = (0, 0) (i.e. J = 0, I = 0) and β = (0, 1) (i.e.
J = 0, I = 1):

� f 1(α) = g1(β), i.e. 1 = 1

� f 2(α) = g2(β), i.e. 0 = 0

� Many other values of α and β also satisfy these equations.



Dependence Testing

Do iteration vectors α and β exist such that:

� (vectors) α < β

� fX (α) = gX (β), for 1 <= X <= M

How can we find α and β if they exist?



Restrictions on Index functions

� fX and gX must be decidable (i.e. computable)

� fX and gX must be ”analyzable”

� to avoid brute force search



Affine Index Functions

� Let fX and gX must be affine functions of loop indices:

� i.e. for fX (i1, i2, i3, ..., in)

� fX = a1i1 + a2i2 + ...+ anin + e

� e is optional loop invariant calculation (i.e. constant for the

loop)



Dependence Testing on Restricted Index Functions

� Given that fX and gX are affine functions of loop indices

� Do iteration vectors α and β exist such that:

� (vectors) α < β

� fX (α) = gX (β), for 1 <= X <= M

How can we find α and β if they exist?

What is this problem better known as? Hint: an affine function is

a linear function plus constant.



Dependence Testing

� Integer Linear Programming is NP-complete

� Lots of heuristics invented

� Profitable to know if no solution exists since it implies no

dependence!

� See Chapter 3 of AK

� Or Chapter 11 of the Dragon Book

� We will cover this in a later class
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Representing Dependences

Do we need to track all the iterations that have a dependence

explicitly (e.g. in a list)?



Distance Vectors

d(i , j)k = jk − ik

� Where i , j , d(i , j) are n-element vectors

� ik indicates k-th element of i

Example distance vector: (0, 1)



Direction Vectors

D(i , j)k =

� ”<”, if d(i , j)k > 0

� ”=”, if d(i , j)k = 0

� ”>”, if d(i , j)k < 0

Example direction vector for (0, 1): (=, <)



Information we need to track

For every pair of memory references:

� Iteration Vectors i and j which have a dependence, or

� Unique Distance Vectors d(i , j), or

� Unique Direction Vectors D(i , j)



Test

� Which of these indicates a loop-independent dependence?

� (=,=)

� (=, <)

� Of the loop-carried dependence in example above, what level

is the loop-carried dependence?



Theorems

WARNING: Informal language

� Direction Vector Transform (Theorem 2.3 in AK)

� If a transformation reorders loop iterations, and preserves the

leftmost non-”=” component as ”<”, all dependences are

preserved.

� Theorem 2.4 in AK

� If a level-k dependence exists, and a transformation reorders

loop iterations while not reordering the level-k loop

� And does not move loops inside k outside the loop and vice

versa

� It preserves all level-k dependences.

� Iteration Reordering (Theorem 2.6 in AK)

� Iterations of a level k loop can be reordered if there is no level

k dependence.
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References

� Much of this lecture is based on Allen and Kennedy,

Optimizing Compilers for Modern Architectures, Chapter 2.

� Chapter 11 of the Dragon Book also presents this information,

but differently.
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