CSC2/455 Software Analysis and Improvement

Introduction to Hoare Logic

Sreepathi Pai
May 3, 2021

URCS
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
OED Definition: Reasoning conducted or assessed according to strict principles of validity.

Particularly relevant to this lecture:
- A particular system or codification of the principles of proof and inference.
Propositional Logic

- Recall, propositions (identified by symbols)
 - The connectives \lor, \land, \implies, \iff and the operation \neg
- Tautologies
 - A formula that is always true
- Contradiction
 - A formula that is always false
- Equivalence: two formulae A and B are equivalent if $A \iff B$ is a tautology
- Proof technique in propositional logic
 - Enumerate all possible values of variables and check if the final result is always true
Equivalences

- $p \iff q$ is equivalent to $\neg q \iff \neg p$
 - contrapositive (theorem)
- $p \iff q$ is not necessarily equivalent to $q \iff p$
 - converse
Valid Arguments

- An argument is valid if and only if $P_1 \land P_2 \land \cdots \land P_n \implies P_{n+1}$ is a tautology
 - this means that $P_1 \land P_2 \land \cdots \land P_n \land P_{n+1}$ is true
Rules of Inference: Modus Ponens

\[
p \\
p \implies q \\
\hline \\
q
\]

- \((p \land (p \implies q)) \implies q\) is a tautology
- Example:
 - \(p\) is “it is raining”
 - \(p \implies q\) is “if it is raining, roads are wet”
 - \(q\), so “roads are wet”
Rules of Inference: Modus Tollens

\[p \implies q \quad \neg q \quad \therefore \neg p \]

- \((p \implies q) \land (\neg q)) \implies \neg p\) is a tautology

Example:
 - \(p \implies q\) is “if \(a\) is even, \(a + 1\) is odd”
 - \(\neg q\) is “\(a + 1\) is not odd”
 - \(\neg p\), so “\(a\) is not even”
Invalid Rule of Inference: Affirming the Consequent

\[p \implies q \]

\[q \]

\[\therefore p \]

\[\text{• } ((p \implies q) \land q) \implies p \text{ is not a tautology} \]
Proof System for Propositional Logic

- System L
- Lines of proof in this system must be
 - an axiom of L (an axiom of L is a tautology)
 - an application of Modus Ponens
 - a hypothesis (a hypothesis \(G_n \) is assumed to be true)
 - a lemma (a previously proven theorem)
- The last line of a proof is a theorem
 - \(G_1, G_2, \ldots, G_n \vdash_L A \)
- This proof system is both:
 - Sound: Only tautologies can be proved
 - Complete: All tautologies can be proved

From Hirst and Hirst, A Primer for Logic and Proof.
A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

\[\{P\} C\{Q\} \]

- \(P\) is a precondition
- \(C\) is a statement, function or program
- \(Q\) is a postcondition
- Both \(P\) and \(Q\) are logical statements, e.g., what you would put in an assert

Read as: If \(P\) holds, and \(C\) executes (and terminates), then \(Q\) holds. \(P\) and \(Q\) are assertions, usually over program state, and usually we need to prove that \(Q\) holds.
Recall: Partial and Total Correctness

- If C does not terminate, Q may or may not be true
 - This is the notion of *partial correctness*
- If C can be shown (formally) to terminate, then we achieve a proof of *total correctness*

\[
\text{Total correctness} = \text{Termination} + \text{Partial Correctness}
\]
Some examples of assertions

- \(\{X = 1\} Y := X \{Y = 1\} \)
- \(\{X = 1\} Y := X \{Y = 2\} \)
- \(\{true\} C\{Q\} \)
- \(\{P\} C\{true\} \)
- \(\{P\} C\{false\} \)

Note: not all of the above are valid, they are just assertions to be checked.
Formal Proof

- (informally) Proofs at the level of rigour that even a computer could understand!
- Usually, each step in the proof is explicitly annotated as to how it was obtained from the previous steps
 - Makes it easy to check (esp. for computers)
 - Either the use of an axiom or a rule of inference
- Painful to construct by hand
 - Interactive proof assistants like Coq and Isabelle usually make it more fun
 - (if you’ve disliked writing proofs, try them!)
The assignment axiom of Hoare Logic

- The **assignment axiom** states that

 $$\vdash \{P[E/V]\} V := E \{P\}$$

- $P[E/V]$ is read as P with all instances of V replaced by E

 - P with E for V
 - $\{X = 1\}[Y/X]$ leads to $\{Y = 1\}$

- Usage example: if $X = 6$, prove $Y > 15$ after $Y := X \times 3$

 - Postcondition P to prove: $\{Y > 15\}$
 - Use assignment axiom: $\{X \times 3 > 15\} Y := X \times 3 \{Y > 15\}$
 - Given that $X = 6$, so $X \times 3 = 6 \times 3 = 18$
 - $X \times 3 = 18 \implies X \times 3 > 15$
Two incorrect assignment axiom forms

- \(\{P\} V := E\{P[E/V]\} \)
- \(\{P\} V := E\{P[V/E]\} \)
If $\vdash \{P'\} \circ \{Q\}$ and $P \implies P'$, then we can write $\vdash \{P\} \circ \{Q\}$

- $\{X + 1 = n + 1\} X := X + 1 \{X = n + 1\}$ (assignment axiom)
- $\vdash X = n \implies X + 1 = n + 1$ (from arithmetic)
- $\{X = n\} X := X + 1 \{X = n + 1\}$ (precondition strengthening)
Postcondition weakening

If \(\vdash \{ P \} \quad \{ Q' \} \), and \(Q' \rightarrow Q \), then we can write \(\vdash \{ P \} \quad \{ Q \} \)

- \(\{ R = X \land 0 = 0 \} \quad Q := 0 \{ R = X \land Q = 0 \} \) (assignment axiom)
- \(R = X \land Q = 0 \rightarrow R = X + (Y \times Q) \)
- \(\{ R = X \} \quad Q := 0 \{ R = X + (Y \times Q) \} \) (postcondition weakening)
Conjunctions and Disjunctions

• If $\vdash \{P_1\} \models \{Q_1\}$ and $\vdash \{P_2\} \models \{Q_2\}$, then $\vdash \{P_1 \land P_2\} \models \{Q_1 \land Q_2\}$

• If $\vdash \{P_1\} \models \{Q_1\}$ and $\vdash \{P_2\} \models \{Q_2\}$, then $\vdash \{P_1 \lor P_2\} \models \{Q_1 \lor Q_2\}$
Sequencing Rule

• If $\vdash \{P\} C_1 \{Q\}$ and $\vdash \{Q\} C_2 \{R\}$, then $\vdash \{P\} C_1 ; \ C_2 \{R\}$

• You can combine the sequencing rule and the rules of consequence (i.e. precondition strengthening and postcondition weakening) to extend this to multiple statements.
The Conditional Rule

- If \(\vdash \{ P \land S \} C_1 \{ Q \} \) and \(\vdash \{ P \land \neg S \} C_2 \{ Q \} \), then
 - \(\vdash \{ P \} \) IF S THEN C1 ELSE C2 \(\{ Q \} \)
The While Rule

- If \{P \land S\} \implies {P} then
 - \{P\} \text{WHILE } S \text{ DO } C \text{ ENDDO } \{P \land \neg S\}

- Here, \(P\) is the inductive loop invariant, recall:
 - It is true on entry into and exit out of the loop
 - It is true after every iteration of the loop
More rules

- FOR-rule
- Handling arrays
 - variant of assignment, due to McCarthy
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Example 1

\[X = x \land Y = y \]

\[R := X; \]
\[X := Y; \]
\[Y := R; \]

\[X = y \land Y = x \]
A verification condition is a mechanically generated proof goal from the program and program specifications.

For example, suppose \(\{ P \} V := E \{ Q \} \) exists in the program

- \(P \) is programmer-supplied precondition (or annotation)
- \(Q \) is programmer-supplied postcondition

The verification condition for this statement is

\[P \implies Q[E/V] \]
Why the VC for assignment works

- From Hoare Logic, we have:
 - \(\vdash \{ Q[E/V] \} v := E \{ Q \} \)
- If we prove \(P \implies Q[E/V] \), then by precondition strengthening, we have:
 - \(\vdash \{ P \} v := E \{ Q \} \)
- Which is what we had to prove.

What if we can’t prove \(P \implies Q[E/V] \)? Does that mean \(\{ P \} C \{ Q \} \) does not hold?
Sufficiency and Incompleteness

- VCs are *sufficient*, but not necessary
 - There may be other ways to prove \(\{P\} \land \{Q\} \)
- Mechanical provers cannot prove everything
 - Gödel’s Incompleteness Theorem
Verification conditions for our example

\{X = x \land Y = y\} \quad R := X; \\
X := Y; \\
Y := R; \quad \{X = y \land Y = x\}

- The verification conditions for a sequence ending in an assignment \(\{P\} C1; \ V := E \{Q\}\) are those generated by:
 - \(\{P\} C1 \{Q[E/V]\}\)
Verification conditions for our example: 2

\begin{align*}
\{X = x \land Y = y\} & \quad R := X; \\
X := Y; \quad \{X = y \land R = x\}
\end{align*}

- Because \(\{X = y \land Y = x\}[R/Y]\), following from VC for sequences ending in an assignment.
Verification conditions for our example: 3

\{X = x \land Y = y\} \quad R := X; \quad \{Y = y \land R = x\}

- \(P = \{X = x \land Y = y\}\)
- \(Q = \{Y = y \land R = x\}\)
- Using VC for assignment:
 - \(Q[E/V] = \{Y = y \land R = x\}[X/R] = \{Y = y \land X = x\}\)
- Here, \(P \implies Q[E/V]\) trivially (identical)
Example 2

\[k \geq 0 \]

\[
\begin{align*}
 x &:= k; \\
 c &:= 0; \\
 \text{while}(x > 0) \{ \\
 &x := x - 1; \\
 &c := c + 1; \\
 \}
\]

\[x = 0 \land c = k \]
The verification conditions for a While statement \(\{P\} \text{WHILE } S \text{ DO } C \{Q\} \) are

- \(P \implies R \) (where \(R \) is the loop invariant)
- \(R \land \neg S \implies Q \)
- recursively, all VCs from \(\{R \land S\} C \{R\} \)

The verification conditions for a sequence not ending in an assignment \(\{P\} C_1; C_2; C_{(n-1)}; C_n \{Q\} \), assuming \(\{R\} C(n) \{Q\} \) are those generated by:

- \(\{R\} C_n \{Q\} \)
- \(\{P\} C_1; C_2; C_{(n-1)} \{R\} \)
while\((x > 0) \) {
 \(x := x - 1; \)
 \(c := c + 1; \)
}\n
/* Q: \(x = 0 \land c = k \) */

- loop invariant: \(x + c = k \)
- (VC1) \(x + c = k \land \neg(x > 0) \implies x = 0 \land c = k \)
 - (from \(R \land \neg S \implies Q \))
- (VC2) \(P \implies x + c = k \) (from \(P \implies R \))
- (VC3) \(x + c = k \land x > 0 \implies x - 1 + c + 1 = k \) (VC from assignment)
 - Recursively from body:
 - \(\{x + c = k \land x > 0\} x := x - 1; \ c := c + 1 \{x + c = k\} \)
 - \(\{x + c = k \land x > 0\} x := x - 1 \{x + c + 1 = k\} \) (from sequence ending with assignment)
Verification Conditions for Initialization

/* k >= 0 */
x := k;
c := 0;
/* P */

Let’s assume $P = R$, so P is $x + c = k$

(VC0) $k >= 0 \implies k = k$

• $\{k >= 0\} x := k; c := 0 \{x + c = k\}$

• $\{k >= 0\} x := k; \{x + 0 = k\}$ (from sequence ending with assignment)

• $Q[E/V]$ is $k + 0 = k$
Verification Conditions

- (VC0) \(k \geq 0 \implies k = k \)
- (VC1) \(x + c = k \land \neg(x > 0) \implies x = 0 \land c = k \)
- (VC2) \(x + c = k \implies x + c = k \)
- (VC3) \(x + c = k \land x > 0 \implies x + c = k \)

- We need to show that \(VC_0 \land VC_1 \land VC_2 \land VC_3 \) is true.
- Are there values \(x, c, k \) that simultaneously make all true?
from z3 import *

s = Solver()
x, k, c = Ints('x k c')

vc0 = Implies(k >= 0, k == k)
vc1 = Implies(And(x + c == k, Not(x > 0)), And(x == 0, c == k))
vc2 = Implies(x + c == k, x + c == k)
vc3 = Implies(And(x + c == k, x > 0), x + c == k)

s.add(And(And(And(vc0, vc1), vc2), vc3))

if s.check() == sat:
 print("SAT", s.model())
else:
 print("UNSAT")

SAT [c = 0, k = 0, x = 0]
Program Verification Procedure

- Generate specifications (aka annotations or assert statements)
- Generate verification conditions
 - Usually mechanical, e.g. Dafny or CBMC
- Prove verification conditions
 - By hand or
 - Automated Theorem Prover
Generating VCs for other statements in language
Soundness?
Completeness?
Decidability?
Pointers: Separation logic
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Sources, further reading and links

• Background Reading on Hoare Logic, by Mike Gordon
 • The reference for this lecture

• Textbooks
 • Software Foundations: Vol 1: Logical Foundations,
 • Software Foundations: Vol 2: Programming Language Foundations
 • Concrete Semantics