CSC2/455 Software Analysis and Improvement
Interprocedural Analyses - II

Sreepathi Pai
Mar 16, 2021
URCS
Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript
Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript
Cloning-based Context-Sensitive Analysis

```c
for(i = 0; i < n; i++) {
    c1:  t1 = f1(0);
    c2:  t2 = f2(243);
    c3:  t3 = f3(243);
    X[i] = t1 + t2 + t3;
}

int f1(int v) {
    return (v+1);
}

int f2(int v) {
    return (v+1);
}

int f3(int v) {
    return (v+1);
}
```

- Create a clone for each unique calling context and then apply context-insensitive analysis
- Is this the same as inlining?
 - See textbook for a differentiating example
The CFG on the left does not distinguish context, the one on the right does
for(i = 0; i < n; i++) {
 c1: t1 = g(0);
 c2: t2 = g(243);
 c3: t3 = g(243);
 X[i] = t1 + t2 + t3;
}

int g(int v) {
 if(v > 1)
 return f(v);
 else
 return (v+1);
}

int f(int v) {
 return (v+2);
}

To what depth shall we clone functions?
A function call may be distinguished by its context
- Calling functions or
- Call-sites (i.e. call stack)

If we do not distinguish contexts,
- context-insensitive
- $k = 0$

Different values of k may yield different precision

No value of k may be sufficient
- recursive function calls
- indirect function calls
Some numbers

- If there are N functions in a program, how many calling contexts are possible
 - if no recursion is involved?
 - if recursion is involved?
Handling Recursion in Contexts

- Consider nodes in a call graph
 - non-recursive functions
 - self-recursive functions
 - mutually recursive functions
- Look for strongly-connected components
 - trivial (non-recursive)
 - non-trivial (the latter two)
Methods to “finitize” Recursion

- Model them using regular expressions
 - \(f(g \; h \; i)^*j \)
- Eliminate all call information within SCC
 - \(f \; g \; j \)
Have contexts, will analyze!

- Cloning-based analysis
 - Clone functions, once per context
 - Followed by context-insensitive analysis
- Summary-based analysis
 - (Bottom-up phase) Compute summaries of each function for an analysis (e.g. constant propagation) in terms of input parameters
 - (Top-down phase) Pass inputs to summaries, one per context OR merge contexts using meet operator
- Based on Region-based analysis
Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript
Region-based Analysis Framework

- Operates on *regions* of the control flow graph
- A region is defined (informally) as a portion of code with a single entry and single exit
 - Basic blocks are regions
- Recall we need to iterate (in iterative data flow analysis, IDFA) because of loops
- Can we get rid of loops in some way?
A region is a subset N of the nodes, and E of the edges of a (control) flow graph such that:

- There is a header node h that dominates all nodes in N
- If there is a path from m to n that does not go through h, then $m \in N$
- E is the set of edges that connect two nodes n_1 and n_2 in N
 - edges into h from outside the region are not part of E

Additionally, if the flow graph is reducible, we can organize the regions into a hierarchy.
The T1–T2 definition of reducible graphs:

- **T1**: Remove all self edges on a node
- **T2**: If a node n has a single predecessor m, combine them into a single node x. Edges into m and out of n are connected to x instead.
- Repeat until neither T1 nor T2 can be applied

A graph is a reducible if at the end of the above procedure the entire graph is reduced to a single node.
Example: Repeated applications of T2
Example: Application of T1 and T2

B0

B1+B2+B3+B4

B0+B1+B2+B3+B4
Non-reducible (or Irreducible) graphs

- Structured code usually produces reducible graphs
- Can you construct an irreducible graph?
- Textbook details some ways of transforming irreducible graphs into reducible graphs
Region Hierarchy

- The smallest regions form \textit{leaf} regions
 - Basic blocks are leaf regions
- Using a process similar to T1/T2 we combine regions into bigger regions
- Until we obtain a single large region

The largest region (i.e. final node) has no loops, and if we could construct an appropriate transfer function, we could analyze this region just as we analyze a basic block.
Basic ideas

- If the region consists of a “linear” sequence of basic blocks
 - Say B_1 followed by B_2, with transfer functions f_1 and f_2 respectively
 - We need to construct the composition $f_2 \circ f_1$
 - This can be extended to regions, i.e. if we have a linear sequence of regions

- If you encounter alternate paths (akin to join nodes)
 - Apply the meet operator on the transfer functions (not the values!)
 - i.e. $(f_1 \wedge_f f_2)(x)$, which is defined as $f_1(x) \wedge f_2(x)$
 - Note the second \wedge is the meet operator on data-flow values
Recall that reaching definitions has a gen, kill form for its transfer functions

\[f_b(x) = gen_b \cup (x - kill_b) \]

Here:

\[f_1(x) = \{d1, d2\} \cup (x - \emptyset) \]

\[f_2(x) = \{d3\} \cup (x - \{d1\}) \]

The composed function is:

\[(f_2 \circ f_1)(x) = \{d2, d3\} \cup (x - \{d1\}) \]

Which is also in gen–kill form
Working out the composed gen-kill form

• Here:
 • $f_1(x) = \{d_1, d_2\} \cup (x - \emptyset)$
 • $f_2(x) = \{d_3\} \cup (x - \{d_1\})$

• Working it out:
 • $f_2(f_1(x)) = \{d_3\} \cup ((\{d_1, d_2\} \cup (x - \emptyset)) - \{d_1\})$

• Symbolic form worked out in the textbook
For gen–kill form

- Composition for gen–kill form is then
 - \textit{kill}_o: Union of all kill sets
 - \textit{gen}_o: Union of all gen sets - \textit{kill}_o
 - $f_o(x) = \textit{gen}_o \cup (x - \textit{kill}_o)$
Meet for Reaching Definitions

- Merging B0 and B1, we would get:
 - $f_{B_0}(x) = \{d_1, d_2\} \cup (x - \emptyset)$
 - $f_{B_1}(x) = \{d_3\} \cup (x - \{d_1\})$

- Recall that \land for reaching definitions is \cup

- $(f_{B_0} \land_f f_{B_1})(x) = f_{B_0}(x) \cup f_{B_1}(x)$

- $(f_{B_0} \land_f f_{B_1})(x) = \{d_1, d_2, d_3\} \cup (x - \emptyset)$
 - $\text{gen}_\land = \text{gen}_{B_0} \cup \text{gen}_{B_1}$
 - $\text{kill}_\land = \text{kill}_{B_0} \cap \text{kill}_{B_1} = \emptyset$

- $f_\land(x) = \text{gen}_\land \cup (x - \text{kill}_\land)$
Working out the meet

- \(f_{B_0}(x) = \{d_1, d_2\} \cup (x - \emptyset) \)
- \(f_{B_1}(x) = \{d_3\} \cup (x - \{d_1\}) \)
- \((f_{B_0} \land f_{B_1})(x) = f_{B_0}(x) \cup f_{B_1}(x) \)
 - \((\{d_1, d_2\} \cup (x - \emptyset)) \cup (\{d_3\} \cup (x - \{d_1\})) \)
 - \(\{d_1, d_2\} \cup \{d_3\} \cup (x - \emptyset) \cup (x - \{d_1\}) \)
 - \(\{d_1, d_2, d_3\} \cup (x - (\emptyset \cap \{d_1\})) \)

- Hints:
 - \(X - Y = X \cap Y^C \)
 - \((A^C \cup B^C) = (A \cap B)^C \)
Loop regions for reaching definitions

- Loop region (L) is BH, B1, and B2
- If L is not executed:
 - $f^0_L(x) = x$
- If L is executed once?
 - BH \rightarrow B1 \rightarrow B2 \rightarrow BH
 (ignore edge from B0 to BH)
 - $f^1_L(x) =$
 $\{d3, d4\} \cup (x - \{d1, d2\})$
- If L is executed twice?
 - $f^2_L(x) = f_L(f_L(x))$
 - $f^2_L(x) =$
 $\{d3, d4\} \cup (x - \{d1, d2\})$

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Variables</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>d1: x = 1</td>
<td>{d1, d2}</td>
<td>{}</td>
</tr>
<tr>
<td>B1</td>
<td>d3: x = 3</td>
<td>{d3}</td>
<td>{d1}</td>
</tr>
<tr>
<td>B2</td>
<td>d4: y = 2</td>
<td>{d4}</td>
<td>{d2}</td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
• Loop region \((L)\) is BH, B1, and B2
• We have:
 • \(f_L^0(x) = x\)
 • \(f_L^1(x) = \{d3, d4\} \cup (x - \{d1, d2\})\)
 • \(f_L^2(x) = f_L(f_L(x))\)
 • \(f_L^n(x) = \{d3, d4\} \cup (x - \{d1, d2\})\)
• The gen set for a loop is simply the gen set of its body, and likewise for its kill set
Dealing with loop regions

- If the region consists of a loop,
 - Compose the transfer functions for the body, obtaining f_{body}
 - Compute the effect of one iteration (or one cycle), f
 - Compute the closure of f, denoted f^*
 - f^* is the transfer function of the loop region

- $f^* = \bigwedge_{n \geq 0} f^n$
 - f^n is f applied to itself n times
 - f^0 is loop does not execute, so identity

- Informally:
 - Compute the transfer function of not going into the loop (essentially, identity), meet it with
 - Compute the transfer function of executing the loop once, and meet it with
 - the transfer function of executing the loop twice, and meet it with
 - ...
Loop regions for Reaching Definitions

- \(f^* = f^0 \land f^1 \land f^2 \ldots \)
- \(f^* = x \cup (\text{gen} \cup (x - \text{kill})) \cup (\text{gen} \cup (x - \text{kill})) \ldots \)
- \(f^* = x \cup (\text{gen} \cup (x - \text{kill})) \)
- \(f^* = x \cup \text{gen} \cup x \)
- \(f^* = \text{gen} \cup (x - \emptyset) \)

For a loop region, in reaching definitions, the transfer function (i.e., the closure) only generates definitions, but doesn’t kill any definition.
Why we need reducible graphs

- In reducible graphs:
 - loops are properly nested or are disjoint
- Repeat composition, meet and closure until you obtain the transfer function for the whole region
The Region-based Analysis Framework

- Compute regions of the flow graph
- Compute, in a bottom-up fashion (from innermost region to outermost), the transfer functions for each region
- Compute, in a top-down fashion (from outermost to innermost), the results of the analysis
- Algorithm 9.53 in the Dragon Book
- Work out Example 9.54 in the Dragon book
- Example 12.8 in the textbook uses summary-based analysis for interprocedural constant propagation
Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript
Recall how we compute and update pointsTo sets from last class...
Flavours

- Flow-sensitive/Flow-insensitive
- Context-insensitive
- Context-sensitive
 - Cloning-based
 - Summary-based
What the textbook describes

- Flow-insensitive
- Context-sensitive
 - With non-trivial SCCs treated as a single node
- Cloning-based

Additionally, the Dragon book formulates the points-to analysis as a (datalog) logical formula to be solved.
class t {
 t n() { return new r(); } /* call site g */
}

class s extends t {
 t n() { return new s(); } /* call site h */
}

class r extends s {
 t n() { return new r(); } /* call site i */
}

main() {
 t a = new t(); /* call site j */
 a = a.n();
}

What is a potential call graph for `a.n()` from the points-to relationships?
Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript
• Chapter 12 of the Dragon Book
 • Region-based analysis is from Chapter 9, Section 9.7
• Paper recommended:
 • Reps et al. "Precise interprocedural dataflow analysis via graph reachability"