CSC2/455 Software Analysis and Improvement
Abstract Interpretation - III

Sreepathi Pai
April 4, 2022
URCS
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
Recap

Value Abstractions

Computable Abstract Semantics

Postscript
• Previous lecture
 • Concrete Semantics for a Small Language

• Today:
 • Value abstractions
 • Non-relational Abstractions
 • Abstract Semantics
 • Soundness, termination, etc.
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
Abstraction Examples

- Consider the concrete memory state M:
 - $\{\{x \mapsto 7, y \mapsto 2\}, \{x \mapsto 8, y \mapsto 0\}\}$
 - How shall we abstract it?
- $x = \{7, 8\}$
 - Signs: $x = [\geq 0]$
 - Intervals: $x = [7, 8]$
- $y = \{0, 2\}$
 - Signs: $y = [\geq 0]$
 - Intervals: $y = [0, 2]$ (note: $[0, 2] = \{0, 1, 2\}$)
- Alternatively:
 - Signs: $x = \top$ (here, $\top = \vee = \mathbb{Z}$)
 - Intervals: $y = [0, 3]$
 - Multiple abstractions are possible, but some are less precise
Lattice for Signs Domain

- Signs, $\mathbb{A}_S = \{\top, [\leq 0], [\geq 0], [= 0], \perp\}$
 - $\top = \mathbb{V}$ (recall $\mathbb{V} = \mathbb{Z}$ for our language)
 - $[\leq 0] = \{x \mid x \leq 0\}$
 - $[\geq 0] = \{x \mid x \geq 0\}$
 - $[= 0] = \{0\}$
 - $\perp = \emptyset$

- Order relation \sqsubseteq
 - Items lower in the lattice are more precise
 - $a \sqsubseteq b$, read as a less than b

- Join \sqcup
 - Least upper bound, lub
Lattice for Intervals Domain

• Intervals, $\mathbb{A}_I = \{\top, \bot\} \cup \{[n, m] \mid n, m \in \mathbb{Z}\}$

• $\top = (-\infty, +\infty) = \mathbb{V} = \mathbb{Z}$
• $[n, m] = \{x \mid n \leq x \leq m\}$
• $[n, +\infty) = \{x \mid n \leq x\}$
• $(-\infty, m) = \{x \mid x \leq m\}$
• $\bot = \emptyset$

• Infinite lattice

• Order relation \sqsubseteq and Join \sqcup supported
Abstraction and Concretization Functions (Informal)

- Given an element c of the concrete domain \mathbb{C}, we want $a \in \mathbb{A}$
 - c is a set of values
 - e.g. $x = \{7, 8\}$
- Let the value abstraction function be ϕ_V
 - $\phi_V : \mathbb{C} \to \mathbb{A}$
- Similarly, given an abstract element $a \in \mathbb{A}$, we want the concrete element c corresponding to it
 - e.g., $a = [\leq 0] \in \mathbb{A}_\phi$
 - So, corresponding $c = \{\ldots, -3, -2, -1, 0\}$
- Let this value concretization function be γ_V
 - $\gamma_V : \mathbb{A} \to \mathbb{C}$
- Key questions: how do we relate ϕ_V to γ_V
 - soundly,
 - precisely?
class SignsDomain(object):
 LTZ = "[<= 0]"
 GTZ = "[>= 0]"
 EQZ = "[= 0]"
 TOP = "TOP"
 BOT = "BOT"
 finite_height = True

 def phi(self, v: int):
 if v == 0:
 return self.EQZ
 elif v > 0:
 return self.GTZ
 elif v < 0:
 return self.LTZ
 else:
 raise ValueError(f"Unknown value for signs abstraction {v}"
class SignsDomain(object):
 ...
 # it helps to think of abstract elements as sets, with lte
 # denoting set inclusion. So we’re asking, is x included in y?
 def lte(self, x, y):
 # bot is always less than everything else
 # empty set {} is always included
 if x == self.BOT: return True

 # top is only lte
 # top is all possible values, so it is only included in itself
 if x == self.TOP:
 if y != self.TOP: return False
 return True

 # eqz is the set {0}, which is included in all sets (>=0, <=0) except
 if x == self.EQZ:
 if y == self.BOT: return False
 return True

 if x == self.LTZ or x == self.GTZ:
 if y == x: return True
 if y == self.TOP: return True

 # these sets are not included in {0} or {} or {>=0} [resp. {<=0}]
 return False
class SignsDomain(object):
 ...
 def lub(self, x, y):
 if self.lte(x, y): return y # y includes x
 if self.lte(y, x): return x # x includes y

 # if incomparable, then we return T
 return self.TOP
Concrete Domains

- Values in our concrete domain belong to $\mathcal{P}(\mathcal{M})$
 - Recall $\mathcal{M} = X \rightarrow \mathcal{V}$
- A concrete domain is the pair (\mathcal{C}, \subseteq)
 - $\mathcal{C} = \mathcal{P}(\mathcal{M})$
 - If $x, y \in \mathcal{C}$, and $x \subseteq y$, then x implies y
 - x and y are behavioural properties expressed as sets
 - x is at least as "strong" as y
- Example:
 - x is set of all states where $x > 10$
 - y is set of all states where x is non-negative
 - Clearly $x \subseteq y$
Abstraction

- An abstract domain is \((\mathbb{A}, \sqsubseteq)\)
- \(\sqsubseteq\) orders members of \(\mathbb{A}\)
- An abstraction relation \((\models) \subseteq \mathbb{C} \times \mathbb{A}\), such that:
 - for all \(c \in \mathbb{C}, a_0, a_1 \in \mathbb{A}\), if \(c \models a_0\), and \(a_0 \sqsubseteq a_1\), then \(c \models a_1\)
 - example: \(c = \{0\}\), \(a_0 = [\leq 0]\), \(a_1 = [\geq 0]\) in the signs domain
 - for all \(c_0, c_1 \in \mathbb{C}, a \in \mathbb{A}\), if \(c_0 \subseteq c_1\) and \(c_1 \models a\), then \(c_0 \models a\)
 - example: \(c_0 = \{3, 5\}\), \(c_1 = \{2, 3, 4, 5, 6\}\), \(a = [2, 6]\)
- The goal of abstraction is to map \(c \in \mathbb{C}\) to the most precise \(a \in \mathbb{A}\)
Concretization Function

- $\gamma_V : A \rightarrow C$, the concretization function is defined as:
 - $\gamma_V(a) \models a$,
 - $\gamma_V(a)$ is the maximum concrete element of C that satisfies a;
 - I.e., if $\gamma_V(a) = c$, there no other c' such that $c' \models a$ and $c \subseteq c'$

- Examples:
 - $\gamma_S([\leq 0]) = \{x \mid x \leq 0\}$
 - $\gamma_S([0, 3]) = \{0, 1, 2, 3\}$
 - $\gamma(\bot) = \emptyset$

- Concretization can be used instead of \models to define the abstraction relation:
 - $\forall c \in C, a \in A \quad c \models a \iff c \subseteq \gamma_V(a)$
 - e.g.: using signs, $c = \{3\}$, $a = [\geq 0]$, $\gamma_V(a) = \{0, 1, 2, 3, 4, \ldots\}$
- \(\alpha : \mathbb{C} \rightarrow \mathbb{A} \), the abstraction function is defined as:
 - \(c \models \alpha(c) \)
 - \(\alpha(c) \) is the minimum element of \(\mathbb{A} \) that is satisfied by \(c \)
 - i.e., if \(\alpha(c) = a \), there is no other \(a' \) such that \(c \models a' \) and \(a' \sqsubseteq a \)
- Examples:
 - \(\alpha \emptyset (\{0\}) = [= 0] \)
 - \(\alpha \emptyset (\{0, 3\}) = [0, 3] \)
- \(\alpha \) may not exist
When \(\alpha \) may not exist

- When \([\leq 0] \) is removed from signs, it has no best abstraction function
 - \{0\} can be described by either \([\leq 0]\) or \([\geq 0]\)
 - \([\leq 0]\) \(\not\subseteq\) \([\geq 0]\) and \([\geq 0]\) \(\not\subseteq\) \([\leq 0]\)

- Convex polyhedra
 - No finite set of linear inequalities can approximate a circle (in the 2-D domain) or its equivalents in higher domains
 - Each linear equality is a tangent to the circle
Galois Connections

- When α_V exists:
 \[
 \forall c \in C, a \in A, \quad \alpha_V(c) \sqsubseteq a \iff c \subseteq \gamma_V(a)
 \]

- The pair γ_V and α_V form a Galois connection with the following properties:
 - γ_V and α_V are monotone
 - $\forall c \in C, c \subseteq \gamma_V(\alpha(c))$
 - $\forall a \in A, \alpha_V(\gamma_V(a)) \sqsubseteq a$
A non-relational abstraction does not capture relationships between variables

- Each variable is abstracted independently

We can extend the value abstraction functions we’ve defined so far to define a non-relational abstraction:

- \(\mathcal{M}^\# \) is the abstraction of \(\mathcal{M} \)
- \(\mathcal{M} \subseteq \gamma_{\mathcal{N}}(\mathcal{M}^\#) \)

The concretization function is defined as:

- \(\gamma_{\mathcal{N}} : \mathcal{M}^\# \mapsto \{ m \in \mathcal{M} \mid \forall x \in \mathcal{X}, m(x) \in \gamma_{\mathcal{V}}(\mathcal{M}^\#(x)) \} \)

The order relation \(\sqsubseteq_{\mathcal{V}} \) is pointwise-extended:

- \(\mathcal{M}_0^\# \sqsubseteq^\# \mathcal{M}_1^\# \) if and only if \(\forall x \in \mathcal{X}, \mathcal{M}_0^\#(x) \sqsubseteq_{\mathcal{V}} \mathcal{M}_1^\#(x) \)
• The bottom \(\bot_{\mathcal{N}} \) is defined as:
 \[\forall x \in X, \bot_{\mathcal{N}}(x) = \bot_{\mathcal{V}} \]

• The abstraction function, if it exists, is defined as:
 \[\alpha_{\mathcal{N}} : M \mapsto (x \in X) \mapsto \alpha_{\mathcal{V}}(\{ m(x) | m \in M \}) \]
class NonRelationalAbstraction(object):
 def __init__(self, domain):
 self.dom = domain

 def phi(self, M):
 m_accum = {}
 for m in M:
 m_abs = {}
 for x in m:
 m_abs[x] = self.dom.phi(m[x])

 if len(m_accum) == 0:
 m_accum = m_abs
 else:
 m_accum = self.union(m_accum, m_abs)

 # also construct BOT
 self.BOT = {}
 for x in m_accum:
 self.BOT[x] = self.dom.BOT

 return m_accum

 def lte(self, M0_abs, M1_abs):
 for x in M0_abs:
 if not self.dom.lte(M0_abs[x], M1_abs[x]): return False

 return True
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
Goal: Sound Static Analysis
Goal: Sound Static Analysis

\[a_{\text{pre}} \xrightarrow{[p] \mathcal{P}} a_{\text{post}} = [p] \mathcal{P}(a_{\text{pre}}) \]
Recall:

\[[C](\emptyset) = \emptyset \]

so we will define:

\[[C]_{\mathcal{P}}(\bot) = \bot \]

In code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    if M_abs == abstraction.BOT:
        return M_abs
    ...
```
$[\text{skip}]^\#_\mathcal{D}(M^\#) = M^\#$

In code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...

    # the value abstraction
    v_abs = abstraction.dom

    if isinstance(C, Skip):
        return M_abs
    elif isinstance(C, Program):
        return evaluate_Cmd_abs(C.program, M_abs, abstraction)
    ...
```
Composition

\[[C_0; C_1] \#_P (M\#) = [C_1] \#_P ([C_0] \#_P (M\#)) \]

- This seems to be intuitive, but we need to show that:
 - The concrete postcondition of \([C_0; C_1]_P\) is over-approximated by \([C_0; C_1]_P\)
 - I.e. \([C_0; C_1]_P \subseteq \gamma([C_0; C_1]_P)\)

Theorem: Approximation of Compositions: Let \(F_0, F_1 : \mathcal{P}(M) \to \mathcal{P}(M)\) be two monotone functions that are overapproximated by \(F_0\#_0, F_1\#_0 : A \to A\), i.e. \(F_0 \circ \gamma \subseteq \gamma \circ F_0\#_0\) and \(F_1 \circ \gamma \subseteq \gamma \circ F_1\#_0\). Then, \(F_0 \circ F_1\) can be approximated by \(F_0\#_0 \circ F_1\#_0\)
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
 ...
 elif isinstance(C, Seq):
 return evaluate_Cmd_abs(C.cmd1,
 evaluate_Cmd_abs(C.cmd0, M_abs,
 abstraction),
 abstraction)
 ...

\[
\begin{align*}
\llbracket E \rrbracket^\#: \mathbb{A} &\to \mathbb{A}_\gamma \\
\llbracket n \rrbracket^\#(M^\#) &\equiv \phi_\gamma(n) \\
\llbracket x \rrbracket^\#(M^\#) &\equiv M^\#(x) \\
\llbracket E_0 \odot E_1 \rrbracket^\#(M^\#) &\equiv f^\#(\llbracket E_0 \rrbracket^\#(M^\#), \llbracket E_1 \rrbracket^\#(M^\#))
\end{align*}
\]

- \(\phi_\gamma\) can be replaced by \(\alpha_\gamma\) if it exists
- Otherwise just return an abstract element such that
 \(\{n\} \subseteq \gamma(\phi_\gamma(n))\)
∀ n^↓_0, n^↓_1 ∈ \mathbb{A}^\mathcal{V}, \{ f_\circ (n_0, n_1) | n_0 ∈ γ^\mathcal{V}(n^↓_0) \text{ and } n_1 ∈ γ^\mathcal{V}(n^↓_1) \} ⊆ γ^\mathcal{V}(f_\circ (n^↓_0, n^↓_1))

- The result of applying $f_\circ (n^↓_0, n^↓_1)$, when concretized
 - $γ^\mathcal{V}(f_\circ (n^↓_0, n^↓_1))$
 - must include the concrete set formed when we apply f_\circ to ...
 - ... the elements of the individual concretizations of $n^↓_0, n^↓_1$
 - $n_0 ∈ γ^\mathcal{V}(n^↓_0)$
 - $n_1 ∈ γ^\mathcal{V}(n^↓_1)$

Examples (using signs):

- $f^\#_+ ([≥ 0], [≥ 0]) = [≥ 0]$
- $f^\#_+ ([≥ 0], [≤ 0]) = \top$
def f_binop(self, op, left, right):
 if op == '+':
 return self.lub(left, right)
 elif op == '*':
 if left != right:
 return self.lub(left, right)
 elif left == self.LTZ:
 return self.GTZ # - * - = +
 elif left == self.GTZ:
 return self.GTZ # + * + = +
 elif op == '-':
 if left == right:
 if left != self.EQZ and left != self.BOT:
 return self.TOP
 return left # {0} - {0} => {0}, {} - {} => {}
 else:
 return left # {+ve} - {-ve} => {+ve}, {-ve} - {+ve} => {-ve}
 else:
 raise NotImplementedError(f'Operator {op}"

- $f_{\circ}^\#$ is per abstract domain (not per language as in the concrete semantics)
See `f_binop` in `dom_intervals.py`.

- The tricky aspects revolve around handling $-\infty$ and $+\infty$.
def evaluate.Expr.abs(E: Expr, m: AbstractMemory, vabs):
 if isinstance(E, Scalar):
 return vabs.phi(E)
 elif isinstance(E, Var):
 return m[E.name]
 elif isinstance(E, BinOp):
 return vabs.f_binop(E.op,
 evaluate.Expr.abs(E.left, m, vabs),
 evaluate.Expr.abs(E.right, m, vabs))
Assignments and `input`

The concrete semantics are:

\[
[x := E]_{\mathcal{P}}(M) = \{m[x \mapsto [E](m)] | m \in M\}
\]

The abstract semantics are:

\[
[x := E]_{\mathcal{P}^\#}(M^\#) = M^\#[x \mapsto [E]^\#(M^\#)]
\]

Similarly, since `input` also writes to a variable:

\[
\left[\text{input}(x)\right]_{\mathcal{P}^\#}(M^\#) = M^\#[x \mapsto \top_V]
\]

Recall that `input` can return any value from the user.
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:

def update_abs_memories(var, value_lambda):
 out = dict(M_abs)
 out[var] = value_lambda(M_abs)
 return out

...

elif isinstance(C, Assign):
 return update_abs_memories(C.left.name,
 lambda m: evaluate_Expr_abs(C.right, m, v_abs))

elif isinstance(C, Input):
 return update_abs_memories(C.var.name, lambda _: v_abs.TOP)

...
Conditionals: Example

M# = {x: T, y: T}
x := 7
M# = {x: [7, 7], y: T}

if (x > 5)
 # M# = {x: [6, +inf), y: T}
y = 1
 # M# = {x: [6, +inf), y: [1, 1]}
else
 # M# = {x: (-inf, 5], y: T}
y = 10
 # M# = {x: (-inf, 5], y: [10, 10]}

M# = {x: [-inf, +inf], y: [1, 10]}

- We need a abstract filtering function \mathcal{F}_B
 - Its effects are shown
- We need to join the abstract elements:
 - Use the lub (least upper bound), here \sqcup
- But we have lost precision for x!
For the true part, $[6, +\infty)$ is refined to $[7, 7]$

For the false part, $(-\infty, 5]$ does not include $[7, 7]$

- So the abstract state $M^\#$ is refined to \bot, by setting all variables to \bot
- Recall that $\llbracket C \rrbracket^\#_P (\bot) = \bot$ and that $a \sqcup^\# \bot = a$
For $\mathcal{F}_B^\#$: For all B and abstract states $M^\#$

$$\mathcal{F}_B(\gamma(M^\#)) \subseteq \gamma(\mathcal{F}_B^\#(M^\#))$$

For $\sqcup^\#$ over $M_0^\#$ and $M_1^\#$:

$$\gamma(M_0^\#) \cup \gamma(M_1^\#) \subseteq \gamma(M_0^\# \sqcup^\# M_1^\#)$$
Abstract Semantics of If

\[
[\text{if}(B)\{C_0\} \text{ else } \{C_1\}]_{\mathcal{P}}(M^\#) = [C_0]_{\mathcal{P}}(\mathcal{F}_B(M^\#)) \cup [C_1]_{\mathcal{P}}(\mathcal{F}_{\neg B}(M^\#))
\]

Code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    elif isinstance(C, IfThenElse):
        then_memory, else_memory = filter_memory_abs(C.cond, M_abs, v_abs)
        then_memory = evaluate_Cmd_abs(C.then_, then_memory, abstraction)
        else_memory = evaluate_Cmd_abs(C.else_, else_memory, abstraction)
        ite_memory = abstraction.union(then_memory, else_memory)
        return ite_memory
```
def filter_memory_abs(B: BoolExpr, M_abs: AbstractMemory, vabs) -> Tuple[AbstractMemory, AbstractMemory]:
 true_abs, false_abs = evaluate_BoolExpr_abs(B, M_abs, vabs)
 var_abs = M_abs[B.left.name]

 true_abs = vabs.refine(var_abs, true_abs)
 if true_abs != vabs.BOT:
 # may enter true part
 M_abs_true = dict(M_abs)
 M_abs_true[B.left.name] = true_abs
 else:
 M_abs_true = dict([(m, vabs.BOT) for m in M_abs])

 false_abs = vabs.refine(var_abs, false_abs)
 if false_abs != vabs.BOT:
 # may enter false part
 M_abs_false = dict(M_abs)
 M_abs_false[B.left.name] = false_abs
 else:
 M_abs_false = dict([(m, vabs.BOT) for m in M_abs])

 return M_abs_true, M_abs_false
Partial code for `f_cmpop` and `refine` in the Intervals domain

```python

def refine(self, l, r):
    l = self._norm(l)
    r = self._norm(r)

    if l == self.BOT: return r
    if r == self.BOT: return l

    new_start = max(l[0], r[0])
    new_end = min(l[1], r[1])

    return self._norm((new_start, new_end))

def f_cmpop(self, op, left, c):
    left = self._norm(left)
    c = self._norm(c)

    # assume integers
    if op == '<':
        return (self.NINF, c[0] - 1), (c[0], self.PINF)
    elif op == '<=':
        return (self.NINF, c[0]), (c[0] + 1, self.PINF)
    elif op == '>':
        return (c[0] + 1, self.PINF), (self.NINF, c[0])
    elif op == '>=':
        return (c[0], self.PINF), (self.NINF, c[0] - 1)
    else:
        raise NotImplementedError(f'Operator {op}')
```
def refine(self, l, r):
 if self.lte(l, r): return l
 if self.lte(r, l): return r
 return self.TOP

def f_cmpop(self, op, left, c):
 # (abst of c, op) : (variable’s true domain, variables false domain)
 abs_results = {
 (self.EQZ, '<'): (self.LTZ, self.GTZ),
 (self.EQZ, '<='): (self.LTZ, self.GTZ),
 (self.EQZ, '>'): (self.GTZ, self.LTZ),
 (self.EQZ, '>='): (self.GTZ, self.LTZ),
 (self.EQZ, '!='): (self.TOP, self.EQZ),
 (self.GTZ, '>'): (self.GTZ, self.TOP),
 (self.GTZ, '<'): (self.TOP, self.GTZ),
 (self.GTZ, '<='): (self.TOP, self.GTZ),
 (self.GTZ, '>='): (self.GTZ, self.TOP),
 }

 key = (c, op)
 if key not in abs_results:
 raise NotImplementedError(f"{key} not implemented")

 return abs_results[key]
While: Example #1: Infinite Loop

```c
x := 0
while(x >= 0) {
  x := x + 1
}
```

If we analyze this program abstractly using signs, using $\sqcup\#\!$ to combine states across loop iterations, as we did in the concrete execution, the analysis will reach a fixpoint, which can be used to terminate the analysis.

- $M\#(x) = ([= 0] \sqcup\# [= 0] \sqcup\# [>= 0]) = [>= 0]$

If we analyze this program abstractly using intervals, the analysis will not terminate.

- $M\#(x) = [0, 0] \sqcup\# [1, 1] \sqcup\# [2, 2] \sqcup\# [3, 3]...$
While: Example #2: Infinite Loop

```plaintext
x := 0
while(x <= 100) {
    if (x >= 50) {
        x := 10
    } else {
        x := x + 1
    }
}
```

If we analyze this program abstractly using signs, the analysis terminates as in the previous example

- \(M^\#(x) = ([= 0] \sqcup [>= 0] \sqcup [>= 0]) = [>= 0] \)

If we analyze this program abstractly using intervals, the analysis also terminates, but after 50 analysis iterations.

- \(M^\#(x) = [0, 0] \sqcup [0, 1] \sqcup [0, 2] \sqcup \ldots \sqcup [0, 50] \sqcup [0, 50] = [0, 50] \)
Observations

- Signs is a lattice with a finite height
 - \(\sqcup \# \) will eventually reach a fix point
- The Intervals lattice does not have a finite height
 - No such guarantees
• Define an operator ∇ so that the sequence will explicitly reach a stationary point

• Soundness condition

$$\gamma(a_0) \cup \gamma(a_1) \subseteq \gamma(a_0 \nabla a_1)$$

• For all $(a_n)_n \in \mathbb{N}$, the sequence $(a'_n)_n \in \mathbb{N}$ is ultimately stationary:
 - $a'_0 = a_0$
 - $a'_{n+1} = a'_n \nabla a_n$
def widen(self, x, y):
 # assume x is previous and y is current

 # compute a_n
 u = self.lub(x, y)

 if u[0] == x[0]:
 # stationary left
 elif u[1] == x[1]:
 # stationary right
 return (u[0] if u[0] == x[0] else self.NINF, u[1])
 else:
 return u
Abstract Semantics for While

\[
[\text{while}(B)\{C\}]_{\mathcal{P}}(M^\#) = \mathcal{F}_{-B}(\text{abs}_\text{iter}([C]_{\mathcal{P}} \circ \mathcal{F}_B, M^\#))
\]

Code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    
    elif isinstance(C, While):
        def F_abs(MM_abs):
            pre_memory, _ = filter_memory_abs(C.cond, MM_abs, v_abs)
            post_memory = evaluate_Cmd_abs(C.body, pre_memory, abstraction)
            return post_memory

        _, out = filter_memory_abs(C.cond,
                                  abs_iter(F_abs, M_abs, abstraction),
                                  v_abs)

        return out
    ...
```
def abs_iter(F_abs, M_abs, abstraction):
 R = M_abs
 while True:
 T = R
 if abstraction.dom.finite_height:
 R = abstraction.union(R, F_abs(R))
 else:
 R = abstraction.widen(R, F_abs(R))
 if R == T: break
 return T
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
• Code that accompanies this lecture can be found in GitHub repository:
 • Abstract Domains: dom_signs.py and dom_intervals.py
 • Non-Relational Abstraction: abstractions.py
 • Abstract Semantics: sem_abs.py

• Chapter 3 of Rival and Yi.
 • This covers compositional semantics
 • Also has examples of relational domains (convex polyhedra)

• Abstract interpretation can also be performed using transitional semantics
 • Chapter 4 of Rival and Yi