CSC2/455 Software Analysis and Improvement
Abstract Interpretation - II

Sreepathi Pai
March 30, 2022

URCS
Introduction

A Tiny Language and Its Semantics

To be continued ...
Introduction

A Tiny Language and Its Semantics

To be continued ...
Previous lecture

- We learnt about program analysis tools beyond iterative dataflow analysis
- Abstract Interpretation
 - Maps concrete states of programs to abstract states
 - Abstract states belong to an abstract domain: signs, intervals, convex polyhedra, ...
 - Define transfer functions to convert pre-condition (input) states to post-condition (output) states
- Union for alternate paths
- Widen for loops
- This lecture:
 - Concrete Semantics for a small language
• This lecture defines a number of formal concepts and is notation-heavy.

• I also provide an equivalent formal notation in (Python) code to hopefully make it easier.
Outline

Introduction

A Tiny Language and Its Semantics

To be continued ...
A Tiny Language: Grammar

\[n \in \mathbb{V} \]
\[x \in \mathbb{X} \]
\[\circ ::= + | - | * | ... \]
\[\ominus ::= < | \leq | > | == | ... \]

- \(n \) is a set of concrete values, here we shall treat \(\mathbb{V} = \mathbb{Z} \)
 - All values are integers
- \(x \) is the name of a variable. The set \(\mathbb{X} \) contains all variable names.
- \(\circ \) represents arithmetic binary operators
- \(\ominus \) represents boolean binary operators
A Tiny Language: Expressions

\[E ::= n \mid x \mid E \odot E \]

\[B ::= x \otimes n \]

- An arithmetic expression \(E \) is:
 - a number, or
 - a variable name,
 - or a binary expression

- A boolean expression \(B \) is:
 - a variable,
 - a boolean operator
 - a constant \(n \)
from typing import Union
from typing_extensions import Literal

BinaryOps = Literal['+', '-', '*', '/']
ComparisonOps = Literal['<', '>', '==', '<=', '>=', '!=']

Scalar = int # restrict Scalars to ints in this implementation

class Node(object):
 pass

class Var(Node):
 def __init__(self, name: str):
 self.name = name

 def __str__(self):
 return self.name

Expr = Union[Scalar, Var, 'BinOp']

This is Python 3 augmented with types
 - Union stands for a union type
AST for BinOp and BoolExpr

Nothing special here, each component of the grammar is stored in the respective AST nodes

I'm eliding implementations of `__str__`, indicated by '...'
Commands in the language

\[
C ::= \\
\quad \text{skip} \\
\quad | \ C; \ C \\
\quad | \ x := E \\
\quad | \ \text{input}(x) \\
\quad | \ \text{if}(B)\{C\} \text{ else } \{C\} \\
\quad | \ \text{while}(B)\{C\} \\
\]

\[
P ::= C
\]
class Cmd(Node):
 pass

class Skip(Cmd):
 def __init__(self):
 pass

class Seq(Cmd):
 def __init__(self, cmd0: Cmd, cmd1: Cmd):
 self.cmd0 = cmd0
 self.cmd1 = cmd1

class Assign(Cmd):
 def __init__(self, left: Var, right: Expr):
 self.left = left
 self.right = right

class Input(Cmd):
 def __init__(self, var: Var):
 self.var = var

 def __str__(self):
 return f"input({self.var})"

class IfThenElse(Cmd):
 def __init__(self, cond: BoolExpr, then_: Cmd, else_: Cmd):
 self.cond = cond
 self.then_ = then_
 self.else_ = else_

class While(Cmd):
 def __init__(self, cond: BoolExpr, body: Cmd):
 self.cond = cond
 self.body = body

class Program(Node):
 def __init__(self, cmd: Cmd):
 self.program = cmd
if(x > 7) {
 y := (x - 7)
} else {
 y := (7 - x)
}

can be represented using the AST as:

 x = Var('x')
 y = Var('y')

 t = Program(IfThenElse(BoolExpr('>', x, 7),
 Assign(y, BinOp('-', x, 7)),
 Assign(y, BinOp('-', 7, x)))

Executing programs

To execute programs represented as ASTs, we need the following:

- **Storage/Memory**: to track values of variables
- **Semantics**: to express what each command does, usually mathematical
 - Denotational semantics ("input/output" semantics)
 - Operational semantics
 - Axiomatic semantics
 - and many others...
A store (from storage) is a map/function from variables to values.

We’ll represent it as (assuming $X = \{x, y\}$):

$$m = \{x \rightarrow 3, y \rightarrow 4\}$$

Store (or memory) m maps x to 3 and y to 4.

So, $m(x) = 3$, and $m(y) = 4$.
from typing import Dict, List

using str instead of Var, with Var.name as the key.
This is accidental.
Memory = Dict[str, int]

x = Var('x')
y = Var('y')

m = {x.name: 3, y.name: 4}

print(m[x.name])
print(m[y.name])
Semantics of Arithmetic Expressions

- The semantics of an expression E depend on the memory store m
- We use $\llbracket E \rrbracket(m)$ to denote its semantics
- We’ll define $\llbracket E \rrbracket(m)$ over its grammar as:

 \[
 \llbracket n \rrbracket(m) = n \\
 \llbracket x \rrbracket(m) = m(x) \\
 \llbracket E_0 \circ E_1 \rrbracket(m) = f_\circ(\llbracket E_0 \rrbracket(m), \llbracket E_1 \rrbracket(m))
 \]

- Here f_\circ is the function that implements \circ, for example:
 - $f_+(a, b) = a + b$
def f_binop(op: BinaryOps, left: Scalar, right: Scalar) -> Scalar:
 if op == '+':
 return left + right
 elif op == '-':
 return left - right
 elif op == '*':
 return left * right
 elif op == '/':
 return left // right
 else:
 raise NotImplementedError(f"Unknown operator: {op}")

def evaluate_Expr(E: Expr, m: Memory) -> Scalar:
 if isinstance(E, Scalar):
 return E
 elif isinstance(E, Var):
 return m[E.name]
 elif isinstance(E, BinOp):
 return f_binop(E.op,
 evaluate_Expr(E.left, m),
 evaluate_Expr(E.right, m))
Let \mathbb{B} be the set $\{\text{true}, \text{false}\}$

The semantics of a boolean expression is then $[B]: M \to \mathbb{B}$

$$[x \otimes n](m) = f_{\otimes}(m(x), n)$$

which can be expressed in Python as:

```python
def f_cmpop(op: ComparisonOps, left: Scalar, right: Scalar) -> bool:
    if op == '<':
        return left < right
    elif op == '>':
        return left > right
    ...

def evaluate_BoolExpr(B: BoolExpr, m: Memory) -> bool:
    return f_cmpop(B.op, m[B.left.name], B.right)
```
Both $[E]$ and $[B]$ are building blocks for the semantics of other commands.

While they were defined on a single memory store m, we’re going to define the semantics for commands on a set of memory states M.

- So, $m \in M$, and $M \in \mathcal{P}(M)$
- where $\mathcal{P}(M)$ denotes the powerset of memory stores

This way, our semantics for commands $[\cdot]_{\mathcal{P}}$ will convert a set of input states to a set of output states.
\[[C]_P : \mathcal{P}(M) \rightarrow \mathcal{P}(M) \]

\[[\text{skip}]_P(M) = M \]

\[[C_0; C_1]_P(M) = [C_1]_P([C_0]_P(M)) \]

\[[x := E]_P(M) = \{ m[x \mapsto [E](m)] \mid m \in M \} \]

\[[\text{input}(x)]_P(M) = \{ m[x \mapsto n] \mid m \in M, n \in \mathbb{V} \} \]

- The notation \(m[x \mapsto n] \) is a memory update, it creates a new store identical to \(m \) except that \(x \) is updated to \(n \)
- \(\text{input}(x) \) updates variable \(x \) with a non-deterministic value \(n \)
def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
 def update_memories(var, value_lambda):
 out = []
 for m in M:
 m_out = dict(m)
 m_out[var] = value_lambda(m)
 out.append(m_out)
 return out

 if isinstance(C, Skip):
 return M
 elif isinstance(C, Program):
 return evaluate_Cmd(C.program, M)
 elif isinstance(C, Assign):
 return update_memories(C.left.name,
 lambda m: evaluate_Expr(C.right, m))
 elif isinstance(C, Input):
 n = random.randint(0, 100) # could be anything, actually
 return update_memories(C.var.name, lambda _: n)
 elif isinstance(C, Seq):
 return evaluate_Cmd(C.cmd1, evaluate_Cmd(C.cmd0, M))
 ...

 I’ve chosen M to be a list of memories (recall Memory is a Dict[str, int])
Example of using `evaluate_Cmd`

```python
x = Var('x')
y = Var('y')

m1 = {x.name: 3, y.name: 4}
m2 = {x.name: 5, y.name: 6}

M_in = [m1, m2]

M_out = evaluate_Cmd(Assign(x, 7), M_in)

# M_out = [{'x': 7, 'y': 4}, {'x': 7, 'y': 3}]
```
\[
\begin{align*}
\text{[if}(B)\{C_0\} \text{ else } \{C_1\}]_{\mathcal{P}}(M) &= ?
\end{align*}
\]

- \(C_0\) (the code executing when \(B\) is true) must only operate on \(m \in M\) where \([B](m)\) evaluates to true.
- \(C_1\) (the code executing when \(B\) is false) must only operate on \(m \in M\) where \([B](m)\) evaluates to false.
- Define a filter function \(\mathcal{F}_B(M)\) such that

\[
\mathcal{F}_B(M) = \{m \in M \mid [B](m) = \text{true}\}
\]

- Note: \(\mathcal{F}_\neg B\) will give us the memories where \(B\) is false.
\begin{align*}
\left[\text{if} (B) \{ C_0 \} \text{ else } \{ C_1 \} \right] \mathcal{D} (M) &= \left[C_0 \right] \mathcal{D} (\mathcal{F}_B (M)) \cup \left[C_1 \right] \mathcal{D} (\mathcal{F}_{\neg B} (M)) \\
\end{align*}

- Find stores where \(B \) is true, evaluate \(C_0 \) over them
- Find stores where \(B \) is false, evaluate \(C_1 \) over them
- Combine the two results using \(\cup \)
def filter_memory(B: BoolExpr, M: List[Memory], res = True) -> List[Memory]:
 out = [m for m in M if evaluate_BoolExpr(B, m) == res]
 return list(out)

def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
 ...
 elif isinstance(C, IfThenElse):
 then_memory = evaluate_Cmd(C.then_, filter_memory(C.cond, M))
 else_memory = evaluate_Cmd(C.else_, filter_memory(C.cond, M,
 res = False))

 return union_memories(then_memory, else_memory)
 ...

def union_memories(M0: List[Memory], M1: List[Memory]) -> List[Memory]:
 # this implementation is, of course, ridiculous

 # convert everything to sets
 M0_set = set([frozenset(m.items()) for m in M0])
 M1_set = set([frozenset(m.items()) for m in M1])

 M_set = M0_set.union(M1_set)

 # convert back to lists of dicts
 return list([dict(m) for m in M_set])
\[[\text{while}(B)\{C\}]_{\mathcal{P}}(M) \]

- \(B \) must be true in \(m \in M \) to execute \(C \) once
 - \(([C]_{\mathcal{P}} \circ \mathcal{F}_B)(M) \)
- Executing \(C \) twice is similar:
 - \(([C]_{\mathcal{P}} \circ \mathcal{F}_B)(([C]_{\mathcal{P}} \circ \mathcal{F}_B)(M)) \)
- Let \(F \) be \([C]_{\mathcal{P}} \circ \mathcal{F}_B \), then execution \(i \) times is represented as
 - \(F^i(M) \), i.e. \(F(F(F(M))) \) for \(i = 3 \)
- If the loop executes \(i \) times and exits, the memory stores are:
 - \(M_i = \mathcal{F}_{\neg B}(F^i(M)) \), because \(B \) must be false when we exit the loop
• Let $M_i = \mathcal{F}_B(F^i(M))$ represent executions of the loop body exactly i times, $i \geq 0$

• Then we can define the semantics of those i executions as:

$$\bigcup M_i = \bigcup_{i \geq 0} \mathcal{F}_B(F^i(M))$$

$$= \mathcal{F}_B\left(\bigcup_{i \geq 0} F^i(M)\right)$$

$$\left[\text{while}(B)\{C\}\right]_\mathcal{P}(M) = \mathcal{F}_B\left(\bigcup_{i \geq 0} ([C]_\mathcal{P} \circ \mathcal{F}_B)^i(M)\right)$$

• The semantics of a non-terminating loop are undefined.
def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
 ...
 elif isinstance(C, While):
 # L0
 out = [m for m in M] # copy all input states

 pre_iter_memories = filter_memory(C.cond, out)
 accum: List[Memory] = []
 while len(pre_iter_memories):
 after_iter_memories = evaluate_Cmd(C.body, pre_iter_memories)
 accum = union_memories(accum, after_iter_memories)

 # only keep memories where the condition is true
 pre_iter_memories = filter_memory(C.cond, after_iter_memories)

 # This computes L0 U (L1 U L2...) and retains only those
 # memory states where the loop has terminated.
 out = filter_memory(C.cond, union_memories(out, accum), res=False)
 return out
Example of While execution

while(x < 7) {
 y := (y + 1);
 x := (x + 1)
}

START [{x: 4, y: 0}, {x: 5, y: 0}, {x: 8, y: 0}]
pre: [{x: 4, y: 0}, {x: 5, y: 0}]
after: [{x: 5, y: 1}, {x: 6, y: 1}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}]

pre: [{x: 5, y: 1}, {x: 6, y: 1}]
after: [{x: 6, y: 2}, {x: 7, y: 2}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}, {x: 7, y: 2},
 {x: 6, y: 2}]

pre: [{x: 6, y: 2}]
after: [{x: 7, y: 3}]
accum: [{x: 7, y: 3}, {x: 6, y: 2}, {x: 5, y: 1},
 {x: 6, y: 1}, {x: 7, y: 2}]

END [{x: 7, y: 3}, {x: 7, y: 2}, {x: 8, y: 0}]
Wrapping up the semantics

- $\mathcal{L} = \emptyset$
 - Starting from an empty set of states leads to an empty set of states

- Key ideas:
 - Grammar \rightarrow AST
 - AST \rightarrow Semantics
 - Semantics \rightarrow Interpreter
Introduction

A Tiny Language and Its Semantics

To be continued ...
Abstraction, and building an abstract interpreter

This lecture was based on material from Chapter 3 in Rival and Yi

You can find the Python code on GitHub

- This lecture covered tinyast.py and sem.py