CSC2/455 Software Analysis and Improvement
An Introduction to SAT/SMT Solvers

Sreepathi Pai
April 11, 2022

URCS
Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis
So far:
- Iterative Data Flow Analysis
- Type Analysis
- Region Analysis
- Abstract Interpretation

Today:
- Satisfiability (SAT) Solvers
- Satisfiability Modulo Theories (SMT) Solvers

Next:
- Model Checking
- Symbolic Execution
- Hoare Logic
Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis
Given a formula in propositional logic (variables, true, false, \land, \lor, \neg, and parentheses), is there an assignment to variables that makes the formula true?

- $(A \lor B \lor C) \land (\neg A \lor B)$ (conjunctive normal form, CNF)
- $(A \land B \land C) \lor (\neg A \land B)$ (disjunctive normal form, DNF)
- $A \land \neg A$ (CNF)
Solutions

- \((A \lor B \lor C) \land (\neg A \lor B)\)
 - \(B = \text{true}\) is required in any satisfying assignment (\(A\) and \(C\) don't matter)

- \((A \land B \land C) \lor (\neg A \land B)\)
 - \(A, B, C\) all true is one satisfying assignment
 - \(A = \text{false}\) and \(B = \text{true}\) is another satisfying assignment

- \(A \land \neg A\) is obviously unsatisfiable
3-SAT is NP-Complete

- If the maximum number of variables in a clause of a CNF formula is k, we call that problem k-SAT
- 2-SAT is solvable in polynomial time
- 3-SAT is NP-complete
 - In worst case, must explore every possible assignment of values to each variable
There are many good SAT solvers now available
- Based on the Davis–Putnam-Logemann-Loveland (DPLL) algorithm
- Often enhanced with Conflict-Driven Clause Learning (CDCL)
- SAT is decidable, if untractable

Intractability not a hindrance usually
- Can scale to very large problems
- Millions of clauses
- See: The International SAT Competition

Applied to many hardware and software verification problems

SAT solvers return:
- SAT: if a satisfying assignment is found (and the values that satisfy the proposition)
- UNSAT: if no satisfying assignment exists
Proving statements involving Propositional Logic

Prove $\neg(A \land B) = (\neg A \lor \neg B)$

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>$A \land B$</td>
<td>$P = \neg(A \land B)$</td>
<td>$\neg A$</td>
<td>$\neg B$</td>
<td>$Q = \neg A \lor \neg B$</td>
<td>$P \iff Q$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

The statement $\neg(A \land B) = (\neg A \lor \neg B)$ is valid, it is true for all values of A and B.
Proof using a SAT solver

- \(\neg(A \land B) \iff (\neg A \lor \neg B)\)
- \((\neg A \lor \neg B) \iff \neg(A \land B)\)
- Recall that \(P \implies Q\) can be written as \(\neg P \lor Q\)
 - \(\neg \neg(A \land B) \lor (\neg A \lor \neg B)\)
 - \(\neg(\neg A \lor \neg B) \lor \neg(A \land B)\)
- So we have:
 - \(R = (A \land B) \lor (\neg A \lor \neg B)\)
 - \(S = \neg(\neg A \lor \neg B) \lor \neg(A \land B)\)
- For the proof, we need both \(R\) and \(S\) to be valid
 - If \(R\) is valid, what can we say about the satisfiability of \(\neg R\)?
The Satisfiability of $\neg R$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$P = A \land B$</th>
<th>$\neg A$</th>
<th>$\neg B$</th>
<th>$Q = \neg A \lor \neg B$</th>
<th>$P \lor Q$</th>
<th>$\neg(P \lor Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

If R is valid, then $\neg R$ is unsatisfiable!

- To prove a statement using a SAT solver:
 - Convert the statement to propositional logic
 - Negate it, and check for unsatisfiability

- Interesting corollary:
 - If the formula is SAT (implying the statement is false), the values that satisfy the statement are counter-examples
More details on SAT Solving (Book)

- Volume 4 Facsicle 6 of *The Art of Computer Programming*
More details on SAT/SMT Solving (Papers)

- Weissenbacher, Subramanyan, and Malik, Boolean Satisfiability Solvers: Techniques and Extensions
- Barrett, Sebastianini, Sheshia and Tinelli, Satisfiability Modulo Theories
Propositional logic can be extended with quantifiers
- \(\exists \), existential quantifier
- \(\forall \), universal quantifier
- This is First-order Logic (FOL)
- FOL is undecidable in general

Both propositional logic and first-order logic are still boolean

Can be extended with theories:
- Arithmetic: adds numbers, operators +, −, ×, associativity, commutativity, etc.
- Functions: adds \(f(x) \)
- Bitvectors: model variables containing \(n \) bits (where \(n > 1 \))
A SMT solver checks for satisfiability in a theory. Can think of statements as propositional logic + theory. Allows construction of “richer” statements. Can formulate propositions over integers, reals, etc. Can use operators like \oplus, \ominus, \times, etc.

Example: $\forall x, y \ x > y \implies x + 1 > y + 1$
- True over integers (\mathbb{Z})
- False over machine integers/bitvectors
Decidability

- Some theories are decidable
 - Presburger arithmetic
- Most theories are undecidable
- However, some theories undecidable in general are decidable over quantifier-free fragments
- So, results of a SMT solver can be:
 - SAT
 - UNSAT
 - Don’t know (or infinite loop)
Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis
Some SMT solvers

- Microsoft Z3
 - Used to be available online at rise4fun/Z3
 - Available in most Linux distributions
- CVC5
- Yices
- Many more...
The SMT-LIB language

- Common input/output language for most SMT solvers
 - Some solvers support their own language as well
- Lisp-like
- Documented at smtlib.org
- Allows easy switching between solvers
 - We will use Z3 for the most part
Let’s encode $\neg R$ from the previous example:

(declare-fun B () Bool)
(declare-fun A () Bool)
(assert (not (or (and A B) (not A) (not B))))
(check-sat)

And we run it:

$ z3 p1.smt
unsat
#!/usr/bin/env python3

from z3 import *

s = Solver()
A, B = Bools('A B')

R = Or(And(A, B), Or(Not(A), Not(B)))
notR = Not(R)

s.add(notR)
print(s.check())

print(s.sexpr()) # prints the SMTLIB code

See: Bjørner et al., Programming Z3, for a nice introduction to programming Z3 using Python.
The Constraint Satisfaction Problem seeks to find an assignment of values to variables subject to constraints:
- Each variable has a domain of values
- Pick a variable, assign it a value, subject to constraints
- If all variables can be assigned values, SAT else backtrack

For SAT in propositional logic:
- Two values, True and False
- Constraint: formula must evaluate to true
Other Problems

- Dennis Yurichev’s free book “SAT/SMT by Example” is a wonderful collection of examples
 - Minesweeper
 - Sudoku
 - Test case generation, etc.
Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis
- Express program behaviour in some logic
- Express program property in that logic
- Check if the property holds (i.e. is valid)
int min(int a, int b) {
 if(a < b)
 return a;
 else
 return a;
}

int x, y, r;
r = min(x, y);
assert(r == x || r == y);
assert(r <= x && r <= y);

- These assertions test that \texttt{min} always returns the minimum of \texttt{x} and \texttt{y}
- But \texttt{assert} executes at runtime
- We will seek to prove statically:
 - $\forall_{x,y} (\texttt{min}(x, y) = x \lor \texttt{min}(x, y) = y) \land (\texttt{min}(x, y) \leq x \land \texttt{min}(x, y) \leq y)$
 - over all program paths
from z3 import *

s = Solver()
a, b, ret = Ints('a b ret')
ret = If(a < b, a, a)
#ret = If(a < b, a, b) # correct
cond = And(Or(ret == a, ret == b), And(ret <= a, ret <= b))
s.add(Not(cond))
print(s.sexpr())

if s.check() == sat:
 print("Incorrect. Counterexample: ", s.model())
else:
 print("Correct")

Output:

...
Incorrect. Counterexample: [b = 0, a = 1]
Proving Programs Equivalent

- If A is a source program and B is the compiled version, we would like to prove that $A = B$
 - This is called *translation validation*
 - What I’ve been doing for your submissions
- Undecidable, in general
- Not interesting only to compiler writers
 - If you take a piece of code and refactor it, did you break anything?
The test case (1, 3) is not sufficient to exercise all paths in the program
 • And it misses the bug!

Can we find test cases to exercise all paths in the program?
SMT solvers are a marvellous piece of technology
Learn to use one!