CSC2/455 Software Analysis and Improvement

Dominators and SSA Form - II

Sreepathi Pai
February 6, 2023

URCS
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
A node \(n \) in the CFG dominates a node \(m \) iff:

- \(n \) is on all paths from entry to \(m \)
- by definition, a node \(n \) always dominates itself
- if \(n \neq m \), then \(n \) strictly dominates \(m \)

Computed using a dataflow-style analysis

- Each node annotated with a set of its dominators
Static Single Assignment Form

- Simple algorithm to generate SSA form
 - Introduce \(\phi \) functions
 - Rename variables using Reaching Definitions
- Algorithm can generate excessive \(\phi \) functions
 - TODAY: Use dominance frontiers to place the minimal number of \(\phi \) functions
- Also today: Removing \(\phi \) functions
 - Machines don’t support \(\phi \) functions, so we must emulate them
Maximal SSA Form

- Insert ϕ nodes for each definition at every join node
- Rename LHS
- Rename RHS using reaching definitions
Reducing the number of ϕ nodes

- Why insert ϕ nodes at only join nodes?
- Can we skip inserting ϕ nodes for a definition at some join node?
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
The dominance frontier of a node n (DF(n)) is a set of nodes

A node $m \in$ DF(n) iff:

- n does not strictly dominate m
- n dominates q where $q \in$ pred(m)

Note that dominance frontiers only contain *join* nodes
- I.e. nodes with multiple predecessors

Computing the dominance frontier of each node:
- Iterative Data-flow analysis?
Direct calculation of dominance frontiers using *dominator trees*.
Immediate Dominators

- The *immediate* dominator of a node m (IDOM(m)) is the node n:
 - such that n strictly dominates m, and
 - n does not strictly dominate o where $o \in (\text{DOM}(m) - \{m\})$
 - in some sense, n is the “closest” dominator in the CFG to m.
- By definition, ENTRY has no immediate dominator.
Not Strictly Dominates

- n strictly dominates m
 - $SDOM(n, m) = n \in DOM(m) \land n \neq m$
- n does not strictly dominate m
 - $\neg SDOM(n, m) = n \notin DOM(m) \lor n = m$
• Note that each node in the CFG can have only one immediate dominator
 • Can you see why?
• Create a graph $G = (V, E)$, where:
 • V is the set of basic blocks
 • There is an edge (n, m) in E if n is the immediate dominator of m (i.e. $\text{IDOM}(m) = n$)
Example: CFG and its dominator tree

 ENTRY
 ↓
 B0
 ↓
 B1
 ↓
 B3
 ↓
 B4 B5
 ↓
 B2 B6
 ↓
 B7
 ↓
 EXIT

 ENTRY
 ↓
 B0
 ↓
 B1
 ↓
 B2 B3 B7
 ↓
 B4 B5 B6
 ↓
 EXIT
• Find all join nodes in CFG, e.g. j
• For all nodes n that dominate predecessors of j (in the CFG)
 • If n does not strictly dominate j, add j to $DF(n)$
• This last step can be operationalized over all predecessors p of j in the CFG:
 • Start traversing the dominator tree at p
 • If p is $IDOM(j)$, stop. Otherwise add j to $DF(p)$
 • Repeat by moving up the dominator tree until you reach $IDOM(j)$
Example: Non-redundant ϕ functions

ENTRY

$y_0 = x_0 + 1$

$x_1 = 2$

$y_1 = \phi(y_0, y_4)$

$y_1 > 3$

EXIT

$y_2 = 3$

$a = 3$

$y_3 = \phi(y_1, y_2)$

$y_4 = x_1 + y_3 + 2$
Placing ϕ functions

- For each definition d in basic block n:
 - Place a ϕ function for d in all nodes m where $m \in DF(n)$
 - Note that each ϕ function is also a definition!
 - Repeat, until no more ϕ functions need to be inserted

- This is the minimal number of ϕ functions for a definition d
 - Structurally
 - Can we further reduce the overall number of ϕ functions?

- (Figure 9.9 in Cooper and Turczon)
Other optimizations

- Dead definitions
 - Definitions that are not read (i.e. overwritten) do not need ϕ functions

- Two forms:
 - *Semi-pruned* SSA form, using "globals" names (those variables that are live in to a block)
 - *Pruned* SSA form, using `LIVEOUT` information
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
Renaming variables

- SSA form introduced “subscripts” for each variable
- Should we drop them when generating code?

\[
\begin{align*}
a_0 &= x_0 + y_0 \\
b_0 &= a_0 \\
a_1 &= 17 \\
c_0 &= a_0
\end{align*}
\]
Problem with dropping subscripts

\[a = x + y \]
\[b = a \]
\[a = 17 \]
\[c = a \quad \# \text{WRONG!} \]
Handling subscripts

- Each definition becomes a new variable
 - I.e. Do NOT drop subscripts
- Preserves data dependences
 - Esp. important when we aggressively move code from basic blocks (e.g. very busy expressions, loop invariant code motion, etc.)
Code for ϕ functions

- Introduce copies along each incoming edge to a join node

```
i_2 = 1
i_3 = a + b
i_4 = \phi(i_2, i_3)
...```

Diagram:
```
i_2 = 1
 │
i_3 = a + b
 │
i_4 = \phi(i_2, i_3)
...```
Inserting appropriate copies along incoming edges

\[
i_2 = 1 \\
i_4 = i_2 \\
i_3 = a + b \\
i_4 = i_3
\]
Critical edges

- Executing ϕ functions by inserting copies into predecessor blocks is not always correct.
- If such a predecessor block has multiple successors, then the ϕ function may execute when it shouldn’t.
 - This *may* be harmless, but not always.
- Edges connecting such predecessors to the block containing the ϕ function are called *critical* edges.
Critical Edges: Example

\[i_2 = 1 \]
\[i_4 = i_2 \]

\[i_3 = a + b \]
\[i_4 = i_3 \]

...A...
...B...
Splitting critical edges

- Such edges need to be *split* by inserting a block on that edge
- See the discussion in Cooper and Turczon for more details and an example
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
Purely Functional Programs

- Everything is a value
- No “assignment”, just binding values to names
- No control flow such as jumps
 - Must be emulated using functions
def fact(N):
 res = 1
 for i in range(1, N+1):
 res *= i
 return res

def fac(N):
 return 1 if N <= 1 else N * fac(N - 1)
def fact(N):
 res = 1
 i = 1
 if i > N goto loop_end

 loop_head:
 res = res * i
 i = i + 1
 if i <= N goto loop_head

 loop_end:
 return res
def fact(N):
 res_0 = 1
 i_0 = 1
 if i_0 > N goto loop_end

 loop_head:
 res_1 = phi(res_0, res_2)
 i_1 = phi(i_0, i_2)
 res_2 = res_1 * i_1
 i_2 = i_1 + 1
 if i_2 <= N goto loop_head

 loop_end:
 res_3 = phi(res_0, res_2)
 return res_3
Factorial: Function Conversion

def fact(N):
 res_0 = 1
 i_0 = 1

 def loop_head(res_1, i_1):
 res_2 = res_1 * i_1
 i_2 = i_1 + 1
 return loop_head(res_2, i_2) if i_2 <= N else loop_end(res_2)

 def loop_end(res_3):
 return res_3

 return loop_end(res_0) if i_0 > N else loop_head(res_0, i_0)

- Each basic block is converted to a function
- Parameters to this function are the LHS of the φ functions in that BB
- Arguments picked from arguments of φ function depending on the path the BB was on.
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript
References

- Chapter 9 of Cooper and Turczon
 - Section 9.2.1
 - Section 9.3
- Andrew W. Appel, SSA is functional programming *
- Optional:
 - Various authors, The SSA book