CSC2/455 Software Analysis and Improvement
Foundations of Data Flow Analysis - II

Sreepathi Pai
February 13, 2023
URCS
Outline

Review

Proofs

Constant Propagation

Postscript
Part I of Foundations

- Methods to solve dataflow analysis equations
 - IDEAL
 - Meet over paths (MOP)
 - Maximum Fixed Point (MFP)
 - IDEAL \(\subseteq\) MOP \(\subseteq\) MFP

- (Semi)lattice-based framework
 - \((D, V, \land, F)\), dataflow analysis
 - \((V, \land)\), meet semilattice
 - \((V, \leq)\), partial order, where \(x \leq y\) iff \(x \land y = x\)
 - Monotone framework

- Greatest Lower Bound
 - \(z \leq x\) and \(z \leq y\), where \(z = x \land y\)
A given \((D, V, \land, F)\) is monotone if for all \(x, y \in V\), and \(f \in F\):

- \(x \leq y \rightarrow f(x) \leq f(y)\)
- equivalently, \(x \leq y \rightarrow f(x \land y) \leq f(x) \land f(y)\)
- The proof of equivalence is in the textbook.

In addition, the framework is *distributive* if:

- \(f(x \land y) = f(x) \land f(y)\)

Note that these properties do not necessarily arise automatically, \(F\) must be designed to have these properties

- And proofs must be written to show that \(F\) does.
- We’ll see this for a complicated example today.
General Iterative Algorithm

\[
\text{forwards(IN, OUT, meet, top, v_entry, f_transfer)}
\]
\[
\text{OUT[entry] = v_entry}
\]

for each basic block B except ENTRY:
\[
\text{OUT[B] = top}
\]

do {
 for each basic block B except ENTRY:
 # this calculates the meet over predecessors, \(\cap p \) OUT[p]
 \[
 \text{IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])}
 \]
 \[
 \text{OUT[B] = f_transfer(IN[B])}
 \]
}

while(some OUT changes value)

- Does this calculate the solution to the dataflow problem?
- Does this algorithm terminate?
- Does this algorithm calculate the \textit{maximum} fixed point – i.e. the most precise solution admissible?
This class

- Proofs that answer these three questions
- Relationships between IDEAL, MOP and MFP in terms of the framework
- Examples of:
 - a non-distributive framework (from Dragon 9.4, Constant Propagation)
 - lattices containing infinite values
 - possibly some proof writing exercises (from Dragon 9.3)
do {
 for each basic block B except ENTRY:
 # this calculates the meet over predecessors, \(\bigwedge p \text{ OUT}[p] \)
 IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
 OUT[B] = f_transfer(IN[B])
} while(some OUT changes value)

The iterative algorithm computes the solution to the dataflow problem.

- The iterative algorithm performs an unbounded number of iterations as long as IN and OUT change
- *When it terminates*, IN and OUT have not changed for an iteration
- The values of IN and OUT therefore satisfy the equations
 - Hence they are solutions of the dataflow problem
The iterative algorithm terminates (i.e. converges to a fix point).

- When we apply the \land operator, we obtain the glb
 - i.e. $z = x \land y$ and $z \leq x$ and $z \leq y$
- Since the framework is monotone:
 - $f(x) \leq f(y)$ if $x \leq y$
 - i.e. OUT values are no greater than the IN values
- At each step, these values decrease or remain the same
 - When they all remain the same, we terminate
- If values decrease, recall the lattice has finite height
 - Implies a finite number of steps before we reach \perp
 - $x \land \perp = \perp$ and $f(\perp) = \perp$ (i.e once a value becomes \perp, it no longer changes)
 - We terminate in this case as well
The fixed point solution computed by the iterative algorithm is the maximum fixed point.

Proof By induction, for forward analyses

(BASIS) After the first iteration, values of $\text{IN}[B]$ and $\text{OUT}[B]$ are \leq their initial values.

- At initialization, $\text{OUT}[B]$ is \top for all blocks B except ENTRY
- After the first iteration, in a monotone framework, all values will be \leq those at initialization by definitions of the \land and transfer functions
Proof #3: Inductive step

Assume that:

- \(\text{IN}[B]^k \leq \text{IN}[B]^{k-1} \)
- \(\text{OUT}[B]^k \leq \text{OUT}[B]^{k-1} \)

Show that:

- \(\text{IN}[B]^{k+1} \leq \text{IN}[B]^k \)
- \(\text{OUT}[B]^{k+1} \leq \text{OUT}[B]^k \)
To obtain $\text{IN}[B]$ we must apply \wedge to all $\text{OUT}[P]$

- P is a predecessor of B
- This implies $\text{IN}[B] \leq \text{OUT}[P]$ (\wedge yields glb)
- From our inductive hypothesis, $\text{OUT}[P]^k \leq \text{OUT}[P]^{k-1}$
- applying \wedge on both sides over all P, $\text{IN}[B]^{k+1} \leq \text{IN}[B]^k$

Now, $\text{OUT}[B] = f(\text{IN}[B])$

- In the monotone framework, $f(x) \leq f(y)$ when $x \leq y$
- We have shown $\text{IN}[B]^{k+1} \leq \text{IN}[B]^k$
- Therefore, after applying f to both sides, by monotonicity, we have $\text{OUT}[B]^{k+1} \leq \text{OUT}[B]^k$
Properties of the IDEAL solution

- Any solution greater than IDEAL is incorrect (or unsafe)
- Any solution less than or equal to IDEAL is conservative\(^1\), or safe.

To see why, consider IDEAL solution \(x = p_1 \land p_2 \land ... \land p_n \):

- How can we obtain a value \(z = p_1 \land ... \ greater \ than \ x? \)
- How can we obtain a value \(y = p_1 \land ... \ less \ than \ x? \)

(recall the relationship between the results of the meet operator and its operands)

\(^1\)In the English sense
• MOP considers a superset of all executable paths
 • MOP solution \(y = p_1 \land p_2 \land \ldots \land p_n \land p_{n+1} \ldots \)

• What is the relationship between MOP (\(y \)) and IDEAL (\(z \))?
Relationship between MOP and MFP

- \(\text{MOP}[B_4] = (f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{entry}) \)
 - i.e., compose transfer functions over a path and then apply meet (e.g. \(f_{B_3}(f_{B_1}(v_{entry})) \))

- \(\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{entry}) \land f_{B_2}(v_{entry})) \)
 - i.e. apply meet at join nodes
In a distributive framework, \(\text{MOP} = \text{MFP} \)

- \(\text{MOP}[B_4] = ((f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{\text{entry}}) \)
- \(\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{\text{entry}}) \land f_{B_2}(v_{\text{entry}})) \)

If \(f(x \land y) = f(x) \land f(y) \) (i.e. distributive):

- \(\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{\text{entry}})) \land f_{B_3}(f_{B_2}(v_{\text{entry}})) \)

- If the framework is distributive, then MOP solution = MFP solution
 - Otherwise by monotonicity MFP \(\leq \) MOP
- In either case,
 - MFP \(\leq \) MOP \(\leq \) IDEAL
 - So all methods produce “safe” solutions
Outline

- Review
- Proofs
- Constant Propagation
- Postscript
Analyses so far

- Live variable analysis
- Available Expressions
- Reaching Definitions
- These are all distributive (implies monotonicity)
- Their lattices contain a finite number of values
- Their lattices have finite height
Constant Propagation

- Does this variable have a constant value at this point in the program?
 - Used to perform constant folding (i.e. evaluate constant expressions at compile time)
- Data flow analysis framework
 - Direction?
 - Values?
 - Meet operator?
 - Transfer function?
Constant Propagation

- Direction: Forward
- Values:
 - UNDEF: variable is undefined so far
 - c: variable is constant value c
 - NAC: variable is not a constant
- Meet operators and transfer functions are slightly more complicated.
Meet for Constant Propagation

- \text{UNDEF} \land v = ?
- \text{NAC} \land v = ?
- c \land c = ?
- c_1 \land c_2 = ? (c_1 \neq c_2)
Meet for Constant Propagation

- $\text{UNDEF} \land v = v$
 - UNDEF is \top
- $\text{NAC} \land v = \text{NAC}$
 - NAC is \bot
- $c \land c = c$
- $c_1 \land c_2 = \text{NAC}$

What does the lattice for constant propagation look like?
The lattice for constant propagation
OUT[s] = f(IN[s]) for a statement s

- Slightly easier to understand if we use statements instead of basic blocks

Observe that non-assignment statements do not change values

- f is simply the identify function f(x) = x for such statements

What about assignment statements?

- x = c, where x is a variable, and c is a constant
- x = y + z, where + is any binary operator
- x = *y or x = f(...), where f is a function call
Note that IN (and OUT) are maps (i.e. dictionaries)
- From variables to their current dataflow values (UNDEF, c, or NAC)
- Let’s call this map m, so that $m(x)$ returns the dataflow value for variable x

- $x = c$, changes $m(x) \leftarrow c$
- $x = y + z$, where $+$ is any binary operator (not just addition)
 - $m(x) \leftarrow m(y) + m(z)$ if $m(y)$ and $m(z)$ are constants
 - $m(x) \leftarrow \text{NAC}$ if either $m(y)$ or $m(z)$ is NAC
 - $m(x) \leftarrow \text{UNDEF}$ otherwise
- $x = *y$ or $x = f(\ldots)$, $m(x) \leftarrow \text{NAC}$ (conservatively)
- Note that $m(v) \leftarrow m(v)$ for all $v \neq x$
 - i.e. the other values of the map remain unchanged

Note that I use slightly different notation than the textbook, which uses m' on the LHS
Is this monotonic?

Is \(\text{OUT}[s] \leq \text{IN}[s] \) for every \(s \)?

- For the two cases below, it is “surely ... monotone”:
 - \(m(x) \leftarrow c \)
 - \(m(x) \leftarrow \text{NAC} \)
- What about \(x = y + z \)?
 - Need to show that \(m(x) \) does not get greater as \(m(y) \) (and/or) \(m(z) \) get smaller
 - Show by case analysis and symmetry
\(x = y + z \) as \(m(z) \) gets smaller

<table>
<thead>
<tr>
<th>(m(y))</th>
<th>(m(z))</th>
<th>output (m(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDEF</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>UNDEF</td>
<td>(c_2)</td>
<td>UNDEF</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>UNDEF</td>
</tr>
<tr>
<td>(c_1)</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(c_2)</td>
<td>UNDEF</td>
</tr>
<tr>
<td>(c_1)</td>
<td>NAC</td>
<td>UNDEF</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>(c_2)</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
</tbody>
</table>
\[x = y + z \text{ as } m(z) \text{ gets smaller (answers)} \]

<table>
<thead>
<tr>
<th>(m(y))</th>
<th>(m(z))</th>
<th>output (m(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDEF</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>c_2</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>c_1</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>c_2</td>
<td>UNDEF</td>
<td>c_1 + c_2</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>c_2</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>c_2</td>
<td>NAC</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>c_2</td>
<td>NAC</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>c_2</td>
<td>NAC</td>
</tr>
</tbody>
</table>
Is it distributive?

ENTRY

B1:
\[x = 2 \]
\[y = 3 \]

B2:
\[x = 3 \]
\[y = 2 \]

EXIT

B3:
\[z = x + y \]
- Path 1 ($x = 2; y = 3; z = x + y$)
 - $m(z) = 5$, so z is a constant
- Path 2 ($x = 3; y = 2; z = x + y$)
 - $m(z) = 5$, so z is a constant
- Meet over Path 1 and Path 2
 - $m(z) = 5 \land 5$, so z is a constant
• At end of block B_1
 • $m(x) = 2$ and $m(y) = 3$
• At end of block B_2
 • $m(x) = 3$ and $m(y) = 2$
• Meet before block B_3
 • $m(x) = 2 \land 3$ (i.e. case $c_1 \land c_2$)
 • $m(y) = 3 \land 2$
• Conclusion?
Constant Propagation is not distributive

- For constant propagation, in most non-trivial programs
 - $\text{MFP} < \text{MOP}$
• Chapter 9 of the Dragon book
 • Section 9.3, 9.4