CSC2/455 Software Analysis and Improvement
Partial Redundancy Elimination

Sreepathi Pai
February 20, 2023
URCS
Outline

Review

Partial Redundancy Elimination

Postscript
Optimizations: Dead Code Elimination

- Find useful operations (backward analysis)
- Find useful conditional branches
 - Reverse Dominance Frontier
- Remove code, and “touch up CFG”
Outline

Review

Partial Redundancy Elimination

Postscript
Redundancy: Fully Redundant

\[
\begin{align*}
a &= b + c \\
b &= 7 \\
d &= b + c \\
e &= b + c \\
t &= b + c \\
a &= t \\
b &= 7 \\
t &= b + c \\
d &= t \\
e &= t
\end{align*}
\]
Redundancy: Loop Invariant

\[
a = b + c
\]
\[
t = b + c
\]
\[
a = t
\]
Redundancy: Partial Redundancy

\[a = b + c \]
\[d = b + c \]

\[t = b + c \]
\[a = t \]
\[t = b + c \]
\[d = t \]
Can we insert $t = b + c$ in B_3?
(Similar to when we were inserting minimal \(\phi \)-functions.)
Note that there is no block where $t = b + c$ can be introduced without introducing computations not in the original program.
CFG duplication

(Possibility of exponential blowup.)
The Lazy Code Motion Algorithm

- Eliminate all expressions when it will not duplicate code
- Do not perform computations not in original program
 - Although where the computation is performed can change
- Delay computation for as long as possible
 - “Lazy”
 - Helps lower resource (esp. register) usage
For all blocks B in CFG, compute:

- e_{use_B}: set of expressions used in a block
- e_{kill_B}: set of expressions killed in block
 - usually by redefining subcomponents

Also, split all critical edges, inserting empty blocks.
Anticipable Expressions

Recall *very busy expressions*. An expression e is anticipable at block p if:

- $\hat{?}$
Recall *very busy expressions*. An expression e is anticipable at block p if:

- e is used/computed on all paths leading out of p
- And it is not killed before the use
- Implies that p can compute e and all paths could use this result
Anticipable Expressions Analysis

- **Direction**: Backwards
- **Values**: Expressions in programs
- **Meet**: \cap
- **Transfer Function**
 - $f_B(x) = e_{useB} \cup (x - e_{killB})$
- **Equations**:
 - $\text{OUT}[B] = \bigwedge_{S \in \text{succ}(B)} \text{IN}[S]$
 - $\text{IN}[B] = f_B(\text{OUT}[B])$
- $\top = U$
- $\text{IN}[EXIT] = \emptyset$
An expression is available at a program point p if:

- it has been computed along all paths leading into p
- it has not been killed since being computed until p
- (NEW) it is anticipated at p
 - we could make it available if it is anticipated
Available Expressions Analysis

- Direction: Forwards
- Meet: ∩
- Transfer function
 - \(f_B(x) = (e_{-use_B} \cup \text{anticipable}[B].\text{in}) \cup (x - e_{-kill_B}) \)
- Equations
 - \(\text{IN}[B] = \bigwedge_{P \in \text{pred}(B)} \text{OUT}[P] \)
 - \(\text{OUT}[B] = f_B(\text{IN}[B]) \)
- \(T = U \)
- \(\text{OUT}[\text{ENTRY}] = \emptyset \)
Positioning Expressions

- When is the earliest an expression can be evaluated?
- When is the latest an expression can be evaluated?
Positioning Expressions: Earliest

- When is the earliest an expression can be evaluated?
 - When it anticipated, but not available
- \(\text{earliest}[B] = \text{anticipable}[B].\text{in} - \text{available}[B].\text{in} \)
 - Observe notation for results of different analyses
Anticipable + (Not) Available = Earliest
Positioning Expressions: Latest

- When is the latest an expression can be evaluated?
 - When it can no longer be postponed
- “Postponed”: expression pushed down from earliest placement
 - When can we push down an expression into the next block?
An expression e is postponable to a block p if:

- e could be placed in block b before p (earliest is before p)
- Such that it is available on all paths leading to p from ENTRY
- And e is not used after block b (i.e., before p)
Postponable Expressions Analysis

- **Direction:** Forwards
- **Values:** Expressions
- **Meet:** \(\cap \)
- **Transfer functions**
 - \(f_B(x) = (earliest[B] \cup x) - e_use_B \)
- **Equations**
 - \(OUT[B] = f_B(IN[B]) \)
 - \(IN[B] = \wedge_{P \in pred(B)} OUT[P] \)
- \(T = U \)
- \(OUT[ENTRY] = \emptyset \)
c = 2
a = b + c
d = b + c
e = b + c
A block p is on the *postponement frontier* for an expression e if

- e can be postponed to p
- e cannot be placed at entry to a successor s of p
 - e is used in p
 - e is not postponable from some predecessor of s
 - e is not in $\text{earliest}[S]$

$$latest[B] = (earliest[B] \cup \text{postponable}[B].in) \cap (e_{-use_B} \cup (\cap_{S \in \text{succ}(B)}(earliest[S] \cup \text{postponable}[S].in))^C)$$

(Note: A^C means the complement of set A)
An expression e in block p is used if:

- Some block q uses e
- There exists a path from p to q that does not invalidate e
 - i.e. recompute e or invalidate its operands
● Direction: Backwards
● Values: Expressions
● Meet: \cup
● Transfer function
 - $f_B(x) = (x \cup e_{\text{use}}) - \text{latest}[B]$
● Equations
 - $\text{IN}[B] = f_B(\text{OUT}[B])$
 - $\text{OUT}[B] = \land_{S \in \text{succ}(B)} \text{IN}[s]$
● $\top = \emptyset$
● $\text{IN}[\text{EXIT}] = \emptyset$
Putting it all together - I

- Compute $\text{anticipable}[B].\text{in}$, $\text{available}[B].\text{in}$
- Compute $\text{earliest}[B]$
- Compute $\text{postponable}[B].\text{in}$
- Compute $\text{latest}[B]$
- Compute $\text{used}[B].\text{out}$
For each expression $x + y$ in program:

- Create $t = x + y$ (where t is a unique temporary)
- Place $t = x + y$ at the beginning of all blocks B such that
 - $x + y$ is in $\text{latest}[B] \cap \text{used}[B].\text{out}$
 - i.e. B is the last block where $x + y$ can be placed, and $x + y$ is used after B
- Replace all $x + y$ with t in all block B where:
 - $x + y \in (\text{e}_\text{use}_B \cap (\text{latest}[B]^c \cup \text{used}[B].\text{out}))$
 - i.e., $x + y$ is in e_use_B, and
 - $x + y$ is NOT in $\text{latest}[B]$, or
 - $x + y$ is in $\text{used}[B].\text{out}$

Algorithm 9.36 in the Dragon Book.
\[
c = 2 \\
t = b + c \\
a = t \\
t = b + c \\
d = t \\
e = t
\]
Outline

Review

Partial Redundancy Elimination

Postscript
References

- Chapter 9 of the Dragon Book
 - Section 9.5