CSC2/455 Software Analysis and Improvement
Model Checking

Sreepathi Pai
April 12, 2023
URCS
Outline

A Tour of CBMC

Some (unneeded?) History

Model Checking

Liveness Properties

Postscript
Outline

A Tour of CBMC

Some (unneeded?) History

Model Checking

Liveness Properties

Postscript
Wrong Min

```c
#include <assert.h>

int nondet_int();

int min(int a, int b) {
    if(a < b)
        return a;
    else
        return a;
}

void check_min() {
    int x, y, r;

    x = nondet_int();
    y = nondet_int();

    r = min(x, y);

    assert(r == x || r == y);
    assert(r <= x && r <= y);
}
```
$ cbmc --function check_min wrong_min.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Parsing wrong_min.c
Converting
Type-checking wrong_min
Generating GOTO Program
Adding CPROVER library (x86_64)
Removal of function pointers and virtual functions
Generic Property Instrumentation
Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking
size of program expression: 48 steps
simple slicing removed 2 assignments
Generated 2 VCC(s), 2 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier
403 variables, 1026 clauses
SAT checker: instance is SATISFIABLE
Solving with MiniSAT 2.2.1 with simplifier
403 variables, 0 clauses
SAT checker inconsistent: instance is UNSATISFIABLE
Runtime decision procedure: 0.00148068s

** Results:
[check_min.assertion.1] assertion r == x || r == y: SUCCESS
[check_min.assertion.2] assertion r <= x && r <= y: FAILURE

** 1 of 2 failed (2 iterations)
VERIFICATION FAILED
$ cbmc --trace --function check_min wrong_min.c
...
[check_min.assertion.2] assertion r <= x && r <= y: FAILURE
Trace for check_min.assertion.2:
...
State 20 file wrong_min.c line 15 function check_min thread 0
--
x=1073741824 (01000000 00000000 00000000 00000000)
State 21 file wrong_min.c line 16 function check_min thread 0
--
y=1 (00000000 00000000 00000000 00000001)
State 24 file wrong_min.c line 18 function check_min thread 0
--
a=1073741824 (01000000 00000000 00000000 00000000)
State 25 file wrong_min.c line 18 function check_min thread 0
--
b=1 (00000000 00000000 00000000 00000001)
State 30 file wrong_min.c line 18 function check_min thread 0
--
r=1073741824 (01000000 00000000 00000000 00000000)

Violated property:
file wrong_min.c line 21 function check_min
 assertion r <= x && r <= y
 r <= x && r <= y
Generating test cases

$ cbmc --cover branch --function min wrong_min_2.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux

... converting SSA
Aiming to cover 3 goal(s)
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier
334 variables, 569 clauses
SAT checker: instance is SATISFIABLE
Covered function min entry point
Covered function min block 1 branch false
Solving with MiniSAT 2.2.1 with simplifier
334 variables, 0 clauses
SAT checker: instance is SATISFIABLE
Covered function min block 1 branch true
Runtime decision procedure: 0.00146064s

** coverage results:
[min.coverage.1] file wrong_min_2.c line 6 function min entry point: SATISFIED
[min.coverage.2] file wrong_min_2.c line 6 function min block 1 branch false: SATISFIED
[min.coverage.3] file wrong_min_2.c line 6 function min block 1 branch true: SATISFIED

** 3 of 3 covered (100.0%)
** Used 2 iterations
Test suite:
a=0, b=1
a=1, b=0
Outline

A Tour of CBMC

Some (unneeded?) History

Model Checking

Liveness Properties

Postscript
The Plan

- Compiler Assignment
- Automatically Grade Assignments
- No two assignments produce identical code
- No two assignments produce identical code
Check for Equivalence

- A: Original source program
- B: Compiler-generated program (e.g. your 3-address code)
- Is $A = B$?
 - Program equivalence problem
 - Undecidable in general
● Develop test cases

● Run B with these test cases
 ● Works
 ● Tests may miss bugs

● Also, many programs harder to test
 ● Don’t have main
 ● Accept input interactively
 ● Buggy compilers may introduce infinite loops
Solution

- Ended up using bounded model checking for C
 - CBMC
- Allows me to check that certain properties hold across all executions
- Can still require manual inspection
int min_of_3_before(int x, int y, int z) {
 int min3;

 if(x > y) {
 if(y > z) {
 min3 = z;
 } else {
 min3 = y;
 }
 } else {
 if(x > z) {
 min3 = z;
 } else {
 min3 = x;
 }
 }

 return min3;
}
```c
int min_of_3_after(int x, int y, int z) {
    int min3;

    if(x > y && y > z) {
        min3 = z;
    } else {
        if(x > y)
            min3 = y;
        else
            min3 = x;
    }

    return min3;
}
```
int nondet_int();
void check_eqv() {
 int a, b, c;
 a = nondet_int();
 b = nondet_int();
 c = nondet_int();
 assert(min_of_3_before(a, b, c) == min_of_3_after(a, b, c));
}
$ cbmc --trace --function check_eqv min3.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
...
[check_eqv.assertion.1] assertion return_value_min_of_3_before == return_value_min_of_3_after: FAILURE

State 20 file min3.c line 45 function check_eqv thread 0

 a=1 (00000000 00000000 00000000 00000001)

State 21 file min3.c line 46 function check_eqv thread 0

 b=1073741824 (01000000 00000000 00000000 00000000)

State 22 file min3.c line 47 function check_eqv thread 0

 c=0 (00000000 00000000 00000000 00000000)

...

State 32 file min3.c line 13 function min_of_3_before thread 0

 min3=0 (00000000 00000000 00000000 00000000)

...

State 46 file min3.c line 33 function min_of_3_after thread 0

 min3=1 (00000000 00000000 00000000 00000001)

Violated property:
 file min3.c line 49 function check_eqv
 assertion return_value_min_of_3_before == return_value_min_of_3_after
 return_value_min_of_3_before == return_value_min_of_3_after

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED
CBMC translates entire program into a “GOTO” program in SSA form

- It then “executes” every statement in the program
 - Values it does not know about are turned into “symbols” (Symbolic Execution)

- Program is then converted into boolean formulae (CNF)
- The formula is handed off to a SAT solver

Source: Kroening and Tautschnig, CBMC – C Bounded Model Checker (Competition Contribution), TACAS 2014
Loops: Definite Bounds

```c
for(i = 0; i < 10; i++) {
    ...
}

CBMC will unroll loop.
```
Loops: Symbolic Bounds

for(i = 0; i < N; i++)
 B;

gets unrolled by a fixed number (B is body), with unroll assert:

 i = 0;
 if(i < N) {
 B;
 i++;
 if(i < N) {
 B;
 i++;
 assert(N == 2);
 }
 }

• If assert fails, unrolling was insufficient.
 • Not sound!
• Otherwise, conclusion is sound
Other complications

- Pointers, arrays, dynamic memory allocation, etc.
- See CPROVER manual for more details
Outline

A Tour of CBMC

Some (unneeded?) History

Model Checking

Liveness Properties

Postscript
Basic Ideas

- Formula \(\varphi \)
 - Correctness (Safety) property
 - Propositional logic
 - Example: the argument to the assert statements
- Interpretation \(\mathcal{K} \)
 - More on this later
- We ask: \(\mathcal{K} \models \varphi \)?
 - Is \(\varphi \) true in \(\mathcal{K} \)?
Transition System

- $\mathcal{T} = (Q, I, E, \delta)$
 - set of states Q (e.g. values of all variables)
 - initial states $I \in Q$
 - action labels E (e.g. program statements)
 - (total) transition relation $\delta \subseteq Q \times E \times Q$
- A run of \mathcal{T} is the same as a trace of states
 - $s_0 e_0 s_1 \ldots$ where $(s_0, e_0, s_1) \in \delta$, and $s_0 \in I$
- A reachable state is a state that exists in some run.
min3 = min_of_3(x, y, z);
assert(min3 == x || min3 == y || min3 == z);
assert(min3 <= x);
assert(min3 <= y)
assert(min3 <= z)

Let \mathcal{V} be a set of propositions
 - e.g. $\min3 \leq x$
 - e.g. $\min3 \leq y$

A Kripke structure $\mathcal{K} = (Q, I, E, \delta, \lambda)$ is a transition system where:
 - $\lambda : Q \rightarrow 2^\mathcal{V}$

λ is a function that maps a state q to the (subset) of propositions from \mathcal{V} that are true in that state
 - $q \models P$ where $P \in \mathcal{V}$
Let p be the “must be one of inputs” proposition
Let q, r, s be the $\leq x, \leq y, \leq z$ proposition
(Note: True propositions in internal states not shown)
An invariant is a safety property for the system that holds in every reachable state.

An inductive invariant holds in the initial state, and is preserved by all transitions:
- including transitions from unreachable states
- more on this when we discuss Hoare Logic
Invariant Checking Algorithm: High level details

- Assume finite Kripke structure
- Given an invariant to check,
 - Enumerate all reachable states
 - Check that invariant holds in all of them
def verify_inv(ks, inv):
 done = set()
 todo = set()

 for s in ks.initial_states():
 if s in done: continue

 todo.add(s)

 while len(todo) > 0:
 ss = todo.pop()
 done.add(ss)

 if not ss.satisfies(inv): return False

 for succ in ss.successors():
 if succ not in done: todo.add(succ)

 return True

based on Figure 3.3 in S. Merz, An introduction to Model Checking.
Progress

- Does something “good” eventually happen?
- Does the system ever deadlock?
- Does the system livelock?
 - An action \(e \) is no longer possible after a particular state \(q_i \)
- These require reasoning over *sequences* of states
 - These can be infinite even in a finite Kripke structure

These properties need a *temporal* logic, that incorporates notions of (logical) “time points” into formulae we want to check.
Let \(\sigma = q_0 q_1 \ldots \) be a sequence of states
- \(\sigma_i \) is the state \(i \)
- \(\sigma|_i \) is the suffix \(q_i q_{i+1} \ldots \) of \(\sigma \)

Let \(\varphi \) be a formula
- \(\sigma \models \varphi \) if \(\varphi \in \lambda(\sigma_0) \)
- \(X\varphi \) (also a formula), read as “next \(\varphi \),”
 - \(\sigma \models X\varphi \) if \(\sigma|_1 \models \varphi \)
- \(\varphi U \psi \) (also a formula), read as “\(\varphi \) until \(\psi \)”
 - \(\sigma \models \varphi U \psi \) if and only if there exists \(k \in \mathbb{N} \)
 - \(\sigma|_k \models \psi \)
 - for all \(1 \leq i < k \), \(\sigma|_i \models \varphi \)
 - Note: \(\varphi \) can continue to hold after \(k \)
More temporal properties

- $F\varphi$, “eventually φ”
 - $\text{true} U \varphi$
- $G\varphi$, “always φ”
 - $\neg F \neg \varphi$
- $\varphi W \psi$, “φ unless ψ”
 - $(\varphi U \psi) \lor G \psi$
- $GF \varphi$
- $FG \varphi$
Some examples of invariants

- $G\neg(own_1 \land own_2)$
 - where own_1 and own_2 are propositions representing states in which locks for resource are obtained by process 1 and 2

- Other properties (see the reading)
 - weak and strong fairness
 - precedence
 - etc.
Existential and Universal Properties: CTL

- Branching time logic for properties of systems
 - Computation Tree Logic (CTL)
- \(\text{EX} \varphi\), there exists a transition where \(\varphi\) holds from current state
- \(\text{EG} \varphi\), exists a path from current state where \(\varphi\) holds on all states
- \(\text{EU}\), exists a path until...
- Also \(\text{AX}\) properties, properties that hold on all possible paths from current state
Verifying PTL and CTL invariants?

- State sequences of infinite length possible
- How do we check invariants?
• ω-automaton
 • run on infinite strings
• strings represent state sequences (actually $\lambda(q_0)\lambda(q_1)\ldots$)
• non-deterministic as well as deterministic
 • but non-deterministic Büchi automata more powerful
But, but SAT, Logic?

Büchi-automata have a very close relation to logic.
Further Reading and Links

- Stephan Merz, An Introduction to Model Checking
 - Accessible and good introduction, with links to other material
- Javier Esparza, Automata Theory: An algorithmic approach
 - See Chapters 8, 9 and 14
- Spin Model Checker
- Selected industrial applications
 - CACM, “How Amazon Web Services Uses Formal Methods”
 - CACM, “A Decade of Software Model Checking with SLAM”
- A segue into compiler verification
 - Ken Thompson, Reflections on Trusting Trust, Turing Award Lecture 1984
 - The COMPCERT project