CSC2/455 Software Analysis and Improvement
Foundations of Data Flow Analysis - II

Sreepathi Pai
February 14, 2024
URCS
Outline

Review

Proofs

Constant Propagation

Postscript
Outline

Review

Proofs

Constant Propagation

Postscript
Part I of Foundations

- Methods to solve dataflow analysis equations
 - IDEAL
 - Meet over paths (MOP)
 - Maximum Fixed Point (MFP)
 - IDEAL \subseteq MOP \subseteq MFP
- (Semi)lattice-based framework
 - (D, V, \land, F), dataflow analysis
 - (V, \land), meet semilattice
 - (V, \leq), partial order, where $x \leq y$ iff $x \land y = x$
 - Monotone framework
- Greatest Lower Bound
 - $z \leq x$ and $z \leq y$, where $z = x \land y$
A given \((D, V, \land, F)\) is monotone if for all \(x, y \in V\), and \(f \in F\):

- \(x \leq y \rightarrow f(x) \leq f(y)\)
- equivalently, \(x \leq y \rightarrow f(x \land y) \leq f(x) \land f(y)\)
- The proof of equivalence is in the textbook.

In addition, the framework is *distributive* if:

- \(f(x \land y) = f(x) \land f(y)\)

Note that these properties do not necessarily arise automatically, \(F\) must be designed to have these properties

- And proofs must be written to show that \(F\) does.
- We’ll see this for a complicated example today.
General Iterative Algorithm

```
forwards(IN, OUT, meet, top, v_entry, f_transfer)
    OUT[entry] = v_entry

    for each basic block B except ENTRY:
        OUT[B] = top

    do {
        for each basic block B except ENTRY:
            # this calculates the meet over predecessors, \( \lor \{ OUT[p] \),
            IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
            OUT[B] = f_transfer(IN[B])
    } while(some OUT changes value)
```

- Does this calculate the solution to the dataflow problem?
- Does this algorithm terminate?
- Does this algorithm calculate the maximum fixed point – i.e. the most precise solution admissible?
This class

- Proofs that answer these three questions
- Relationships between IDEAL, MOP and MFP in terms of the framework
- Examples of:
 - a non-distributive framework (from Dragon 9.4, Constant Propagation)
 - lattices containing infinite values
 - possibly some proof writing exercises (from Dragon 9.3)
Outline

Review

Proofs

Constant Propagation

Postscript
Proof #1

\[
\begin{align*}
do & \{ \\
& \text{for each basic block } B \text{ except ENTRY:} \\
& \quad \# \text{ this calculates the meet over predecessors, } \land_p \text{ OUT}[p] \\
& \quad \text{IN}[B] = \text{reduce}(\text{meet}, [\text{OUT}[p] \text{ for } p \text{ in } B.\text{predecessors}]) \\
& \quad \text{OUT}[B] = f_{\text{transfer}}(\text{IN}[B])
\}
\] while(some OUT changes value)

The iterative algorithm computes the solution to the dataflow problem.

- The iterative algorithm performs an unbounded number of iterations as long as IN and OUT change.
- When it terminates, IN and OUT have not changed for an iteration.
- The values of IN and OUT therefore satisfy the equations
 - Hence they are solutions of the dataflow problem.
The iterative algorithm terminates (i.e. converges to a fix point).

- When we apply the \wedge operator, we obtain the glb
 - i.e. $z = x \wedge y$ and $z \leq x$ and $z \leq y$
- Since the framework is monotone:
 - $f(x) \leq f(y)$ if $x \leq y$
 - i.e. OUT values are no greater than the IN values
- At each step, these values decrease or remain the same
 - When they all remain the same, we terminate
- If values decrease, recall the lattice has finite height
 - Implies a finite number of steps before we reach \perp
 - $x \wedge \perp = \perp$ and $f(\perp) = \perp$ (i.e. once a value becomes \perp, it no longer changes)
 - We terminate in this case as well
The fixed point solution computed by the iterative algorithm is the \textit{maximum} fixed point.

\textbf{Proof} By induction, for forward analyses

\textit{(BASIS)} After the first iteration, values of $\text{IN}[B]$ and $\text{OUT}[B]$ are \leq their initial values.

\begin{itemize}
 \item At initialization, $\text{OUT}[B]$ is \top for all blocks B except \textsc{ENTRY}
 \item After the first iteration, in a monotone framework, all values will be \leq those at initialization by definitions of the \land and transfer functions
\end{itemize}
Proof #3: Inductive step

Assume that:

- \(\text{IN}[B]^k \leq \text{IN}[B]^{k-1} \)
- \(\text{OUT}[B]^k \leq \text{OUT}[B]^{k-1} \)

Show that:

- \(\text{IN}[B]^{k+1} \leq \text{IN}[B]^k \)
- \(\text{OUT}[B]^{k+1} \leq \text{OUT}[B]^k \)
Proof #3: Continued

- To obtain $\text{IN}[B]$ we must apply \land to all $\text{OUT}[P]$
 - P is a predecessor of B
 - This implies $\text{IN}[B] \leq \text{OUT}[P]$ (\land yields glb)
 - From our inductive hypothesis, $\text{OUT}[P]^k \leq \text{OUT}[P]^{k-1}$
 - Applying \land on both sides over all P, $\text{IN}[B]^{k+1} \leq \text{IN}[B]^k$
- Now, $\text{OUT}[B] = f(\text{IN}[B])$
 - In the monotone framework, $f(x) \leq f(y)$ when $x \leq y$
 - We have shown $\text{IN}[B]^{k+1} \leq \text{IN}[B]^k$
 - Therefore, after applying f to both sides, by monotonicity, we have $\text{OUT}[B]^{k+1} \leq \text{OUT}[B]^k$
Properties of the IDEAL solution

- Any solution greater than IDEAL is incorrect (or unsafe)
- Any solution less than or equal to IDEAL is conservative,\(^1\) or safe.

To see why, consider IDEAL solution \(x = p_1 \land p_2 \land ... \land p_n\):

- How can we obtain a value \(z = p_1 \land ... \) greater than \(x\)?
- How can we obtain a value \(y = p_1 \land ... \) less than \(x\)?

(recall the relationship between the results of the meet operator and its operands)

\(^1\)In the English sense
• MOP considers a superset of all executable paths
 • MOP solution \(y = p_1 \land p_2 \land \ldots \land p_n \land p_{n+1} \ldots \)
• What is the relationship between MOP \((y) \) and IDEAL \((z) \)?
Relationship between MOP and MFP

- **MOP**\([B_4]\) =
 \((f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{entry})\)

 - i.e., compose transfer functions over a path and then apply meet (e.g.
 \(f_{B_3}(f_{B_1}(v_{entry}))\))

- **IN**\([B_4]\) =
 \(f_{B_3}(f_{B_1}(v_{entry}) \land f_{B_2}(v_{entry}))\)

 - i.e. apply meet at join nodes
In a distributive framework, \(\text{MOP} = \text{MFP} \)

- \(\text{MOP}[B_4] = ((f_{B_3} \circ f_{B_1}) \land (f_{B_3} \circ f_{B_2}))(v_{\text{entry}}) \)
- \(\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{\text{entry}}) \land f_{B_2}(v_{\text{entry}})) \)

If \(f(x \land y) = f(x) \land f(y) \) (i.e. distributive):

- \(\text{IN}[B_4] = f_{B_3}(f_{B_1}(v_{\text{entry}})) \land f_{B_3}(f_{B_2}(v_{\text{entry}})) \)

- If the framework is distributive, then \(\text{MOP} \) solution = \(\text{MFP} \) solution
 - Otherwise by monotonicity \(\text{MFP} \leq \text{MOP} \)

- In either case,
 - \(\text{MFP} \leq \text{MOP} \leq \text{IDEAL} \)
 - So all methods produce “safe” solutions
Outline

Review

Proofs

Constant Propagation

Postscript
Analyses so far

- Live variable analysis
- Available Expressions
- Reaching Definitions
- These are all distributive (implies monotonicity)
- Their lattices contain a finite number of values
- Their lattices have finite height
Constant Propagation

- Does this variable have a constant value at this point in the program?
 - Used to perform constant folding (i.e. evaluate constant expressions at compile time)

- Data flow analysis framework
 - Direction?
 - Values?
 - Meet operator?
 - Transfer function?
Constant Propagation

- **Direction**: Forward
- **Values**:
 - **UNDEF**: variable is undefined so far
 - **c**: variable is constant value c
 - **NAC**: variable is not a constant
- **Meet operators and transfer functions are slightly more complicated.**
Meet for Constant Propagation

- \text{UNDEF} \land v = ?
- \text{NAC} \land v = ?
- c \land c = ?
- c_1 \land c_2 = ? (c_1 \neq c_2)
Meet for Constant Propagation

- $\text{UNDEF} \land v = v$
 - UNDEF is \top
- $\text{NAC} \land v = \text{NAC}$
 - NAC is \bot
- $c \land c = c$
- $c_1 \land c_2 = \text{NAC}$

What does the lattice for constant propagation look like?
The lattice for constant propagation
The Transfer Function

- \(\text{OUT}[s] = f(\text{IN}[s]) \) for a statement \(s \)
 - Slightly easier to understand if we use statements instead of basic blocks
- Observe that non-assignment statements do not change values
 - \(f \) is simply the identity function \(f(x) = x \) for such statements
- What about assignment statements?
 - \(x = c \), where \(x \) is a variable, and \(c \) is a constant
 - \(x = y + z \), where + is any binary operator
 - \(x = *y \) or \(x = f(\ldots) \), where \(f \) is a function call
The Transfer Function - II

- Note that IN (and OUT) are maps (i.e. dictionaries)
 - From variables to their current dataflow values (UNDEF, c, or NAC)
 - Let’s call this map m, so that $m(x)$ returns the dataflow value for variable x

- $x = c$, changes $m(x) \leftarrow c$
- $x = y + z$, where $+$ is any binary operator (not just addition)
 - $m(x) \leftarrow m(y) + m(z)$ if $m(y)$ and $m(z)$ are constants
 - $m(x) \leftarrow \text{NAC}$ if either $m(y)$ or $m(z)$ is NAC
 - $m(x) \leftarrow \text{UNDEF}$ otherwise

- $x = y$ or $x = f(\ldots)$, $m(x) \leftarrow \text{NAC}$ (conservatively)
- Note that $m(v) \leftarrow m(v)$ for all $v \neq x$
 - i.e. the other values of the map remain unchanged

Note that I use slightly different notation than the textbook, which uses m' on the LHS
Is OUT[s] \leq IN[s] for every s?

- For the two cases below, it is “surely … monotone”:
 - \(m(x) \leftarrow c \)
 - \(m(x) \leftarrow \text{NAC} \)

- What about \(x = y + z \)?
 - Need to show that \(m(x) \) does not get greater as \(m(y) \) (and/or) \(m(z) \) get smaller
 - Show by case analysis and symmetry
\(x = y + z \) as \(m(z) \) gets smaller

<table>
<thead>
<tr>
<th>(m(y))</th>
<th>(m(z))</th>
<th>output (m(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDEF</td>
<td>UNDEF (c_2) (\text{NAC})</td>
<td>UNDEF</td>
</tr>
<tr>
<td>(c_1)</td>
<td>UNDEF (c_2) (\text{NAC})</td>
<td>(\text{NAC})</td>
</tr>
<tr>
<td>(\text{NAC})</td>
<td>UNDEF (c_2) (\text{NAC})</td>
<td>(\text{NAC})</td>
</tr>
</tbody>
</table>
\[x = y + z \text{ as } m(z) \text{ gets smaller (answers)} \]

<table>
<thead>
<tr>
<th>(m(y))</th>
<th>(m(z))</th>
<th>output (m(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDEF</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(c_2)</td>
<td>UNDEF</td>
</tr>
<tr>
<td>UNDEF</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>NAC</td>
<td>UNDEF</td>
<td>NAC</td>
</tr>
<tr>
<td>(c_1 + c_2)</td>
<td>(c_2)</td>
<td>NAC</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>UNDEF</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
</tbody>
</table>
Is it distributive?

ENTRY

B1:
\(x = 2 \)
\(y = 3 \)

B2:
\(x = 3 \)
\(y = 2 \)

EXIT

B3:
\(z = x + y \)
• Path 1 \((x = 2; \ y = 3; \ z = x + y)\)
 • \(m(z) = 5\), so \(z\) is a constant

• Path 2 \((x = 3; \ y = 2; \ z = x + y)\)
 • \(m(z) = 5\), so \(z\) is a constant

• Meet over Path 1 and Path 2
 • \(m(z) = 5 \wedge 5\), so \(z\) is a constant
MFP solution

- At end of block B_1
 - $m(x) = 2$ and $m(y) = 3$
- At end of block B_2
 - $m(x) = 3$ and $m(y) = 2$
- Meet before block B_3
 - $m(x) = 2 \land 3$ (i.e. case $c_1 \land c_2$)
 - $m(y) = 3 \land 2$
- Conclusion?

ENTRY

B_1:
$x = 2$
$y = 3$

B_2:
$x = 3$
$y = 2$

EXIT

B_3:
$z = x + y$
Constant Propagation is not distributive

- For constant propagation, in most non-trivial programs
 - \(\text{MFP} < \text{MOP} \)
Outline

Review

Proofs

Constant Propagation

Postscript
References

- Chapter 9 of the Dragon book
 - Section 9.3, 9.4