Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
• OED Definition: Reasoning conducted or assessed according to strict principles of validity.

• Particularly relevant to this lecture:
 • A particular system or codification of the principles of proof and inference.
Propositional Logic

- Recall, propositions (identified by symbols)
 - The connectives $\lor, \land, \implies, \iff$ and the operation \neg
- Tautologies
 - A formula that is always true
- Contradiction
 - A formula that is always false
- Equivalence: two formulae A and B are equivalent if $A \iff B$ is a tautology
- "Proof" technique in propositional logic
 - Enumerate all possible values of variables and check if the final result is always true
• $p \iff q$ is equivalent to $\neg q \iff \neg p$
 • contrapositive (theorem)
• $p \implies q$ is not necessarily equivalent to $q \implies p$
 • converse
An argument is valid if and only if
\[P_1 \land P_2 \land \cdots \land P_n \implies P_{n+1} \]
is a tautology.

This means that
\[P_1 \land P_2 \land \cdots \land P_n \land P_{n+1} \]
is true.
Rules of Inference: Modus Ponens

- \(p \)
- \(p \Rightarrow q \)
- \(____ \)
- \(q \)

- \((p \land (p \Rightarrow q)) \Rightarrow q\) is a tautology

- Example:
 - \(p \) is “it is raining”
 - \(p \Rightarrow q \) is “if it is raining, roads are wet”
 - \(q \), so “roads are wet”
Rules of Inference: Modus Tollens

\[p \implies q \]
\[\neg q \]
\[\therefore \neg p \]

- \((p \implies q) \land (\neg q)) \implies \neg p\) is a tautology

Example:
- \(p \implies q\) is “if \(a\) is even, \(a + 1\) is odd”
- \(\neg q\) is “\(a + 1\) is not odd”
- \(\neg p\), so “\(a\) is not even”
Invalid Rule of Inference: Affirming the Consequent

\[p \implies q \]

\[q \]

\[\therefore p \]

\[((p \implies q) \land q) \implies p \text{ is not a tautology} \]
Proof System for Propositional Logic

- System L
- Lines of proof in this system must be
 - an axiom of L (an axiom of L is a tautology)
 - an application of Modus Ponens
 - a hypothesis (a hypothesis \(G_n \) is assumed to be true)
 - a lemma (a previously proven theorem)
- The last line of a proof is a theorem
 - \(G_1, G_2, ..., G_n \vdash_L A \)
- This proof system is both:
 - Sound: Only tautologies can be proved
 - Complete: All tautologies can be proved

From Hirst and Hirst, A Primer for Logic and Proof.
Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

\[\{P\} C\{Q\} \]

- P is a precondition
- C is a statement, function or program
- Q is a postcondition
- Both P and Q are logical statements, e.g., what you would put in an assert

Read as: If P holds, and C executes (and terminates), then Q holds. P and Q are assertions, usually over program state, and usually we need to prove that Q holds.
Recall: Partial and Total Correctness

- If C does not terminate, Q may or may not be true
 - This is the notion of partial correctness
- If C can be shown (formally) to terminate, then we achieve a proof of total correctness

Total correctness = Termination + Partial Correctness
Some examples of assertions

- \{X = 1\} Y := X \{Y = 1\}
- \{X = 1\} Y := X \{Y = 2\}
- \{\text{true}\} C\{Q\}
- \{P\} C\{\text{true}\}
- \{P\} C\{\text{false}\}

Note: not all of the above are valid, they are just assertions to be checked.
Formal Proof

- (informally) Proofs at the level of rigour that even a computer could understand!
- Usually, each step in the proof is explicitly annotated as to how it was obtained from the previous steps
 - Makes it easy to check (esp. for computers)
 - Either the use of an axiom or a rule of inference
- Painful to construct by hand
 - Interactive proof assistants like Coq and Isabelle usually make it more fun
 - (if you’ve disliked writing proofs, try them!)
The assignment axiom of Hoare Logic

- The *assignment axiom* states that
 - $\vdash \{P[E/V]\} V := E \{P\}$
- $P[E/V]$ is read as P with all instances of V replaced by E
 - P with E for V
 - $\{X = 1\}[Y/X]$ leads to $\{Y = 1\}$
- Usage example: if $X = 6$, prove $Y > 15$ after $Y := X \times 3$
 - Postcondition P to prove: $\{Y > 15\}$
 - Use assignment axiom: $\{X \times 3 > 15\} Y := X \times 3 \{Y > 15\}$
 - Given that $X = 6$, so $X \times 3 = 6 \times 3 = 18$
 - $X \times 3 = 18 \implies X \times 3 > 15$
Two incorrect assignment axiom forms

- $\{P\} V := E \{P[E/V]\}$
- $\{P\} V := E \{P[V/E]\}$
Precondition strengthening

If $\vdash \{ P' \} \ C \ \{ Q \}$ and $P \implies P'$, then we can write $\vdash \{ P \} \ C \ \{ Q \}$

- $\{ X + 1 = n + 1 \} \ X := X + 1 \ \{ X = n + 1 \}$ (assignment axiom)
- $\vdash X = n \implies X + 1 = n + 1$ (from arithmetic)
- $\{ X = n \} \ X := X + 1 \ \{ X = n + 1 \}$ (precondition strengthening)
- P' is known as the **weakest precondition**, and is unique.
Postcondition weakening

If \(\vdash \{ P \} \mathcal{C} \{ Q' \} \), and \(Q' \Rightarrow Q \), then we can write \(\vdash \{ P \} \mathcal{C} \{ Q \} \)

- \(\{ R = X \land 0 = 0 \} Q := 0 \{ R = X \land Q = 0 \} \) (assignment axiom)
- \(R = X \land Q = 0 \Rightarrow R = X + (Y \times Q) \)
- \(\{ R = X \} Q := 0 \{ R = X + (Y \times Q) \} \) (postcondition weakening)
Conjunctions and Disjunctions

- If $\vdash \{P_1\} \models \{Q_1\}$ and $\vdash \{P_2\} \models \{Q_2\}$, then
 $\vdash \{P_1 \land P_2\} \models \{Q_1 \land Q_2\}$

- If $\vdash \{P_1\} \models \{Q_1\}$ and $\vdash \{P_2\} \models \{Q_2\}$, then
 $\vdash \{P_1 \lor P_2\} \models \{Q_1 \lor Q_2\}$
Sequencing Rule

- If \(\vdash \{ P \} C_1 \{ Q \} \) and \(\vdash \{ Q \} C_2 \{ R \} \), then \(\vdash \{ P \} C_1 \; C_2 \{ R \} \)

- You can combine the sequencing rule and the rules of consequence (i.e. precondition strengthening and postcondition weakening) to extend this to multiple statements.
The Conditional Rule

- If $\vdash \{P \land S\} C_1 \{Q\}$ and $\vdash \{P \land \neg S\} C_2 \{Q\}$, then
 - $\vdash \{P\}$ IF S THEN C_1 ELSE $C_2 \{Q\}$
The While Rule

- If \(\{ P \land S \} \mathcal{C} \{ P \} \) then
 - \(\vdash \{ P \} \text{WHILE } S \text{ DO } C \text{ ENDDO} \{ P \land \neg S \} \)
- Here, \(P \) is the *inductive loop invariant*, recall:
 - It is true on entry into and exit out of the loop
 - It is true after every iteration of the loop
More rules

- FOR-rule
- Handling arrays
 - variant of assignment, due to McCarthy
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
Example 1

\[X = x \land Y = y \]

\[
\begin{align*}
 R &:= X; \\
 X &:= Y; \\
 Y &:= R;
\end{align*}
\]

\[X = y \land Y = x \]
A verification condition is a mechanically generated proof goal from the program and program specifications.

For example, suppose \{P\} \texttt{V := E} \{Q\} exists in the program

- \(P\) is programmer-supplied precondition (or annotation)
- \(Q\) is programmer-supplied postcondition

The verification condition for this statement is

\[P \implies Q[E/V] \]
Why the VC for assignment works

- From Hoare Logic, we have:
 - $\vdash \{ Q[E/V] \} v := e \{ q \}$
- If we prove $p \implies q[E/V]$, then by precondition strengthening, we have:
 - $\vdash \{ p \} v := e \{ q \}$
- Which is what we had to prove.

What if we can’t prove $p \implies q[E/V]$? Does that mean $\{ p \} c \{ q \}$ does not hold?
Sufficiency and Incompleteness

- VCs are *sufficient*, but not necessary
 - There may be other ways to prove \(\{P\}C\{Q\} \)
- Mechanical provers cannot prove everything
 - Gödel’s Incompleteness Theorem
Verification conditions for our example

\{X = x \land Y = y\} \quad R := X;
\quad X := Y;
\quad Y := R; \quad \{X = y \land Y = x\}

- The verification conditions for a sequence ending in an assignment \{P\} C1; \quad V := E \{Q\} are those generated by:
 - \{P\} C1 \{Q[E/V]\}
Verification conditions for our example: 2

\[
\begin{align*}
\{X = x \land Y = y\} & \quad R := X; \\
X := Y; & \quad \{X = y \land R = x\}
\end{align*}
\]

- Because \(\{X = y \land Y = x\}[R/Y]\), following from VC for sequences ending in an assignment.
Verification conditions for our example: 3

{X = x \land Y = y} \quad R := X; \quad \{Y = y \land R = x\}

- P = \{X = x \land Y = y\}
- Q = \{Y = y \land R = x\}
- Using VC for assignment:
 - Q[E/V] = \{Y = y \land R = x\}[X/R] = \{Y = y \land X = x\}
- Here, P \implies Q[E/V] trivially (identical)
Example 2

\[
k \geq 0
\]

\[
x := k;
c := 0;
\]

\[
\text{while}(x > 0) \{
\quad x := x - 1;
\quad c := c + 1;
\}
\]

\[
x = 0 \land c = k
\]
The verification conditions for a While statement \{P\} WHILE S DO C \{Q\} are

- \(P \implies R \) (where \(R \) is the loop invariant)
- \(R \land \neg S \implies Q \)
- recursively, all VCs from \(\{R \land S\} \text{C} \{R\} \)

The verification conditions for a sequence not ending in an assignment \(\{P\} \text{C}_1; \text{C}_2; \text{C}_{(n-1)}; \text{C}_n \{Q\} \), assuming \(\{R\} \text{C}_{(n)} \{Q\} \) are those generated by:

- \(\{R\} \text{C}_{(n)} \{Q\} \)
- \(\{P\} \text{C}_1; \text{C}_2; \text{C}_{(n-1)} \{R\} \)
Verification Conditions for While loop and body

while(x > 0) {
 x := x - 1;
 c := c + 1;
}

/* Q: x = 0 ∧ c = k */

- loop invariant: \(x + c = k\)
- (VC1) \(x + c = k \land \neg(x > 0) \implies x = 0 \land c = k\)
 - (from \(R \land \neg S \implies Q\))
- (VC2) \(P \implies x + c = k\) (from \(P \implies R\))
- (VC3) \(x + c = k \land x > 0 \implies x - 1 + c + 1 = k\) (VC from assignment)
 - Recursively from body:
 - \(\{x + c = k \land x > 0\} x := x - 1; c := c + 1 \{x + c = k\}\)
 - \(\{x + c = k \land x > 0\} x := x - 1 \{x + c + 1 = k\}\) (from sequence ending with assignment)
Let's assume $P = R$, so P is $x + c = k$

(VC0) $k \geq 0 \implies k = k$

- $\{k \geq 0\} x := k; \ c := 0 \{x + c = k\}$
- $\{k \geq 0\} x := k; \{x + 0 = k\}$ (from sequence ending with assignment)
- $Q[E/V]$ is $k + 0 = k$
• (VC0) $k \geq 0 \implies k = k$
• (VC1) $x + c = k \land \neg(x > 0) \implies x = 0 \land c = k$
• (VC2) $x + c = k \implies x + c = k$
• (VC3) $x + c = k \land x > 0 \implies x + c = k$

• We need to show that $VC_0 \land VC_1 \land VC_2 \land VC_3$ is valid.
• Implication $P \implies Q$ can be read as, assume P is true, show that Q is valid.
 - $P \vdash Q$

• For proving with SAT solvers, if $P \implies Q$, check whether $P \land \neg Q$ is unsatisfiable
 - $P \implies Q$ can also be written as $\neg P \lor Q$
from z3 import *

s = Solver()
x, k, c = Ints('x k c')

vc0 = Implies(k >= 0, k == k)
v1 = Implies(And(x + c == k, Not(x > 0)), And(x == 0, c == k))
v2 = Implies(x + c == k, x + c == k)
v3 = Implies(And(x + c == k, x > 0), x + c == k)

s.add(x >= 0)
s.add(Not(And(And(And(vc0, v1), v2), v3)))

if s.check() == sat:
 print("SAT", s.model())
else:
 print("UNSAT")
Program Verification Procedure

- Generate specifications (aka annotations or assert statements)
- Generate verification conditions
 - Usually mechanical, e.g. Dafny or CBMC
- Prove verification conditions
 - By hand or
 - Automated Theorem Prover
More stuff

- Generating VCs for other statements in language
- Soundness?
- Completeness?
- Decidability?
- Pointers: Separation logic
Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript
- Background Reading on Hoare Logic, by Mike Gordon
 - The reference for this lecture
- Textbooks
 - Software Foundations: Vol 1: Logical Foundations,
 - Software Foundations: Vol 2: Programming Language Foundations
 - Concrete Semantics