Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
Recap

Value Abstractions

Computable Abstract Semantics

Postscript
• Previous lecture
 • Concrete Semantics for a Small Language

• Today:
 • Value abstractions
 • Non-relational Abstractions
 • Abstract Semantics
 • Soundness, termination, etc.
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
Abstraction Examples

- Consider the concrete memory state M:
 - $\{\{x \mapsto 7, y \mapsto 2\}, \{x \mapsto 8, y \mapsto 0\}\}$
 - How shall we abstract it?
- $x = \{7, 8\}$
 - Signs: $x = [\geq 0]$
 - Intervals: $x = [7, 8]$
- $y = \{0, 2\}$
 - Signs: $y = [\geq 0]$
 - Intervals: $y = [0, 2]$ (note: $[0, 2] = \{0, 1, 2\}$)
- Alternatively:
 - Signs: $x = \top$ (here, $\top = \forall = \mathbb{Z}$)
 - Intervals: $y = [0, 3]$
 - Multiple abstractions are possible, but some are less precise
Lattice for Signs Domain

- Signs, \(\mathbb{A}_\mathcal{S} = \{ \top, [\leq 0], [\geq 0], =[0], \perp \} \)
 - \(\top = \mathbb{V} \) (recall \(\mathbb{V} = \mathbb{Z} \) for our language)
 - \([\leq 0] = \{ x \mid x \leq 0 \} \)
 - \([\geq 0] = \{ x \mid x \geq 0 \} \)
 - \(=[0] = \{ 0 \} \)
 - \(\perp = \emptyset \)
- Order relation \(\sqsubseteq \)
 - Items \textit{lower} in the lattice are more precise
 - \(a \sqsubseteq b \), read as \(a \) less than \(b \)
- Join \(\sqcup \)
 - Least upper bound, lub
Lattice for Intervals Domain

- Intervals, \(\mathbb{A}_I = \{ \top, \bot \} \cup \{ [n, m] \mid n, m \in \mathbb{Z} \} \)
 - \(\top = (-\infty, +\infty) = \mathbb{V} = \mathbb{Z} \)
 - \([n, m] = \{ x \mid n \leq x \leq m \} \)
 - \([n, +\infty) = \{ x \mid n \leq x \} \)
 - \((-\infty, m) = \{ x \mid x \leq m \} \)
 - \(\bot = \emptyset \)

- Infinite lattice
- Order relation \(\sqsubseteq \) and Join \(\sqcup \) supported
Abstraction and Concretization Functions (Informal)

- Given an element c of the concrete domain \mathbb{C}, we want $a \in \mathbb{A}$
 - c is a set of values
 - e.g. $x = \{7, 8\}$
- Let the value abstraction function be ϕ_V
 - $\phi_V : \mathbb{C} \rightarrow \mathbb{A}$
- Similarly, given an abstract element $a \in \mathbb{A}$, we want the concrete element c corresponding to it
 - e.g., $a = [-\leq 0] \in \mathbb{A}_\varphi$
 - So, corresponding $c = \{..., -3, -2, -1, 0\}$
- Let this value concretization function be γ_V
 - $\gamma_V : \mathbb{A} \rightarrow \mathbb{C}$
- Key questions: how do we relate ϕ_V to γ_V
 - soundly,
 - precisely?
class SignsDomain(object):
 LTZ = "[<= 0]"
 GTZ = "[>= 0]"
 EQZ = "[= 0]"
 TOP = "TOP"
 BOT = "BOT"
 finite_height = True

 def phi(self, v: int):
 if v == 0:
 return self.EQZ
 elif v > 0:
 return self.GTZ
 elif v < 0:
 return self.LTZ
 else:
 raise ValueError(f"Unknown value for signs abstraction {v}"
class SignsDomain(object):
 ...
 # it helps to think of abstract elements as sets, with lte
 # denoting set inclusion. So we’re asking, is x included in y?
 def lte(self, x, y):
 # bot is always less than everything else
 # empty set {} is always included
 if x == self.BOT: return True

 # top is only lte
 # top is all possible values, so it is only included in itself
 if x == self.TOP:
 if y != self.TOP: return False
 return True

 # eqz is the set {0}, which is included in all sets (>=0, <=0) except
 if x == self.EQZ:
 if y == self.BOT: return False
 return True

 if x == self.LTZ or x == self.GTZ:
 if y == x: return True
 if y == self.TOP: return True

 # these sets are not included in {0} or {} or {>=0} [resp. {<=0}]
 return False
class SignsDomain(object):
 ...
 def lub(self, x, y):
 if self.lte(x, y): return y # y includes x
 if self.lte(y, x): return x # x includes y

 # if incomparable, then we return T
 return self.TOP
Concrete Domains

- Values in our concrete domain belong to $\mathcal{P}(\mathbb{M})$
 - Recall $\mathbb{M} = X \rightarrow V$
- A concrete domain is the pair (C, \subseteq)
 - $C = \mathcal{P}(\mathbb{M})$
 - If $x, y \in C$, and $x \subseteq y$, then x implies y
 - x and y are behavioural properties expressed as sets
 - x is at least as “strong” as y
- Example:
 - x is set of all states where $x > 10$
 - y is set of all states where x is non-negative
 - Clearly $x \subseteq y$
An abstract domain is \((\mathbb{A}, \sqsubseteq)\)
- \(\sqsubseteq\) orders members of \(\mathbb{A}\)

An abstraction relation \((\models) \subseteq \mathbb{C} \times \mathbb{A}\), such that:
- for all \(c \in \mathbb{C}, a_0, a_1 \in \mathbb{A}\), if \(c \models a_0\), and \(a_0 \sqsubseteq a_1\), then \(c \models a_1\)
- example: \(c = \{0\}, a_0 = [= 0], a_1 = [\geq 0]\) in the signs domain
- for all \(c_0, c_1 \in \mathbb{C}, a \in \mathbb{A}\), if \(c_0 \subseteq c_1\) and \(c_1 \models a\), then \(c_0 \models a\)
- example: \(c_0 = \{3, 5\}, c_1 = \{2, 3, 4, 5, 6\}, a = [2, 6]\)

The goal of abstraction is to map \(c \in \mathbb{C}\) to the most precise \(a \in \mathbb{A}\)
Concretization Function

- $\gamma_V : A \rightarrow C$, the concretization function is defined as:
 - $\gamma_V(a) \models a$,
 - $\gamma_V(a)$ is the maximum concrete element of C that satisfies a
 - I.e., if $\gamma_V(a) = c$, there no other c' such that $c' \models a$ and $c \subseteq c'$

- Examples:
 - $\gamma_S([\leq 0]) = \{x \mid x \leq 0\}$
 - $\gamma_S([0, 3]) = \{0, 1, 2, 3\}$
 - $\gamma(\bot) = \emptyset$

- Concretization can be used instead of \models to define the abstraction relation:
 - $\forall c \in C, a \in A \quad c \models a \iff c \subseteq \gamma_V(a)$
 - e.g.: using signs, $c = \{3\}$, $a = [\geq 0]$, $\gamma_V(a) = \{0, 1, 2, 3, 4, \ldots\}$
(Best) Abstraction Function

- $\alpha : C \rightarrow A$, the abstraction function is defined as:
 - $c \models \alpha(c)$
 - $\alpha(c)$ is the minimum element of A that is satisfied by c
 - i.e., if $\alpha(c) = a$, there is no other a' such that $c \models a'$ and $a' \sqsubseteq a$

- Examples:
 - $\alpha_{\mathcal{A}}(\{0\}) = [0]$
 - $\alpha_{\mathcal{A}}(\{0, 3\}) = [0, 3]$

- α may not exist
When α may not exist

- When ≈ 0 is removed from signs, it has no best abstraction function
 - $\{0\}$ can be described by either ≤ 0 or ≥ 0
 - $\leq 0 \not\subseteq \geq 0$ and $\geq 0 \not\subseteq \leq 0$
- Convex polyhedra
 - No finite set of linear inequalities can approximate a circle (in the 2-D domain) or its equivalents in higher domains
 - Each linear equality is a tangent to the circle
When α_V exists:

$$\forall c \in C, a \in A, \quad \alpha_V(c) \sqsubseteq a \iff c \subseteq \gamma_V(a)$$

The pair γ_V and α_V form a Galois connection with the following properties:

- γ_V and α_V are monotone
- $\forall c \in C, c \subseteq \gamma_V(\alpha(c))$
- $\forall a \in A, \alpha_V(\gamma_V(a)) \sqsubseteq a$
A non-relational abstraction does not capture relationships between variables

- Each variable is abstracted independently

We can extend the value abstraction functions we’ve defined so far to define a non-relational abstraction:

- $M^\#$ is the abstraction of M
- $M \subseteq \gamma_N(M^\#)$

The concretization function is defined as:

- $\gamma_N : M^\# \mapsto \{ m \in M \mid \forall x \in X, m(x) \in \gamma_V(M^\#(x)) \}$

The order relation \sqsubseteq_V is pointwise-extended:

- $M^\#_0 \sqsubseteq^\# M^\#_1$ if and only if $\forall x \in X, M^\#_0(x) \sqsubseteq_V M^\#_1(x)$
• The bottom $\perp_\mathcal{N}$ is defined as:
 \[\forall x \in X, \perp_\mathcal{N}(x) = \bot_V \]
• The abstraction function, if it exists, is defined as:
 \[\alpha_\mathcal{N} : M \mapsto (x \in X) \mapsto \alpha_V(\{m(x) \mid m \in M\}) \]
class NonRelationalAbstraction(object):
 def __init__(self, domain):
 self.dom = domain

 def phi(self, M):
 m_accum = {}
 for m in M:
 m_abs = {}
 for x in m:
 m_abs[x] = self.dom.phi(m[x])

 if len(m_accum) == 0:
 m_accum = m_abs
 else:
 m_accum = self.union(m_accum, m_abs)

 # also construct BOT
 self.BOT = {}
 for x in m_accum:
 self.BOT[x] = self.dom.BOT

 return m_accum

 def lte(self, M0_abs, M1_abs):
 for x in M0_abs:
 if not self.dom.lte(M0_abs[x], M1_abs[x]): return False

 return True
Goal: Sound Static Analysis

\[\alpha_{\text{pre}} \]

\[m \xrightarrow{[p] P} m' \]
Goal: Sound Static Analysis

\[a_{\text{pre}} \xrightarrow{\llbracket p \rrbracket^\#} a_{\text{post}} = \llbracket p \rrbracket^\# (a_{\text{pre}}) \]
Abstraction of empty set

Recall:

\[[C](\emptyset) = \emptyset \]

so we will define:

\[\mathcal{P}_\emptyset(\bot) = \bot \]

In code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    if M_abs == abstraction.BOT:
        return M_abs
    ...
```
\[
[\text{skip}]^\#_P(M^\#) = M^\#
\]

In code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...

    # the value abstraction
    v_abs = abstraction.dom

    if isinstance(C, Skip):
        return M_abs
    elif isinstance(C, Program):
        return evaluate_Cmd_abs(C.program, M_abs, abstraction)
    ...
```
\[\llbracket C_0; C_1 \rrbracket_P^\# (M^\#) = \llbracket C_1 \rrbracket_P^\# (\llbracket C_0 \rrbracket_P^\# (M^\#)) \]

- This seems to be intuitive, but we need to show that:
 - The concrete postcondition of \(\llbracket C_0; C_1 \rrbracket_P \) is over-approximated by \(\llbracket C_0; C_1 \rrbracket_P^\# \)
 - I.e. \(\llbracket C_0; C_1 \rrbracket_P \subseteq \gamma(\llbracket C_0; C_1 \rrbracket_P^\#) \)

Theorem: Approximation of Compositions: Let \(F_0, F_1 : \wp(M) \rightarrow \wp(M) \) be two monotone functions that are overapproximated by \(F_0^\#, F_1^\# : A \rightarrow A \), i.e. \(F_0 \circ \gamma \subseteq \gamma \circ F_0^\# \) and \(F_1 \circ \gamma \subseteq \gamma \circ F_1^\# \). Then, \(F_0 \circ F_1 \) can be approximated by \(F_0^\# \circ F_1^\# \)
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
 ...
 elif isinstance(C, Seq):
 return evaluate_Cmd_abs(C.cmd1,
 evaluate_Cmd_abs(C.cmd0, M_abs, abstraction),
 abstraction)
 ...
 ...
\[[E]^\# : A \rightarrow A^\mathcal{V}\]

\[[n]^\#(M^\#) = \phi^\mathcal{V}(n)\]

\[[x]^\#(M^\#) = M^\#(x)\]

\[[E_0 \odot E_1]^\#(M^\#) = f^\#(\[E_0]^\#(M^\#), \[E_1]^\#(M^\#))\]

- \(\phi^\mathcal{V}\) can be replaced by \(\alpha^\mathcal{V}\) if it exists
 - Otherwise just return an abstract element such that \(\{n\} \subseteq \gamma(\phi^\mathcal{V}(n))\)
∀ \(n_0^\#, n_1^\# \in A_V \), \(\{ f_\circ(n_0, n_1) | n_0 \in \gamma_V(n_0^\#) \text{ and } n_1 \in \gamma_V(n_1^\#) \} \subseteq \gamma_V(f_\circ^\#(n_0^\#, n_1^\#)) \)

• The result of applying \(f_\circ^\#(n_0^\#, n_1^\#) \), when concretized
 • \(\gamma_V(f_\circ^\#(n_0^\#, n_1^\#)) \)

• must include the concrete set formed when we apply \(f_\circ \) to ...

• ... the elements of the individual concretizations of \(n_0^\#, n_1^\# \)
 • \(n_0 \in \gamma_V(n_0^\#) \)
 • \(n_1 \in \gamma_V(n_1^\#) \)

Examples (using signs):

• \(f_+^\#([\geq 0], [\geq 0]) = [\geq 0] \)

• \(f_+^\#([\geq 0], [\leq 0]) = \top \)
def f_binop(self, op, left, right):
 if op == '+':
 return self.lub(left, right)
 elif op == '*':
 if left != right:
 return self.lub(left, right)
 elif left == self.LTZ:
 return self.GTZ # - * - = +
 elif left == self.GTZ:
 return self.GTZ # + * + = +
 elif op == '-':
 if left == right:
 if left != self.EQZ and left != self.BOT:
 return self.TOP
 else:
 return left # {+ve} - {-ve} => {+ve}, {-ve} - {+ve} => {-ve}
 else:
 return left # {0} - {0} => {0}, {} - {} => {}
 else:
 raise NotImplementedError(f'Operator {op}')

• \(f_{\Diamond} \) is per abstract domain (not per language as in the concrete semantics)
Expressions: \(f_\# \) in code (Intervals)

See `f_binop` in `dom_intervals.py`.

- The tricky aspects revolve around handling \(-\infty\) and \(+\infty\).
def evaluate.Expr_abs(E: Expr, m: AbstractMemory, vabs):
 if isinstance(E, Scalar):
 return vabs.phi(E)
 elif isinstance(E, Var):
 return m[E.name]
 elif isinstance(E, BinOp):
 return vabs.f_binop(E.op,
 evaluate.Expr_abs(E.left, m, vabs),
 evaluate.Expr_abs(E.right, m, vabs))
The concrete semantics are:

\[
[x := E]_{\mathcal{D}}(M) = \{ m[x \mapsto [E](m)] \mid m \in M \}
\]

The abstract semantics are:

\[
[x := E]^{\#}_{\mathcal{D}}(M^{\#}) = M^{\#}[x \mapsto [E]^{\#}(M^{\#})]
\]

Similarly, since \textit{input} also writes to a variable:

\[
[[\text{input}(x)]^{\#}_{\mathcal{D}}(M^{\#}) = M^{\#}[x \mapsto \top_{\mathcal{V}}]
\]

Recall that \textit{input} can return any value from the user.
Assignments and input Code

def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
 def update_abs_memories(var, value_lambda):
 out = dict(M_abs)
 out[var] = value_lambda(M_abs)
 return out

 ...

 elif isinstance(C, Assign):
 return update_abs_memories(C.left.name, lambda m: evaluate_Expr_abs(C.right, m, v_abs))

 elif isinstance(C, Input):
 return update_abs_memories(C.var.name, lambda _: v_abs.TOP)

 ...

Conditionals: Example

\[M^# = \{x: T, y: T\} \]
\[x := 7 \]
\[M^# = \{x: \{7, 7\}, y: T\} \]

\[\text{if} \ (x > 5) \]
\[\quad M^# = \{x: [6, +\infty), y: T\} \]
\[y = 1 \]
\[\quad M^# = \{x: [6, +\infty), y: [1, 1]\} \]
\[\text{else} \]
\[\quad M^# = \{x: (-\infty, 5], y: T\} \]
\[y = 10 \]
\[\quad M^# = \{x: (-\infty, 5], y: [10, 10]\} \]

\[\quad M^# = \{x: [-\infty, +\infty], y: [1, 10]\} \]

- We need a abstract filtering function \(F^#_B \)
 - Its effects are shown
- We need to join the abstract elements:
 - Use the lub (least upper bound), here \(\sqcup^# \)
- But we have lost precision for \(x \)!
\[F_B \] must refine

\[
\begin{align*}
\, M^\# &= \{x: \, T, \, y: \, T\} \\
x &:= 7 \\
\, M^\# &= \{x: \, [7, \, 7], \, y: \, T\} \\
\text{if} \, (x > 5) \\
&\quad \# \, M^\# &= \{x: \, [7, \, 7], \, y: \, T\} \\
&\quad \quad y &= 1 \\
&\quad \quad \# \, M^\# &= \{x: \, [7, \, 7], \, y: \, [1, \, 1]\} \\
\text{else} \\
&\quad \# \, M^\# &= \{x: \, \text{BOT}, \, y: \, \text{BOT}\} \\
&\quad \quad y &= 10 \\
&\quad \quad \# \, M^\# &= \{x: \, \text{BOT}, \, y: \, \text{BOT}\} \\
\, M^\# &= \{x: \, [7, \, 7], \, y: \, [1, \, 1]\} \\
\end{align*}
\]

- For the true part, \([6, +\infty)\) is refined to \([7, 7]\)
- For the false part, \((-\infty, 5]\) does not include \([7, 7]\)
 - So the abstract state \(M^\#\) is refined to \(\bot\), by setting all variables to \(\bot\)
 - Recall that \([C]^{\#}_{\mathcal{P}} (\bot) = \bot\) and that \(a \sqcup^\# \bot = a\)
For $\mathcal{F}_B^\#$: For all B and abstract states $M^\#$

$$\mathcal{F}_B(\gamma(M^\#)) \subseteq \gamma(\mathcal{F}_B^\#(M^\#))$$

For $\sqcup^\#$ over $M_0^\#$ and $M_1^\#$:

$$\gamma(M_0^\#) \cup \gamma(M_1^\#) \subseteq \gamma(M_0^\# \sqcup^\# M_1^\#)$$
Abstract Semantics of If

\[
\lbrack \text{if}(B)\{C_0\} \text{ else } \{C_1\}\rbrack_{\mathcal{P}}(M^\#) = \lbrack C_0\rbrack_{\mathcal{P}}(\mathcal{F}_B(M^\#)) \sqcup^\# \lbrack C_1\rbrack_{\mathcal{P}}(\mathcal{F}_{\neg B}(M^\#))
\]

Code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    elif isinstance(C, IfThenElse):
        then_memory, else_memory = filter_memory_abs(C.cond, M_abs, v_abs)
        then_memory = evaluate_Cmd_abs(C.then_, then_memory, abstraction)
        else_memory = evaluate_Cmd_abs(C.else_, else_memory, abstraction)
        ite_memory = abstraction.union(then_memory, else_memory)
        return ite_memory
```
def filter_memory_abs(B: BoolExpr, M_abs: AbstractMemory, vabs) -> Tuple[AbstractMemory, AbstractMemory]:
 true_abs, false_abs = evaluate_BoolExpr_abs(B, M_abs, vabs)
 var_abs = M_abs[B.left.name]

 true_abs = vabs.refine(var_abs, true_abs)

 if true_abs != vabs.BOT:
 # may enter true part
 M_abs_true = dict(M_abs)
 M_abs_true[B.left.name] = true_abs
 else:
 M_abs_true = dict([(m, vabs.BOT) for m in M_abs])

 false_abs = vabs.refine(var_abs, false_abs)

 if false_abs != vabs.BOT:
 # may enter false part
 M_abs_false = dict(M_abs)
 M_abs_false[B.left.name] = false_abs
 else:
 M_abs_false = dict([(m, vabs.BOT) for m in M_abs])

 return M_abs_true, M_abs_false
def refine(self, l, r):
 l = self._norm(l)
 r = self._norm(r)

 if l == self.BOT: return r
 if r == self.BOT: return l

 new_start = max(l[0], r[0])
 new_end = min(l[1], r[1])

 return self._norm((new_start, new_end))

def f_cmpop(self, op, left, c):
 left = self._norm(left)
 c = self._norm(c)

 # assume integers
 if op == '<':
 return (self.NINF, c[0] - 1), (c[0], self.PINF)
 elif op == '<=':
 return (self.NINF, c[0]), (c[0] + 1, self.PINF)
 elif op == '>':
 return (c[0] + 1, self.PINF), (self.NINF, c[0])
 elif op == '>=':
 return (c[0], self.PINF), (self.NINF, c[0] - 1)
 else:
 raise NotImplementedError(f'Operator {op}')}
def refine(self, l, r):
 if self.lte(l, r): return l
 if self.lte(r, l): return r
 return self.TOP

def f_cmpop(self, op, left, c):
 # (abst of c, op) : (variable’s true domain, variables false domain)
 abs_results = {
 (self.EQZ, '<'): (self.LTZ, self.GTZ),
 (self.EQZ, '<='): (self.LTZ, self.GTZ),
 (self.EQZ, '>'): (self.GTZ, self.LTZ),
 (self.EQZ, '>='): (self.GTZ, self.LTZ),
 (self.EQZ, '!='): (self.TOP, self.EQZ),
 (self.GTZ, '>'): (self.GTZ, self.TOP),
 (self.GTZ, '<'): (self.TOP, self.GTZ),
 (self.GTZ, '<='): (self.TOP, self.GTZ),
 (self.GTZ, '>='): (self.GTZ, self.TOP),
 }
 key = (c, op)
 if key not in abs_results:
 raise NotImplementedError(f"{key} not implemented")
 return abs_results[key]
While: Example #1: Infinite Loop

\[x := 0 \]
\[\text{while}(x \geq 0) \{ \]
\[\quad x := x + 1 \]
\[\}

If we analyze this program abstractly using signs, using \(\sqcup \)\# to combine states across loop iterations, as we did in the concrete execution, the analysis will reach a fixpoint, which can be used to terminate the analysis.

- \(M^\#(x) = ([= 0] \sqcup ^\# [\geq 0] \sqcup ^\# [\geq 0]) = [\geq 0] \)

If we analyze this program abstractly using intervals, the analysis will not terminate.

- \(M^\#(x) = [0, 0] \sqcup ^\# [1, 1] \sqcup ^\# [2, 2] \sqcup ^\# [3, 3]... \)
While: Example #2: Infinite Loop

```java
x := 0
while(x <= 100) {
    if (x >= 50) {
        x := 10
    } else {
        x := x + 1
    }
}
```

If we analyze this program abstractly using signs, the analysis terminates as in the previous example

\[
M^\sharp(x) = ([= 0] \sqcup [\geq 0] \sqcup [\geq 0]) = [\geq 0]
\]

If we analyze this program abstractly using intervals, the analysis also terminates, but after 50 analysis iterations.

\[
M^\sharp(x) = [0, 0] \sqcup [0, 1] \sqcup [0, 2] \sqcup \ldots \sqcup [0, 50] \sqcup [0, 50] = [0, 50]
\]
Observations

- Signs is a lattice with a finite height
 - $\sqcup \#$ will eventually reach a fix point
- The Intervals lattice does not have a finite height
 - No such guarantees
Define an operator ∇ so that the sequence will explicitly reach a stationary point.

- **Soundness condition**

 $$\gamma(a_0) \cup \gamma(a_1) \subseteq \gamma(a_0 \nabla a_1)$$

- For all $(a_n)_{n \in \mathbb{N}}$, the sequence $(a'_n)_{n \in \mathbb{N}}$ is ultimately stationary:

 - $a'_0 = a_0$
 - $a'_{n+1} = a'_n \nabla a_n$
def widen(self, x, y):
 # assume x is previous and y is current

 # compute a_n
 u = self.lub(x, y)

 if u[0] == x[0]:
 # stationary left
 elif u[1] == x[1]:
 # stationary right
 return (u[0] if u[0] == x[0] else self.NINF, u[1])
 else:
 return u
Abstract Semantics for While

\[
\llbracket \text{while}(B)\{C\}\rrbracket^\#(M^\#) = \mathcal{F}_{-B}(\text{abs_iter}(\llbracket C \rrbracket^\# \circ \mathcal{F}_B, M^\#))
\]

Code:

```python
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> AbstractMemory:
    ...
    elif isinstance(C, While):
        def F_abs(MM_abs):
            pre_memory, _ = filter_memory_abs(C.cond, MM_abs, v_abs)
            post_memory = evaluate_Cmd_abs(C.body, pre_memory, abstraction)
            return post_memory
        _, out = filter_memory_abs(C.cond, abs_iter(F_abs, M_abs, abstraction), v_abs)
        return out
    ...
```
```python
def abs_iter(F_abs, M_abs, abstraction):
    R = M_abs
    while True:
        T = R
        if abstraction.dom.finite_height:
            R = abstraction.union(R, F_abs(R))
        else:
            R = abstraction.widen(R, F_abs(R))
        if R == T: break
    return T
```
Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript
- Code that accompanies this lecture can be found in GitHub repository:
 - Abstract Domains: dom_signs.py and dom_intervals.py
 - Non-Relational Abstraction: abstractions.py
 - Abstract Semantics: sem_abs.py
- Chapter 3 of Rival and Yi.
 - This covers compositional semantics
 - Also has examples of relational domains (convex polyhedra)
- Abstract interpretation can also be performed using transitional semantics
 - Chapter 4 of Rival and Yi