CSC2/458 Parallel and Distributed Systems
Introduction

Sreepathi Pai
January 18, 2018

URCS
Outline

Administrivia

Parallel Computing

Distributed Computing
Outline

Administrivia

Parallel Computing

Distributed Computing
• Instructor: Dr. Sreepathi Pai
 • E-mail: sree@cs.rochester.edu
 • Office: Wegmans 3409
 • Office Hours: By appointment, but I have an open door policy (10AM–5PM)
• TA: Haichuan Yang
 • Will join us early February.
Places

- Class: CSB 209
 - T,R 1525–1640
- Course Website
 - https://cs.rochester.edu/~sree/courses/csc-258/spring-2018/
- Blackboard
 - Announcements, Assignments, etc.
- Piazza
 - ?
Pre-requisites

- CSC 256: Operating Systems
 - Processes, Threads, Scheduling
 - Synchronization: Mutexes, Semaphores
 - Interprocess Communication
- CSC 254: Programming Language Design and Implementation
 - Parallel Programming Constructs
 - Concurrency

This is a non-exhaustive list.
• No required textbooks for this class
• But a lot of reading!
 • Books and materials have been placed on reserve
 • Some online, some in Carlson Library
• See Blackboard for information on accessing Reserves
Grading

- Homeworks: 15%
- Assignments: 60% (6)
- Project: 25% (up to 2 person teams)

There is no fixed grading curve.

See course website for late submissions policy.
Project Expectations

- Depends on number of people in team
- May put up a list of projects as suggestions
 - You’re free to do your own project
- Project report
- Project presentation
Academic Honesty

- Unless otherwise stated, you may not show your code to other students
- You may discuss, brainstorm, etc. with your fellow students but all submitted work must be your own
- All help received must be acknowledged in writing when submitting your assignments and homeworks
- All external code you use must be clearly marked as such in your submission
 - Use a comment and provide URL if appropriate
- If in doubt, ask the instructor

All violations of academic honesty will be dealt with strictly as per UR’s Academic Honesty Policy.
Outline

Administrivia

Parallel Computing

Distributed Computing
Parallel Machines are Everywhere

- Starting 2004, all desktop CPUs have multiple “cores”
- Even most mobile phones have multiple CPUs!
- Why?
Performance Equation

\[T = \frac{W \times t}{P} \]

- **T**: Total time
- **W**: Amount of Work (e.g. operations)
- **t**: Average time per work
- **P**: Average *parallelism* in work
Exercise

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>34</td>
<td>342</td>
</tr>
<tr>
<td>20</td>
<td>71</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>589</td>
<td></td>
</tr>
</tbody>
</table>
Performance Issues in Parallelism

- Goal of parallel programming is *scalability*.
 - N processors will make program N times faster (compared to 1 processor)
- Serialization inhibits scalability
 - May be inherent to workload
 - May result from machine
- Usually manifests as load imbalance or underutilization
Correctness Issues in Parallelism

- Why can we do the addition in parallel?
Correctness Issues in Parallelism

- Ordering in Serial programs
 - How do you debug serial programs?
- Ordering in Parallel programs
 - How do you debug parallel programs?
Outline

Administrivia

Parallel Computing

Distributed Computing
Can we break up a program so its parts run on different computers? Each part communicates with the others using messages.
Why distribute?

- To parallelize
 - Problem can be solved by one computer, but you want it faster
- To scale
 - Problem can be solved by one computer, but there are lots of problem instances to be solved
- Too big a problem for one computer
- Inherently distributed
Implications of Distribution

- Location
- Distributed State
Distributed Systems in Real Life
Distributed Systems in Real Life: Somewhat obvious

- The telephone system
- The Internet
- The banking system
- The traffic system
- ...

...
Distributed Systems in Real Life: Not so obvious

- Cellular systems
 - Plants
 - Animals
 - Fungi
Challenges in Distributed Systems

- Correctness
- Termination

In the presence of:

- Delays
- Failures