CSC2/458 Parallel and Distributed Systems
Automated Parallelization in Software
(Contd.)

Sreepathi Pai
February 1, 2018
URCS
Characterizing loop dependences

Identifying Loop Dependences

Current Loop Optimizations
Characterizing loop dependences

Identifying Loop Dependences

Current Loop Optimizations
Why characterize dependences?

- The definition of dependence that we have used so far:
 - Two statements have a dependence if:
 - Both access same location (memory or register)
 - And one of the accesses is a write
 - This is not sufficient to reason about dependences in loops
- We will extend this definition of dependences to *loop dependence*
 - Study additional characteristics of dependences
Already encountered characteristics of dependences

- True dependence
 - $S_1\delta S_2$
 - S_1 writes, S_2 reads
- Anti-dependence
 - $S_1\delta^{-1}S_2$
 - S_1 reads, S_2 writes
- Output dependence
 - $S_1\delta^o S_2$
 - Both S_1 and S_2 write
Loop-independent dependence

- What are the dependences in the loop body below?
- Can you change the order of the statements in the loop body?

```fortran
DO I = 1, 10
    A(I) = A(I) + B
    C(I) = A(I) + D
ENDDO
```

- Can you change the (execution) order of loop iterations?

Note: FORTRAN uses parentheses in array references: e.g., A(I)
A(0) = A(0) + B
C(0) = A(0) + D
A(1) = A(1) + B
C(1) = A(1) + D
A(2) = A(2) + B
C(2) = A(2) + D
A(3) = A(3) + B
C(3) = A(3) + D

NOTE: Only dependences from first four iterations visualized.
Loop-carried dependences

- What are the dependences in the loop body below?
- Can you change the order of the statements in the loop body?

```plaintext
DO I = 1, 10
   A(I + 1) = A(I) + B
   C(I) = A(I) + D
ENDDO
```

- Can you change the (execution) order of loop iterations?
Loop-carried dependences visualized

\[
\begin{align*}
A(0 + 1) &= A(0) + B \\
A(1 + 1) &= A(1) + B \\
C(1) &= A(1) + D \\
C(0) &= A(0) + D \\
A(2 + 1) &= A(2) + B \\
C(2) &= A(2) + D
\end{align*}
\]

NOTE: Only dependences from first three iterations visualized.
Dependence Level for Loop-Carried Dependences

```
DO I = 1, 10
    DO J = 1, 2
        A(I + 1, J) = A(I, J) + 1
    ENDDO
ENDDO
```

- Can you change the order of inner loop?
- Can you change the order of the outer loop?
NOTE: Only dependences from first three iterations visualized.
• Loop-independent dependence
 • In same iteration, independent of loops
• Loop-carried dependence
 • Across different iterations of atleast one loop
• Dependence Level of a Loop-carried Dependence
 • The nesting level k of loop that carries the dependence
 • $S_1 \delta_k S_2$
Iteration Spaces

DO I = 1, 2
 DO J = 1, 2
 S
 ENDDO
ENDDO

- S has four instances (I, J): (1, 1), (1, 2), (2, 1), (2, 2)
- Each of these values represents an *iteration vector*
 - Particular values of loop indices from outermost loop to innermost loop
DO J = 1, 10
 DO I = 1, 10
 A(I+1, J) = A(I, J) + X
 ENDDO
ENDDO
ENDDO
Iteration Space Figure
Iteration Vector Ordering

For two vectors i and j, each containing n elements, $i < j$ is defined as:

```python
def less_than(i, j, n):
    if n == 1:
        return i[0] < j[0]

    # test prefix for elementwise-equality
    if i[0:n-1] == j[0:n-1]:
        return i[n-1] < j[n-1]
    else:
        return less_than(i, j, n-1)
```

Can similarly define other order relations.
Statement S1 (source) depends on statement S2 (sink) if:

- There exist iteration vectors i and j such that $i < j$ or $i = j$
- There is a path from S1 to S2 in the loop
- S1 accesses memory M in iteration i
- S2 accesses memory M in iteration j
- and one of the accesses is a write
Distance Vectors

\[d(i, j)_k = j_k - i_k \]

- Where \(i, j, d(i, j) \) are \(n \)-element vectors
- \(i_k \) indicates \(k \)-th element of \(i \)

Example distance vector: \((0, 1)\)
Direction Vectors

\[D(i, j)_k = \]

- "<", if \(d(i, j)_k > 0 \)
- "=" , if \(d(i, j)_k = 0 \)
- ">", if \(d(i, j)_k < 0 \)

Example direction vector for \((0, 1)\): \((=, <)\)
For every pair of memory references:

- Iteration Vectors i and j which have a dependence, or
- Unique Distance Vectors $d(i,j)$, or
- Unique Direction Vectors $D(i,j)$
• Which of these indicates a loop-independent dependence?
 • \((=, =)\)
 • \((=, <)\)

• Of the loop-carried dependence in example above, what level is the loop-carried dependence?
Theorems

WARNING: Informal language

- Direction Vector Transform (Theorem 2.3 in AK)
 - If a transformation reorders loop iterations, and preserves the leftmost non-”=” component as ”<”, all dependences are preserved.

- Theorem 2.4 in AK
 - If a level-k dependence exists, and a transformation reorders loop iterations while not reordering the level-k loop
 - And does not move loops inside k outside the loop and vice versa
 - It preserves all level-k dependences.

- Iteration Reordering (Theorem 2.6 in AK)
 - Iterations of a level k loop can be reordered if there is no level k dependence.
Characterizing loop dependences

Identifying Loop Dependences

Current Loop Optimizations
Generalizing Loop Indices

DO I_1 = ...
 DO I_2 = ...
 ...
 DO I_N = ...
 A(f1, f2, f3, ..., fM) = ...
 ... = A(g1, g2, g3, ..., gM)
 ENDDO
 ENDDO
ENDDO
ENDDO

where A is M-dimensional array, and fX and gX are index functions of the form

- $fX(I_1, I_2, ..., I_N)$
- $gX(I_1, I_2, ..., I_N)$
- $1 \leq X \leq M$
Let α and β be iteration vectors:

- $\alpha = (i_1, i_2, i_3, ..., i_N)$
- $\beta = (i'_1, i'_2, i'_3, ..., i'_N)$

Then a dependence exists if:

- (vectors) $\alpha < \beta$
- $f_X(\alpha) = g_X(\beta)$, for $1 \leq X \leq M$
Example

DO J = 1, 10
 DO I = 1, 10
 A(I+1, J) = A(I, J) + X
 ENDDO
ENDDO

• \(f_1(J, I) = I + 1, \quad f_2(J, I) = J \)

• \(g_1(J, I) = I, \quad g_2(J, I) = J \)

• For \(\alpha = (0, 0) \) (i.e. \(J = 0, I = 0 \)) and \(\beta = (0, 1) \) (i.e. \(J = 0, I = 1 \)):
 • \(f_1(\alpha) = g_1(\beta), \) i.e. \(1 = 1 \)
 • \(f_2(\alpha) = g_2(\beta), \) i.e. \(0 = 0 \)
 • Many other values of \(\alpha \) and \(\beta \) also satisfy these equations.
Do iteration vectors \(\alpha \) and \(\beta \) exist such that:

- (vectors) \(\alpha < \beta \)
- \(f_X(\alpha) = g_X(\beta) \), for \(1 \leq X \leq M \)

How can we find \(\alpha \) and \(\beta \) if they exist?
Restrictions on Index functions

- f_X and g_X must be decidable
- f_X and g_X must be "analyzable"
 - to avoid brute force search
- f_X and g_X must be a linear functions of loop indices:
 - i.e. for $f_X(i_1, i_2, i_3, ..., i_N)$
 - $f_X = a_1i_1 + a_2i_2 + ... + a_ni_n + e$
 - e is optional loop invariant calculation
Given that f_X and g_X are linear functions of loop indices

Do iteration vectors α and β exist such that:

- (vectors) $\alpha < \beta$
- $f_X(\alpha) = g_X(\beta)$, for $1 \leq X \leq M$

How can we find α and β if they exist?

What is this problem better known as?
• Integer Linear Programming is NP-complete
• Lots of heuristics invented
 • Profitable to know if no solution exists since it implies no dependence!
 • See Chapter 3 of AK (we will not cover this in this course, take CSC 2/455)
Outline

Characterizing loop dependences

Identifying Loop Dependences

Current Loop Optimizations
Current Focus in Compilers

- GCC began supporting vectorization for C around 4.9
 - `-ftree-vectorize` or `-O3`
 - Can get it to tell you why vectorization failed.
- LLVM also supports vectorization
 - See "Polly" at http://polly.llvm.org
More focus on optimization by loop transformation

- More emphasis on *Scheduling*
 - Which iteration of loop executes where
- Classical loop transformations
 - Loop tiling
 - Loop fusion
 - etc.
- Unifying theory and infrastructure
 - polyhedral.info