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Total-ordered multicast

• Each client multicasts a message to all replicas

• Each message is timestamped according to local logical clock

• Assume no loss of messages

• Assume reliable ordering

• Each replica places received messages in a queue

• Each replica acknowledges receipt of messages using a

multicast

• Each replica processes messages in order of their timestamps

• Only when it has received acknowledgement for that message

from all other replicas

This protocol ensures all processes see the same queue.



Invariants

• Process a message if:

• it has been acknowledged by all other processes

• If multiple such messages exist:

• process them in sender-timestamp order



Empty queue

Consider yourself to be a process.

• Your queue is empty

• What do you do?



Queue with a message

• Your queue contains a single message

• (or multiple messages)

• But no acknowledgements

• What do you know?

• What do you do?



Queue with acknowledgements

• Your queue contains only acknowledgements

• But no messages

• What do you know?

• What do you do?



Queue with message + all acknowledgements

• Your queue contains a message and all its acknowledgements

• no other message (if any) has all its acknowledgements

• What do you know?

• What do you do?

• What if a message without its acknowledgements has a lower

sender-timestamp?



Could it happen?

• Your queue contains a message A and all its
acknowledgements

• and no other message or acknowledgements

• Some other process contains a message B and all its
acknowledgements

• and no other message or acknowledgements



Checking all possible states of a finite state machine

• A formal method called model checking

• Used by Amazon (among others)

• How Amazon Web Services uses Formal Methods, CACM

48(4)

• Tools, TLA+ and TLC

• The TLA home page

https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
https://lamport.azurewebsites.net/tla/tla.html
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Causality

• Consider a messaging board where messages and replies are

multicast (or broadcast)

• Messages must appear to everybody before their replies

• I.e. Replies are “caused by” messages

• In logical clocks:

• a→ b implies C (a) < C (b)

• but C (a) < C (b) does not imply a→ b



Example

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

• Are m1 and m2 causally related?

• note: maybe better to read: did m1 happen before m2?



Easy way

• Each message carries a list of all messages seen by sender

• Causal history

• Easy to see when messages are not causally related

• If b happened after a, it must have seen a

• See textbook for formal definition



Vector Clocks

• Encode global knowledge into timestamps

• Each timestamp ts(m) for message m is now a vector (i.e. an
array)

• Contains n items for n processes

• Vi [j ] is vector clock at process i , containing last known

timestamp at process j

• Vi [i ] is incremented every time an event is generated (i.e. it is

like i ’s local clock)

• Importantly, Vi [j ] = k means that process i knows k events

have happened at process j

• Update:

• Vi [k] = max{Vi [k], ts(m)[k]} for all k



Example: Determining ordering

• Define ts(a) < ts(b) for messages a and b if and only:

• ts(a)[k] ≤ ts(b)[k] for all k

• ts(a)[k ′] < ts(b)[k ′] for some k ′

• Did m2 happen before m4?
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Example: Determining ordering – contd

• Did m2 happen before m4?
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Causal-ordered Multicast Board
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Centralized Mutual Exclusion

• One Coordinator

• All processes Request exclusive access from Coordinator

• Coordinator

• Grants access if no other process is requesting the same

resource

• does not reply if another process is granted resource

• places request in queue

• Process

• blocks waiting for reply from Coordinator

• accesses resource on grant from Coordinator

• Releases resource by informing Coordinator

• Coordinator

• on release, informs next process in queue that requested

resource



Evaluating Centralized Mutual Exclusion

• Scalability

• Single coordinator may become performance bottleneck

• Availability

• Single coordinator may crash

• What about process crashes?

• Number of messages

• to enter critical section: 2



Mutual Exclusion using Totally ordered Multicasts

• Total ordered multicast produces a total order among all

messages

• Can be used to implement mutual exclusion

• Messages:

• ENTER: process multicasts that it wants to enter a critical

section

• ALLOW: process unicasts permission to ENTERing process

• RELEASE: process multicasts that it has left a critical section



Evaluating Totally Ordered Multicasts

• Scalability

• No single coordinator

• But what about requiring permission from everybody?

• Availability

• What if a process crashes?

• Number of Messages

• to enter critical section?

• Multicasts and complexity

• what if there is no multicast primitive?



Token Ring Mutual Exclusion

0 1 2 3

4567

Token

• Construct ring overlay (i.e. logical) network

• Has no relation to physical network

• how to construct this?

• Generate token

• On receiving token

• Optionally, perform accesses to any shared resources

• Pass token to neighbour



Evaluating Token Ring Mutual Exclusion

• Scalability

• No centralized coordinator

• Availability

• What if token is lost?

• What if a process not holding a token crashes?

• What if a process holding a token crashes?

• Number of messages

• to enter critical section: N − 1 (max.)



Decentralized Mutual Exclusion using Voting

• Replicate resource N times

• Each replica controlled by different coordinator

• When a process requests access to a resource

• It must get permission from more than N/2 coordinators (does

it need to wait for all coordinators?)

• Coordinators may refuse to give access if they’ve already given

access

• A process that is refused access sends releases to coordinators

it got access from and will backoff and retry after some time

• Of interest, a coordinator may crash and “forget” it had given
access

• Incorrectly give access to a process

• When will this cause a problem?



Evaluating Mutual Exclusion using Voting

• Scalability

• Multiple centralized coordinators, only require majority

• Availability

• Probabilistic arguments against all coordinators crashing

• What about processes holding locks?

• Utilization

• Does at least one process that competes for a resource get it?

• Number of messages

• to enter a critical section: ?
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