CSC2/458 Parallel and Distributed Systems
Consensus and Failures

Sreepathi Pai
April 10, 2018
URCS
The FLP theorem
The FLP theorem
The Consensus Problem: Informal

A set of processes must decide on 0 or 1 as output starting from 0 or 1 as input.

- All processes must decide same value
- The decision making procedure must allow both 0 and 1 as possible outputs
 - Can’t have “always output 1” as the algorithm
Processes

- $N \geq 2$ processes
- Each process p has:
 - input register x_p
 - output register y_p
 - program counter, internal storage
- Values for x_p, y_p can be in $\{b, 0, 1\}$
- $y_p = b$, initially
- p has decided when $y_p = 0$ or $y_p = 1$
 - y_p is write-once
Abstracts network communication

- \texttt{send}(p, m), adds \((p, m)\) in to the buffer
- \texttt{receive}(p), removes some message \((p, m)\) from buffer
 - but can also receive \(\emptyset\) (why?)
 - leads to event \(e(p, m)\) or \(e(p, \emptyset)\)
• Total global state of system
 • All register values, internal storage, etc.
• Definition of initial configuration
 • All processes are in initial state and message buffer is empty
• An event $e(p, m)$ or $e(p, \emptyset)$ moves a configuration from C to $e(C)$
 • e applied to C, i.e. a step
• A schedule is a sequence of events (i.e. the run).
Configurations: Definitions

- **bivalent** configuration - can reach *either* 0 or 1
 - "has not made up its mind"
- **univalent** configuration - can reach *one* of 0 or 1
 - 0-valent can reach only 0
 - 1-valent can reach only 1
- Note, at some point, the protocol must switch from a bivalent configuration to a univalent configuration
Partial Correctness: Informal

- A configuration has a decision value v if some process p has $y_p = v$
 - Note: some
- A consensus protocol is partially correct if:
 - No configuration reachable from an initial configuration has more than one decision value
 - For $v \in \{0, 1\}$, some configuration reachable from an initial configuration has decision value v
A protocol that is partially correct:

- in spite of one faulty process (i.e. a process that does not take infinitely many steps)
- if all messages are eventually delivered to non-faulty processes
- always reaches a decision in all runs
- is said to be *totally correct*
Constructing a non-deciding run: sketch

- Start with bivalent initial configuration
- Construct a series of steps to reach another bivalent “middle” configuration
- Rinse and repeat
Questions

- Start with a bivalent initial configuration
 - Is there always one available?
- Reach a bivalent “middle” configuration by a series of steps
 - Can we always do this?
- Rinse and repeat
 - Can we keep doing this?
There is always a bivalent initial configuration

- Lemma 2 in the paper, proof by contradiction
- Consider two initial configuration C_0 and C_1 that are univalent
 - C_i is i-valent
 - must exist by partial correctness
- Find C_0 and C_1 that are adjacent
 - differ only in process p
- Find a deciding run (and its schedule σ) to C_0 where p takes no steps
- Apply σ to C_1, where p does take steps
- By total correctness:
 - ?
Main idea: avoid univalent configurations

Let a process \(p \) have a \textit{waiting} event \(e(p, m) \) in bivalent configuration \(C \)

- if applying \(e \) to \(C \) leads to another bivalent configuration, apply \(e \)
- if not, delay \(e \) until configuration \(C' \) where \(e(C') \) leads to a bivalent configuration
There is always a bivalent configuration in the “middle”

- See Lemma 3 in the paper