
CSC2/458 Parallel and Distributed Systems

Consensus and Failures

Sreepathi Pai

April 10, 2018

URCS



Outline

The FLP theorem



Outline

The FLP theorem



The Consensus Problem: Informal

A set of processes must decide on 0 or 1 as output starting from 0

or 1 as input.

• All processes must decide same value

• The decision making procedure must allow both 0 and 1 as
possible outputs

• Can’t have “always output 1” as the algorithm



Processes

• N ≥ 2 processes

• Each process p has:

• input register xp
• output register yp
• program counter, internal storage

• Values for xp, yp can be in {b, 0, 1}
• yp = b, initially

• p has decided when yp = 0 or yp = 1

• yp is write-once



Message Buffer

Abstracts network communication

• send(p,m), adds (p,m) in to the buffer

• receive(p), removes some message (p,m) from buffer

• but can also receive ∅ (why?)

• leads to event e(p,m) or e(p, ∅)



Configuration: Informal

• Total global state of system

• All register values, internal storage, etc.

• Definition of initial configuration

• All processes are in initial state and message buffer is empty

• An event e(p,m) or e(p, ∅) moves a configuration from C to
e(C )

• e applied to C , i.e. a step

• A schedule is a sequence of events (i.e. the run).



Configurations: Definitions

• bivalent configuration - can reach either 0 or 1

• “has not made up its mind”

• univalent configuration - can reach one of 0 or 1

• 0-valent can reach only 0

• 1-valent can reach only 1

• Note, at some point, the protocol must switch from a bivalent

configration to a univalent configuration



Partial Correctness: Informal

• A configuration has a decision value v if some process p has
yp = v

• Note: some

• A consensus protocol is partially correct if:

• No configuration reachable from an initial configuration has

more than one decision value

• For v ∈ {0, 1}, some configuration reachable from an initial

configuration has decision value v



Total correctness: Informal

• A protocol that is partially correct:

• in spite of one faulty process (i.e. a process that does not take

infinitely many steps)

• if all messages are eventually delivered to non-faulty processes

• always reaches a decision in all runs

• is said to be totally correct



Constructing a non-deciding run: sketch

• Start with bivalent initial configuration

• Construct a series of steps to reach another bivalent “middle”

configuration

• Rinse and repeat



Questions

• Start with a bivalent initial configuration

• Is there always one available?

• Reach a bivalent “middle” configuration by a series of steps

• Can we always do this?

• Rinse and repeat

• Can we keep doing this?



There is always a bivalent initial configuration

• Lemma 2 in the paper, proof by contradiction

• Consider two initial configuration C0 and C1 that are univalent

• Ci is i-valent

• must exist by partial correctness

• Find C0 and C1 that are adjacent

• differ only in process p

• Find a deciding run (and its schedule σ) to C0 where p takes

no steps

• Apply σ to C1, where p does take steps

• By total correctness:

• ?



Reaching bivalent configurations; Rinse and Repeat

• Main idea: avoid univalent configurations

• Let a process p have a waiting event e(p,m) in bivalent
configuration C

• if applying e to (C ) leads to another bivalent configuration,

apply e

• if not, delay e until configuration C ′ where e(C ′) leads to a

bivalent configuration



There is always a bivalent configuration in the “middle”

• See Lemma 3 in the paper


	The FLP theorem

