CSC2/458 Parallel and Distributed Systems
Checkpointing and Recovery

Sreepathi Pai
April 17, 2018

URCS

Checkpointing and Recovery
Independent Checkpointing
Coordinated Checkpointing

Message Logging

Checkpointing and Recovery

Errors happen

e Errors happen
e How do we recover from them (say, for message loss)?

e (before information theory): ?
e (after information theory): ?

Checkpointing and Recovery

To checkpoint is to save the state of a computation so that you
can “rollback” to it

e Examples:

e Save games
e Virtual machine snapshots

Recovery is then “simply” restoring the checkpoint

Distributed Checkpointing: The Challenge

e Processes only know:
e which messages they have received
e which messages they have sent
e what their local state is
e Checkpointing ideally should not require everybody to
“pause”

e Must run concurrently with computation

Initial state

Recovery line Checkpoint
P1 ! ! |
1 1 I

'.I Failure
P2 i "
I = =
"Time —»
Message sent

Inconsistent collection

from P2 to P1 of checkpoints

Independent Checkpointing

Algorithm

e A process records its local state independently
e messages sent/received included

e A recovery for a process entails going back to its most recent
checkpoint

e Unfortunately, this can’t be done independently

Rollbacks

P1

Initial state Checkpoint

P2

WA

Time —»

Assume P2 fails. How far we do need to rollback to achieve a

consistent worldview?

Detecting dependencies

e For a process P;, let INT;(m) be the interval between the
m — 1 and m checkpoints.

o All messages sent in INT;(m) contain (i, m)

e When process P; receives this message, it may be in INT;(n)

e records dependency INT;(m) — INT;(n)
e saves dependency with checkpoint

Rolling back: Consistency

e If P; rolls back to checkpoint m — 1, no messages from
INT;(m) were ever sent

e All checkpoints dependent on INT;(m) are invalid

e Rollbacks need to continue until consistency is reached

Coordinated Checkpointing

Algorithm

Coordinator broadcasts CHECKPOINT-REQUEST message to
all processes

When this request is received,
e Process checkpoints local state
e Acknowledges to coordinator that it has taken checkpoint and
waits

When coordinator receives acknowledgements from all
processes, it sends CHECKPOINT-DONE

e Processes resume computation

e What about messages?

Message handling

e All incoming messages received after
CHECKPOINT-REQUEST are not considered part of the
checkpoint

e All outgoing messages are held back until
CHECKPOINT-DONE is received

e This results in a “globally consistent state”

e How?

Message Logging

e Computations are deterministic and rely only on messages
transmitted
e Save messages from a checkpoint and replay them during

recovery

Piecewise deterministic execution

e A piecewise deterministic computation interval:
e starts with a non-deterministic event (e.g. receipt of a
message)
e continues in a completely deterministic fashion
e ends just before another non-deterministic event

This implies that only non-deterministic events need to be logged.

Who should save the messages?

Q crashes and recovers

P-@ Py
m1 mi m2 isAnever replayed,
so neither will m3
Q L)

R : 4
—» Unlogged message Time —»
®—» Logged message

Orphan processes

e Let DEP(m) represent processes that depend on message m
e Let COPY(m) represent processes that contain a copy of m
e but may not have logged it

e Note, m contains all details necessary to retransmit it
A process @ is orphaned if and only if:

e Q depends on m (i.e. Q € DEP(m))
e All processes in COPY'(m) have failed

e So m cannot be played back

Pessimistically avoiding orphan processes

e Orphan processes can be avoided by ensuring that

e A non-deterministic message is sent only to one process
e That process cannot send another message without logging m

Further reading

Chandy and Lamport, “Distributed Snapshots: Determining Global
States of Distributed Systems”, ACM TOCS 1985

https://dl.acm.org/citation.cfm?id=214456
https://dl.acm.org/citation.cfm?id=214456

Acknowledgments

All figures from Van Steen and Tanenbaum, Distributed Systems,
3rd Edition, Chapter 8.

	Checkpointing and Recovery
	Independent Checkpointing
	Coordinated Checkpointing
	Message Logging

