CSC293 CS Improves 3D Printed Manufacturing
CAD and Graphics Background

Sreepathi Pai
Oct 4, 2023
URCS
Outline

The Problem

Vector Graphics

CAD

Rendering
The Problem

Vector Graphics

CAD

Rendering
Generating a Wireframe
Shading a 3D part
Outline

The Problem

Vector Graphics

CAD

Rendering
• Scalable Vector Graphics
• W3C Standard, Embeddable in HTML
• Supported by most browsers
• 2D
• Mozilla has a great tutorial
• CadQuery can export wireframe to SVG
 • but has no way to specify shading
Examining the Generated SVG

...<g transform="scale(9.010167114828722, -9.010167114828722)
 translate(32.269010197514014,-61.35602952130987)" stroke-width="
 fill="none">
 ...

 <!-- solid lines -->
 <g stroke="rgb(0,0,0)" fill="none">
 <path d="M-6.7531575589569215,47.979713997476026 L-6.752142864878035,47.85170061182211
 L-6.749099056728342,47.723866214426415 L-6.744026956694709,47.596245335639544
 L-6.7369279348418125,47.46887244813687 L-6.727803908742059,47.34178195760692
 L-6.716657342957623,47.21500819345776 L-6.7034912483747
 ...

...
Manual fill?

<path fill="rgb(255,0,0)" ...>
Fills

- A fill must be a closed path
 - if the path is not closed, the last point is connected to the first
- There are rules for determining what is the inside and outside of a path
 - relevant when a path intersects itself
Highlighting the path

<path stroke="rgb(255,0,0)" ...>
The SVG Export Code

- Link to CADQuery SVG Export Code
- OpenCascade Documentation for HLR
Outline

The Problem

Vector Graphics

CAD

Rendering
Geometry Representations

- STEP files contain (among other things) geometry represented using *boundary representations*
 - B-reps for short
 - More details in the OpenCascade documentation
- These are made up of abstract parametric objects (lines, points, circles, etc.)
- These need to be discretized to be rendered on screen
 - This is what `makeSVGEEdge` in the SVG export code is doing
- The HLR algorithms:
 - Extracts visible edges
 - Make shapes 2D (essentially, rendering)
Reframing the Problem

• Can't we just render the 3D object?
• CADQuery (and OpenCascade) have a visualization API
 • It’s used in CQ-editor
• Unfortunately, produces raster images only
 • There used to be a vector output using gl2ps, but it was removed a few versions ago
• Also, unclear how to produce the images non-interactively
 • Should be possible, though
• Would be ideal if we had a 3D renderer that produced SVG output
Outline

The Problem

Vector Graphics

CAD

Rendering
Converting to a mesh and rendering it

- Most 3D renderers work with meshes, not B-reps
 - Meshes are made of triangles and sometimes quads.
- Once a mesh is obtained
 - svg3d can be used to render?
 - Even matplotlib, maybe?
Obtaining a mesh

- OpenCascade can produce meshes
 - Used for STL export, for example
- Calling the `tesselate` method works
 - See the ThreeMF exporter for detailed example
- Decided to export it to TJS, or ThreeJS format
 - Outputs a list of vertices (points) and triangles
- TJS file is around 16MB
 - 480K vertices
 - 1.1M triangles
- SVG file is around 19MB
 - takes around 24 seconds to produce on my laptop
 - around 2 minutes to render!
- PDF conversion (from SVG) takes 1 minute
 - rendering takes around the same time
• Too slow!
 • Recall the video
• Still need to figure out camera placement
 • SVG3D uses OpenGL camera (documentation)
• Task is "accomplished"
 • But how can we improve?
Possible Solutions

- Discretize the objects in 3D space to obtain edges as paths
- Post-process the mesh to extract edges
 - Internal triangles vs External triangles