Automatic Compiler-Based Optimization of Graph Analytics for the GPU

Sreepathi Pai
The University of Texas at Austin

May 8, 2017
NVIDIA GTC
Parallel Graph Processing is not easy

USA Road Network
24M nodes, 58M edges

LiveJournal Social Network
5M nodes, 69M edges

299ms HD-BFS 84ms

692ms LB-BFS 41ms
Observations from the “field”

- Different algorithms require different optimizations
 - BFS vs SSSP vs Triangle Counting
- Different inputs require different optimizations
 - Road vs Social Networks
- Hypothesis: High-performance graph analytics code must be customized for inputs and algorithms
 - No “one-size fits all” implementation
 - If true, we'll need a lot of code
How IrGL fits in

- IrGL is a language for graph algorithm kernels
 - *Slightly* higher-level than CUDA
- IrGL kernels are compiled to CUDA code
 - Incorporated into larger applications
- IrGL compiler applies 3 *throughput* optimizations
 - User can select exact combination
 - Yields multiple implementations of algorithm
- Let the compiler generate all the interesting variants!
Outline

- IrGL Language
- IrGL Optimizations
- Results
IrGL Constructs

- Representation for irregular data-parallel algorithms
- Parallelism
 - ForAll
- Synchronization
 - Atomic
 - Exclusive
- Bulk Synchronous Execution
 - Iterate
 - Pipe
IrGL Synchronization Constructs

- Atomic: Blocking atomic section

  ```
  Atomic (lock) {
    critical section
  }
  ```

- Exclusive: Non-blocking, atomic section to obtain multiple locks with priority for resolving conflicts

  ```
  Exclusive (locks) {
    critical section
  }
  ```
IrGL Pipe Construct

- IrGL kernels can use worklists to track work
- Pipe allows multiple kernels to communicate worklists
- All items put on a worklist by a kernel are forwarded to the next (dynamic) kernel

```cpp
Pipe {
  // input: bad triangles
  // output: new triangles
  Invoke refine_mesh(...)

  // check for new bad tri.
  Invoke chk_bad_tri(...)
}
```

![Diagram showing the flow of worklists between refine_mesh and chk_bad_tri functions.]
Example: Level-by-Level BFS

Kernel \text{bfs}(graph, \text{LEVEL})
\text{ForAll}(node \text{ in Worklist})
\text{ForAll}(edge \text{ in graph.edges(node)})
\text{if}(edge.\text{dst}.\text{level} == \text{INF})
edge.\text{dst}.\text{level} = \text{LEVEL}
\text{Worklist.push}(edge.\text{dst})

src.\text{level} = 0
\text{Iterate} \text{bfs}(graph, \text{LEVEL}) [src] \{
\text{LEVEL}++
\}

Kernel \text{bfs}(graph, \text{LEVEL})
\text{ForAll}(node \text{ in Worklist})
\text{ForAll}(edge \text{ in graph.edges(node)})
\text{if}(edge.\text{dst}.\text{level} == \text{INF})
edge.\text{dst}.\text{level} = \text{LEVEL}
\text{Worklist.push}(edge.\text{dst})

src.\text{level} = 0
\text{Iterate} \text{bfs}(graph, \text{LEVEL}) [src] \{
\text{LEVEL}++
\}

Kernel \text{bfs}(graph, \text{LEVEL})
\text{ForAll}(node \text{ in Worklist})
\text{ForAll}(edge \text{ in graph.edges(node)})
\text{if}(edge.\text{dst}.\text{level} == \text{INF})
edge.\text{dst}.\text{level} = \text{LEVEL}
\text{Worklist.push}(edge.\text{dst})

src.\text{level} = 0
\text{Iterate} \text{bfs}(graph, \text{LEVEL}) [src] \{
\text{LEVEL}++
\}
Three Optimizations for Bottlenecks

1. Iteration Outlining
 - Improve GPU utilization for short kernels

2. Nested Parallelism
 - Improve load balance

3. Cooperative Conversion
 - Reduce atomics

- **Unoptimized BFS**
 - ~15 lines of CUDA
 - 505ms on USA road network

- **Optimized BFS**
 - ~200 lines of CUDA
 - 120ms on the same graph

4.2x Performance Difference!
Outline

- IrGL Language
- IrGL Optimizations
- Results
Optimization #1: Iteration Outlining
Bottleneck #1: Launching Short Kernels

```
Kernel bfs(graph, LEVEL)
    ForAll(node in Worklist)
        ForAll(edge in graph.edges(node))
            if(edge.dst.level == INF)
                edge.dst.level = LEVEL
                Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] { LEVEL++ }
```

- USA road network: 6261 bfs calls
- Average bfs call duration: 16 μs
- Total time should be 16*6261 = 100 ms
- Actual time is 320 ms: 3.2x slower!
Iterative Algorithm Timeline

CPU

GPU

launch

bfs

Idling

bfs

Idling

bfs

Idling

bfs

Time
GPU Utilization for Short Kernels

![Graph showing GPU Utilization over Time per Kernel Invocation (μs)]

- **M1, Quadro 6000, 352.30**
- **M1, Quadro 6000, 352.55**
- **M1, Tesla K40c, 352.30**
- **M1, Tesla K40c, 352.55**
- **M2, Quadro M4000, 352.55**
Improving Utilization

- Generate Control Kernel to execute on GPU
- Control kernel uses function calls on GPU for each iteration
- Separates iterations with device-wide barriers
 - Tricky to get right!
Benefits of Iteration Outlining

- Iteration Outlining can deliver up to 4x performance improvements
- Short kernels occur primarily in high-diameter, low-degree graphs
 - e.g. road networks
Optimization #2: Nested Parallelism
Bottleneck #2: Load Imbalance from Inner-loop Serialization

Kernel `bfs(graph, LEVEL)`

```plaintext
ForAll(node in Worklist)
    ForAll(edge in graph.edges(node))
        if(edge.dst.level == INF)
            edge.dst.level = LEVEL
            Worklist.push(edge.dst)
```

```
src.level = 0
Iterate bfs(graph, LEVEL) [src] {
    LEVEL++
}
```
Exploiting Nested Parallelism

- Generate code to execute inner loop in parallel
 - Inner loop trip counts not known until runtime
- Use Inspector/Executor approach at runtime
- Primary challenges:
 - Minimize Executor overhead
 - Best-performing Executor varies by algorithm and input
Scheduling Inner Loop Iterations

Thread-block (TB) Scheduling

Fine-grained (FG) Scheduling

Synchronization Barriers

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012
Multi-Scheduler Execution

Use thread-block (TB) for high-degree nodes

Use fine-grained (FG) for low-degree nodes

Thread-block (TB) + Fine-grained (FG) Scheduling

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012
Which Schedulers?

<table>
<thead>
<tr>
<th>Policy</th>
<th>BFS</th>
<th>SSSP-NF</th>
<th>Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Inner Loop</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>TB</td>
<td>0.25</td>
<td>0.33</td>
<td>0.46</td>
</tr>
<tr>
<td>Warp</td>
<td>0.86</td>
<td>1.42</td>
<td>1.52</td>
</tr>
<tr>
<td>Finegrained (FG)</td>
<td>0.64</td>
<td>0.72</td>
<td>0.87</td>
</tr>
<tr>
<td>TB+Warp</td>
<td>1.05</td>
<td>1.40</td>
<td>1.51</td>
</tr>
<tr>
<td>TB+FG</td>
<td>1.10</td>
<td>1.46</td>
<td>1.55</td>
</tr>
<tr>
<td>Warp+FG</td>
<td>1.14</td>
<td>1.56</td>
<td>1.23</td>
</tr>
<tr>
<td>TB+Warp+FG</td>
<td>1.15</td>
<td>1.60</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Speedup relative to Serial execution of inner-loop iterations on a synthetic scale-free RMAT22 graph. Higher is faster. Legend: SSSP NF -- SSSP NearFar
Benefits of Nested Parallelization

- Speedups depend on graph, but seen up to 1.9x
- Benefits graphs containing nodes with high degree
 - e.g. social networks
- *Negatively* affects graphs with low, uniform degrees
 - e.g. road networks
 - Future work: low-overhead schedulers
Optimization #3: Cooperative Conversion
Bottleneck #3: Atomics

Kernel bfs(graph, LEVEL)
 ForAll(node in Worklist)
 ForAll(edge in graph.edges(node))
 if(edge.dst.level == INF)
 edge.dst.level = LEVEL
 Worklist.push(edge.dst)
 src.level = 0
 Iterate
 bfs(graph, LEVEL) [src]
 LEVEL++

• Atomic Throughput on GPU: 1 per clock cycle
 – Roughly translated: 2.4 GB/s
 – Memory bandwidth: 288GB/s
Aggregating Atomics: Basic Idea

atomicAdd(..., 1)

Thread

atomicAdd(..., 5)

Write

Thread
Challenge: Conditional Pushes

\[
\text{if}(\text{edge.dst.level} == \text{INF}) \\
\text{Worklist.push}(\text{edge.dst})
\]
Challenge: Conditional Pushes

if(edge.dst.level == INF)
Worklist.push(edge.dst)

Must aggregate atomics across threads
Cooperative Conversion

- Optimization to reduce atomics by cooperating across threads
- IrGL compiler supports all 3 possible GPU levels:
 - Thread
 - Warp (32 contiguous threads)
 - Thread Block (up to 32 warps)
- Primary challenge:
 - Safe placement of barriers for synchronization
 - Solved through novel Focal Point Analysis
Warp-level Aggregation

Kernel bfs_kernel(graph, ...)
ForAll(node in Worklist)
 ForAll(edge in graph.edges(node))
 if(edge.dst.level == INF)
 ...
 start = Worklist.reserve_warp(1)
 Worklist.write(start, edge.dst)
Inside reserve_warp

reserve_warp
(assume a warp has 8 threads)

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(size)

(warp prefix sum)

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

_offset

T0: pos = atomicAdd(Worklist.length, 5)

broadcast pos to other threads in warp

return pos + _offset
Thread-block aggregation?

```cpp
Kernel bfs(graph, ...) 
    ForAll(node in Worklist) 
        ForAll(edge in graph.edges(node)) 
            if(edge.dst.level == INF) 
                start = Worklist.reserve_tb(1) 
                Worklist.write(start, edge.dst)
```
Inside `reserve_tb`

Barrier required to synchronize warps, so can't be placed in conditionals.
reserve_tb is incorrectly placed!

```plaintext
Kernel bfs(graph, ...)
  ForAll(node in Worklist)
    ForAll(edge in graph.edges(node))
      if(edge.dst.level == INF)
        start = Worklist.reserve_tb(1)
        Worklist.write(start, edge.dst)
```
Solution: Place reserve_tb at a Focal Point

• Focal Points [Pai and Pingali, OOPSLA 2016]
 - All threads pass through a focal point all the time
 - Can be computed from control dependences
 - Informally, if the execution of some code depends only on uniform branches, it is a focal point

• Uniform Branches
 - branch decided the same way by all threads [in scope of a barrier]
 - Extends to loops: Uniform loops
Kernel bfs(graph, ...)
 ForAll(node in Worklist)
 UniformForAll(edge in graph.edges(node))
 will_push = 0
 if(edge.dst.level == INF)
 will_push = 1
 to_push = edge

 start = Worklist.reserve_tb(will_push)
 Worklist.write_cond(willpush, start, to_push)

Made uniform by nested parallelism
Benefits of Cooperative Conversion

• Decreases number of worklist atomics by 2x to 25x
 – Varies by application
 – Varies by graph
• Benefits all graphs and all applications that use a worklist
 – Makes concurrent worklist viable
 – Leads to work-efficient implementations
Summary

• IrGL compiler performs 3 key optimizations
• Iteration Outlining
 – eliminates kernel launch bottlenecks
• Nested Data Parallelism
 – reduces inner-loop serialization
• Cooperative Conversion
 – reduces atomics in lock-free data-structures
• Allows auto-tuning for optimizations
Outline

- IrGL Language
- IrGL Optimizations
- Results
Evaluation

- Eight irregular algorithms
 - Breadth-First Search (BFS) [Merrill et al., 2012]
 - Connected Components (CC) [Soman et al., 2010]
 - Maximal Independent Set (MIS) [Che et al., 2013]
 - Minimum Spanning Tree (MST) [da Silva Sousa et al. 2015]
 - PageRank (PR) [Elsen and Vaidyanathan, 2014]
 - Single-Source Shortest Path (SSSP) [Davidson et al. 2014]
 - Triangle Counting (TRI) [Polak et al. 2015]
 - Delaunay Mesh Refinement (DMR) [Nasre et al., 2013]
System and Inputs

- Tesla K40 GPU
- Graphs
 - Road Networks
 - USA: 24M vertices, 58M edges
 - CAL: 1.9M vertices, 4.7M edge
 - NY: 262K vertices, 600K edges
 - RMAT (synthetic scale-free)
 - RMAT22: 4M vertices, 16M edges
 - RMAT20: 1M vertices, 4M edges
 - RMAT16: 65K vertices, 256K edges
 - Grid (1024x1024)
 - DMR Meshes: 10M points, 5M points, 1M points
Overall Performance

Note: Each benchmark had a single set of optimizations applied to it
Comparison to NVIDIA nvgraph SSSP

The graph shows the runtime of different input graphs and SSSP algorithms. The input graphs considered are NY, rmat22, and USA. The algorithms compared are NVGRAPH, IrGL SSSP, and IrGL SSSP-NF.

- NY graph:
 - NVGRAPH runtime: 227s
 - IrGL SSSP runtime: 131s
- USA graph:
 - NVGRAPH runtime: 227s
 - IrGL SSSP runtime: 131s

The bar chart highlights the performance differences among these algorithms for each input graph.
Irregular Data-Parallel Algorithms

- Graph Algorithms
- Sparse Linear Algebra
- Discrete-event Simulation
- Adaptive Simulations
- Brute-force Searches
 - Constraint solvers
- Graph databases
- ...
Conclusion

- Graph analytics on GPUs requires 3 key *throughput* optimizations to obtain good performance
 - Iteration Outlining
 - Nested Parallelism
 - Cooperative Conversion
- The IrGL compiler automates these optimizations
 - Faster by up to 6x, median 1.4x
 - Faster than nvgraph
Thank you!
Questions?
sreepai@ices.utexas.edu