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We study set systems satisfying Frankl�Wilson-type conditions modulo prime
powers. We prove that the size of such set systems is polynomially bounded, in con-
trast with V. Grolmusz's recent result that for non-prime-power moduli, no polyno-
mial bound exists. More precisely we prove the following result.

Theorem. Let p be a prime and q= pk. Let +1 , ..., +s be distinct integers,
0�+i�q&1. Let X be a set of n elements and let A1 , A2 , ..., Am be subsets of X with
the following properties:

v |Ai |�+l (mod q) for all i, l, 1�i�m, 1�l�s.

v For all i, j (1�i< j�m), there exists l (1�l�s) such that

|Ai & A j |#+l (mod q).
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Then

m�\ n
D++\ n

D&1++ } } } +\n
0+ ,

where D�2s&1.

D is the minimum degree of polynomials ``separating'' the set [+1 , ..., +s] from the
sizes of the Ai modulo q (q= pk). Let D(s, k) be the maximum value of D for
fixed s and k (L and p vary). The asymptotic behavior of the function D(s, k) turns
out to be rather complicated; we establish polynomially related upper and lower
bounds on D(s, k). These bounds give us an idea of the limitations of the method.
Our results extend a theorem of Deza, Frankl, and Singhi, who studied the case of
prime moduli. The main point we make is that our bound implies a polynomial
bound of the form m�nc(s) for all prime power moduli q. In this sense the theorem
complements a remarkable recent result of Grolmusz that no bound of this form
holds for any q which is not a prime power. � 2001 Academic Press

1. INTRODUCTION

Let q be a positive integer. Let Nq denote the set of integers [0, 1, ...,
q&1]. Let L/Nq . For an integer r we say that ``r # L (mod q)'' if r#
+ (mod q) for some + # L. We say that ``r � L (mod q)'' if r�+ (mod q)
for any + # L.

Let X denote a set of n elements; we refer to X as the ``universe.'' A set-
system over X is a set F of subsets of X.

Definition 1.1. The set-system F is L-avoiding mod q if

v |E | � L (mod q) for all E # F.

The set-system F is L-intersecting mod q if

v |E & F | # L (mod q) for all E, F # F, E{F.

We set s=|L|. We are interested in the maximum cardinality m(n, s, q)
of F in terms of n, s, and q. Here is the precise definition:

Definition 1.2. Let m(n, s, q) denote the smallest integer such that the
following holds:

For any set L/Nq of size |L|=s, if F is a set-system over a universe of
n elements and F is L-avoiding mod q and L-intersecting mod q then
|F|�m(n, s, q).

Notation. For integers n, s, we let ( n
�s) denote the sum �s

i=0 ( n
i ).

Deza, Frankl, and Singhi [4] proved that for q= p a prime,

m(n, s, p)�\ n
�s+ , (1)
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under the additional hypothesis that, for all E # F, |E |#+0 (mod p for
some +0 # Nq"L. (This hypothesis was removed by Alon et al. in [1].)

This result followed the paper by Frankl and Wilson [5] which estab-
lished the bound |F|�( n

s) for set systems that are L-intersecting mod p
and +0 -uniform, i.e., |E |=+0 for all E # F.

Note that the right-hand side of inequality (1) is less than ns.
Inequality (1) does not extend to non-prime moduli. It was shown in [6]

(cf. [3, p. 117, Example 5.9.3�5.9.5]) that no bound of the form m(n, s, q)
�Cqns holds for q=6 and for q= p2 where p�7 is a prime. In particular,

m(n, 3, 6)>cn4=cns+1 (s=3),

and

m(n, s, q)>cq ns+ p&5
rcqns+- 2s,

where q= p2, p is a prime, and s=1+(q& p)�2.
While this shows that in these cases, m(n, s, q) n&s � � as n � � (q, s

fixed), the rate of growth is still polynomial, i. e., of the form

O(nc(s)) (2)

for some function c(s). (The value c(s) does not depend on q or n.) In fact,
in these examples, c(s)<2s.

Recently Grolmusz [7] proved that much larger set systems satisfying
the conditions exist if the modulus is an integer which is not a prime power:
in this case,

m(n, q&1, q)�exp \C(q)
(log n)r

(log log n)r&1+ , (3)

where r is the number of distinct prime divisors of q and C(q) is a function3

of q. This growth rate is superpolynomial (as a function of n), so, for non-
prime-power values of q, no bound of the form (2) can exist.

In this note we address the question of the order of magnitude of
m(n, s, q) for q= pk a prime power. Our main result establishes that in
this case m(n, s, q) is polynomially bounded, i. e., we find a bound of the
form (2).

Theorem 1.1. For q= pk a prime power, we have

m(n, s, q)�\ n
�2s&1+ . (4)
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The proof of this theorem is given in Section 5. The later sections of the
paper further refine this statement, but are not necessary to the proof of
Theorem 1.1.

Combined with Grolmusz's theorem, this result settles the question of
what moduli q make the expression m(n, s, q) polynomially bounded as a
function of n.

Corollary 1.1. Let R be a set of integers �2. Then the following are
equivalent:

(a) There exists a function c(s) such that for all q # R and all n�2,

m(n, s, q)�nc(s). (5)

(b) All members of R are prime powers.

Indeed, if all members of R are prime powers, then, by Theorem 1.1, the
bound (5) holds with c(s)=2s&1. On the other hand, if some q # R is not
a prime power then, setting s=q&1, Grolmusz's result shows that no
exponent c(s) can be valid.

For many values of q = pk and s, we obtain a stronger result. In
Section 2.1, we define a ``separating polynomial,'' as well as the quantity
D(s, k) (which is the minimum degree of such a polynomial over all choices
of p and L).

Theorem 1.2. For q= pk a prime power, we have

m(n, s, q)�\ n
�D(s, k)+ . (6)

The simple argument in Section 5 shows that

D(s, k)�min {\\1+
s&1

k +
k

� , 2s&1= . (7)

Note in particular that m(n, s, pk)�nD(s, k), and D(s, k)�min[sk, 2s&1].
Furthermore, when k=1, D(s, 1)=s, so our result includes the Deza�
Frankl�Singhi inequality (1).

For small k, statement (7) is our best bound on D(s, k). However, much
better bounds hold when - s<k<es�2. By examining an optimization
problem which may be of independent interest, we determine tight log-
asymptotic bounds on D(s, k) in terms of s and k. For example, when
k=- s, (7) gives D(s, k)=exp(O(k ln k)), when in fact we prove D(s, k)=
exp(3(k)). The log-asymptotic analysis is rather involved, and can be
found in Sections 6 and 7.
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This analysis gives us an idea of how far the Frankl�Wilson approach
can be taken. There is a large gap between our upper bounds and the best
known constructions of set systems (cf. Section 10).

Remark 1.1. In fact, our proof technique will show that |F|�( n
�D(s, k))

for set systems F satisfying a slightly more general property: for each
E # F, there is a subset LE /Nq , |LE |�s, so that |E | � LE (mod q), but
|E & F | # LE (mod q) for all F{E. The corresponding generalization of the
Deza�Frankl�Singhi inequality can be found in [3, Example 5.10.1].

In Section 2, we define separating polynomials. In Section 3, we give a
proof of Theorem 1.2 assuming the existence of these polynomials, which
we then construct in Sections 4 and 5. In Sections 6 and 7 we obtain tight
log-asymptotic bounds for the degrees of separating polynomials in terms
of s and k; we also prove that 2s&1 is tight if we want a bound independent
of k. In Section 8, we use higher incidence matrices, following [9] and [5],
to obtain a stronger version of Theorem 1.2. In Section 9, we examine the
special case L=[0, 1, ..., s&1]; in this case, we can improve the upper
bound to m�( n

�2s). Finally, in Section 10, we list open questions.

2. DEFINITIONS

Throughout the rest of this paper we make the following assumptions:

Standard Assumptions.

v p is a prime number, and q= pk, L/Nq , and |L|=s.

v : is an integer chosen so that : � L (mod q).

v F is a set-system over a universe of n elements.

v F is L-avoiding mod q and L-intersecting mod q.

2.1. Separating Polynomials

Before we definine a separating polynomial, it will be helpful to intro-
duce some p-adic terminology and notation.

We define the ( p-adic) valuation val(t) of an integer t to be the exponent
j such that p j divides t, but p j+1 does not. Equivalently, val(t)=
&logp |t|p , where |t|p represents the usual p-adic norm on Z. We write
val(0)=�.

We list some useful properties of the valuation:

v val(t)�� and val(t)=� iff t=0;

v val(tu)=val(t)+val(u);
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v val(t+u)�min[val(t), val(u)] (ultrametric inequality);

v If val(t)<val(u) then val(t+u)=val(t) (a consequence of the
ultrametric inequality);

v val( p)=1.

With this p-adic terminology, we are now ready to define a separating
polynomial:

Definition 2.1. A polynomial h with integer coefficients separates a set
A/Z from a set B/Z if

max
x # A

val(h(x))<min
x # B

val(h(x)).

If A=[:], we say that h separates : from B.

Note that the definition is not symmetric in A and B.
Given our set L and number :, we are interested in polynomials which

separate : from L+qZ.

Definition 2.2. We introduce the following quantities:

v Let D(L, :, q) denote the minimum possible degree of a polynomial
separating : from L+qZ.

v Let D(s, k) be the maximum value of D(L, :, pk), taken over all p,
all L/Nq of size |L|=s, and all : � L(mod q).

v Let D(s)=maxk [D(s, k)].

It is not obvious from the definition that any of these quantities even
exists; we will show, however, that all of them are well-defined.

2.2. An Optimization Problem

Our attempt to determine D(s, k) leads us to an interesting optimization
problem:

Definition 2.3. Let S(s, k) denote the maximal value of �k
i=1 sili

where:

v s1 , ..., sk are nonnegative integers satisfying �k
i=1 si=s.

v For all t, lt=w� t&1
i=1 l isi (1& i

t)x+1.

We will show in Section 6.2 that D(s, k)=S(s, k).
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3. POLYNOMIALS WITH CONTROLLED p-ADIC BEHAVIOR

For completeness, we include in Section 3.1 the simple proof of the
Deza�Frankl�Singhi inequality (1) given in [1] (cf. [3, p. 103]). This
proof will motivate the basic idea of this paper. In Section 3.2, we extend
the proof to prime power moduli.

The method presented herein uses spaces of multivariate polynomials in
the spirit of [1, 2] (cf. [3, Chap. 5]). In contrast, the original proof in [4]
(cf. [3, Example 7.4.15]) was based on the technique of higher incidence
matrices introduced by Ray-Chaudhuri and Wilson [9] and successfully
employed in the modular setting by [5]. This method yields important
additional information; therefore, in Section 8, we explain this approach
and extend it to prime power moduli as well.

3.1. The Case of Prime Modulus

Proof (of Inequality (1)). We use our standard assumptions from
Section 2 with q= p. We need to prove that |F|�( n

�s).
Consider the univariate polynomial h(t)=>+ # L (t&+).
For each E # F, let vE be the incidence vector (:1 , ..., :n) defined by

setting :i=1 if i # E and :i=0 otherwise. Let fE be the polynomial in n
variables given by fE (x)=h(x } vE) where x=(x1 , ..., xn) and x } vE denotes
the dot product of these two vectors. We note that fE (vF)=h( |E & F | ).

The multilinear reduction of a monomial >i # I xli
i (li�1) is the mono-

mial xI :=>i # I xi . The multilinear reduction g� of a polynomial g is obtained
by expanding g as a linear combination of monomials and performing the
multilinear reduction of each monomial. We note that for any (0, 1)-vector
v, we have g(v)= g� (v).

Let us set gE= fE . We note that deg ( fE)�s and therefore deg (gE)�s.
Moreover, gE (vF)=h( |E & F | ).

We claim that the polynomials gE (E # F) are linearly independent over
Q. Since the dimension of the space of multilinear polynomials of degree
�s in n variables is ( n

�s), we infer that |F|�( n
�s).

Suppose for a contradiction that there exists a nontrivial linear
dependence �E # F *E gE=0 with *E # Q, where not all *E are zero. We
may assume that all coefficients *E are integers, and some *F is not divisible
by p. However, since �E # F *E fE (vF)=0, we can write

*Fh( |F | )=& :
E{F

*Eh( |E & F | ).

Here, each term of the right hand side is divible by p; therefore p divides
the left hand side. Now h( |F | ) is not divisible by p, therefore *F is, a
contradiction with the choice of F. K
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3.2. Prime Power Moduli

In place of the polynomial h(t)=>+ # L (t&+) in Section 3.1, we use a
separating polynomial. The following lemma is implicit in [5].

(Recall that q= pk.)

Lemma 3.1. Assume that, for any : � L (mod q), there exists a degree-d
univariate polynomial h: separating : from L+qZ. Then |F|�( n

�d).

The proof of this lemma will mimic the proof of the Deza�Frankl�Singhi
inequality given above.

Proof. Let r=maxE [val(h |E | ( |E | ))]. Without loss of generality, we
assume val(h |E | ( |E | ))=r for all E. (We can multiply h |E | by pr&val(h|E| ( |E | )).)

As above, let vE be the incidence vector of E # F and let fE be the poly-
nomial in n variables given by fE (x)=h |E | (x } vE) where x=(x1 , ..., xn). We
again note that fE(vF)=h |E | ( |E & F | ).

Still following the lines of the above proof, we set gE= fE (the multi-
linear reduction of fE). We note that deg ( fE)�d and therefore
deg (gE)�d. Moreover, gE (vF)=h |E | ( |E & F | ).

We claim that the polynomials gE (E # F) are linearly independent over
Q. By the same dimension argument as above, we infer that |F|�( n

�d).
Suppose for a contradiction that there exists a nontrivial linear

dependence �E # F *E gE=0 with *E # Q, where not all *E are zero. We
may assume that all coefficients *E are integers, and some *F is not divisible
by p. However, since �E # F *E fE (vF)=0, we can write

*F h |F | ( |F | )=& :
E{F

*Eh |E | ( |E & F | ).

Thus,

val(*Fh |F | ( |F | ))�min
E{F

[val(*Eh |E | ( |E & F | ))].

For any E{F, val(h |E | ( |E & F | ))>r, so we have val(*Fh |F | ( |F | ))>r. But
val(*F)=0, and val(h |F | ( |F | ))=r, so this is impossible. This contradiction
proves the lemma. K

We now need to construct low-degree separating polynomials. When
k=1, we can use the degree-s polynomial h(t)=>+ # L (t&+) for any
: � L(mod q), as in Section 3.1. However, for k>1, we need to work a bit
harder. The next two sections are concerned with the construction of a
separating polynomial f. In Section 6, we show that this construction is
optimal in the following sense: for any s, it is possible to choose q and L
such that our construction is best possible.
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4. TREES AND BOXES

4.1. Rooted Trees

Let us consider a rooted tree. Level i consists of all nodes at distance i
from the root. (So the root itself constitutes level 0.) The degree of a node
is the number of its children.

We define the ``closeness'' of two leaves as the level of their lowest
common ancestor. (``Lowest'' means at greatest distance from the root.)

We say that a tree is levelwise regular if nodes on the same level have the
same degree. Given any rooted tree T, there is a unique (up to
isomorphism) minimal levelwise regular rooted tree containing T, which we
call the (levelwise regular) closure of T. Indeed, let si denote the maximum
of the degrees of nodes on level i. Then the levelwise regular tree of degree
si on level i is clearly the closure of T.

Note that the number of leaves of the closure of T is >k&1
i=0 si . (So the

closure feels somewhat like a Cartesian product, justifying the term ``box''
to be introduced in Section 4.2.)

The following lemma gives a useful upper bound on the size of the
closure of T.

Lemma 4.1. Let T be a rooted tree and let d be the number of levels of
T on which some node has at least two children. Let s denote the number of
leaves of T. Then the number of leaves of the closure of T is at most
(1+ s&1

d )d.

Proof. Let si be the maximum of the degrees of the nodes on level i in
T. Let m=>k&1

i=0 si , where k is the depth of T. As mentioned above, m is
the number of leaves of the closure of T.

Let I denote the set [i : si>1]; then |I |=d. Since m=>i # I si , by the
inequality between the arithmetic and the geometric means we deduce that
m�((�i # I si)�d )d.

Let Tj be the subtree of T containing all nodes at levels � j. By induction
on j, we see that the number of leaves of Tj is at least 1+�i< j (si&1).
Hence s&1��k&1

i=0 (si&1)=�i # I (si&1), so s&1+d��i # I si . Combin-
ing this inequality with the one in the preceding paragraph we obtain
m�(1+ s&1

d )d.

Corollary 4.1. Under the conditions of Lemma 4.1, the number of
leaves of the closure of T is at most min[w(1+ s&1

k )kx , 2s&1], where k is the
depth of T.

Proof. (1+ s&1
x )x is a strictly increasing function of x for x>0. Let m

denote the number of leaves of the closure of T. Since d�k, we
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immediately obtain that m�(1+ s&1
k )k, so m�w(1+ s&1

k )kx . Also, since
s&1��i # I (si&1)��i # I 1=d, we obtain m�(1+ s&1

s&1)s&1=2s&1.

Remark 4.1. Observe that w(1+ s&1
k )kx�sk, with equality holding

when k=1.

4.2. Tries and Boxes

A trie over a finite alphabet 7 is a rooted tree whose edges are labeled
by elements of 7; all edges from a node to its children must receive dif-
ferent labels. (So in particular, the degree of each node is �|7|.)

Each leaf of a trie corresponds to a string (word) over 7, obtained by
reading labels along the path from the root to the leaf. It is clear that there
is a 1�1 correspondence between tries over 7 and prefix-free sets of strings
over 7. (See for example [10, pp. 122�123] for this correspondence and its
use in computer science.)

The closeness of two strings in a trie is the length of their longest com-
mon prefix. This is the same as the closeness of the corresponding leaves.

We define a box to be a levelwise regular trie. Every trie T over 7 can
be embedded in a box over 7, corresponding to the closure of the tree
underlying T. We label the additional edges arbitrarily, making sure that
there are no repeated labels among the edges from a node to its children.
We shall call any of the resulting boxes a closure of T. While the topology
of the closure is unique, the labeling is not.

5. PROOF OF A SIMPLE UPPER BOUND FOR D(s, k )

In this section we complete the proof of Theorem 1.2 by constructing a
separating polynomial satisfying the requirements of Lemma 3.1. We refer
to the notation and assumptions of Section 3.

Let us write each member of L as a k-digit number in base p (including
leading zeros), writing the digits in reverse order (starting with the least
significant digit). We then construct the corresponding trie over the
alphabet 7=[0, ..., p&1]. The closeness of +, & # Nq in the trie (as defined
above) will be precisely val(+&&).

Let now L1 /Nq be the set of integers corresponding to a closure of T.
We have L�L1 . Moreover, by Lemma 4.1 and Corollary 4.1, we see that
|L1 |�D where

D=min {\\1+
s&1

k +
k

� , 2s&1= .
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We use the set L1 to construct a separating polynomial of degree at most
|L1 |�D. Since D depends only on s and k, this proves that D(s, k)�D.

Lemma 5.1. Let D=min[w(1+ s&1
k )kx , 2s&1]. Under our standard

assumptions (Section 2), for any +0 # Nq"L, there exists a polynomial h of
degree at most D which separates +0+qZ from L+qZ. This implies that
D(s, k)�D.

Proof. Choose L1 as above; write L1=[+1 , ..., +m]. Note that it is
possible that +0 # L1 . Define si as in Lemma 4.1 as applied to the trie T
corresponding to L. For i�k, let gi=>k&1

j=i sj (so gk=1); then gi is the
number of leaves of a subtree whose root is at level i. For any leaf +, gi is
also the number of leaves & such that val(+&&)�i. Let g=�k

i=1 gi .
Let f (t)=>m

j=1 (t&+j). If t#+ j (mod q) for some j, then, for any i�k,
we have |[+l : val(t&+l)�i]|= gi , and therefore val( f (t))��k

i=1 gi= g.
(We note that val( f (t)) can be larger than g, and can even be �.)

If t � +j (mod q) for any j, then, for i<k, we obtain that |[+l :
val(t&+l)�i] | is either 0 or gi (depending on whether or not the class of
t modulo pi is represented in L1). Since val(t&+ i) can never be �k, we see
that val( f (t)) � �k&1

i=1 g i < g. When +0 � L1 , we are thus done with the
construction, setting h= f.

Suppose, then, that +0 # L1 . In this case, let h(t)=>+j{+0
(t&+ j). We

claim that h separates +0+qZ from L+qZ: more specifically, we claim that
val(h(t))>g&k for t # L(mod q), but val(h(t))= g&k for t#+0 (mod q).

Indeed, suppose t#+j (mod q) where +j {+0 . We know that

g�val( f (t))=val(h(t))+val(t&+0)�val(h(t))+(k&1),

so we have val(h(t))�g&k+1 for any such t.
If, on the other hand, t#+0 (mod q), then, by the counting argument

above, val(h(t))=�k&1
i=1 (gi&1)= g&k.

By construction, deg h�deg f=|L1 |�D. K

Remark 5.1. Since D�2s&1, Lemma 5.1 proves that the quantities
D(L, :, q), D(s, k), and D(s) from Section 2.1 all exist. In Section 6.3 we
will prove that the bound D(s)�2s&1 is tight.

6. OPTIMAL SEPARATING POLYNOMIALS

In this section, we consider how to construct separating polynomials of
minimum degree. For particular sets L, very low-degree polynomials may
exist. However, if we want a bound on D(s, k) as defined in Section 2.1, we
need to consider all sets L for given s and k.
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In Section 6.2, we relate this problem to the solution of the optimization
problem defined in Section 2.2. In particular, we will show that S(s, k)=
D(s, k). Section 6.3 includes a short proof that D(s)=maxk [D(s, k)] is
equal to 2s&1, which shows that the construction in Section 5 is optimal.

We also give log-asymptotic estimates for S(s, k). This requires a more
detailed analysis, which appears in Section 7.

6.1. Polynomials with Linear Factors

We first prove that, when constructing separating polynomials, it suffices
to consider products of linear terms:

Lemma 6.1. Assume that there exists a degree-d polynomial over Z
separating : from B. Then there exists a polynomial separating : from B
which is a product of at most d linear terms of the form (x&+), + # B.

Proof. Let a(x) be a maximal product of linear terms of the form
(x&+), + # B such that deg (a(x))�d and a(x) divides some polynomial of
degree d separating : from B; we denote this polynomial h(x), and write
h(x)=a(x) g(x). We show, by contradiction, that a(x) separates : from B.

Take & # B such that val(a(&)) is minimal. Assume that a(x) does not
separate : from B; then

val(a(:))�val(a(&)). (8)

Let g(x)& g(&)=(x&&) b(x). (Note that b has integer coefficients.) Then

h(x)=a(x)(x&&) b(x)+a(x) g(&).

We will show that f (x)=a(x)(x&&) b(x) separates : from B.
By our choice of &, for any + # B we have val(a(+) g(&))�val(a(&) g(&))

=val(h(&)). By the ultrametric inequality:

val( f (+))=val(h(+)&a(+) g(&))�min[val(h(+)), val(h(&))]>val(h(:)).

By (8) we have

val(a(:) g(&))�val(a(&) g(&))=val(h(&))>val(h(:)),

and hence

val( f (:))=val(h(:)&a(:) g(&))=val(h(:)).

Thus the polynomial f (x) separates : from B, which contradicts the
assumption that a(x) is maximal. K
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Lemma 6.2. Every polynomial h(x) which has minimum degree subject to the
condition that it separates : from L+qZ also separates :+qZ from L+qZ.

Proof. Suppose, for some integer m, that val(h(:+mq)){val(h(:)).
Then let f (x)=h(x+mq)&h(x); we have

val( f (:))=min[val(h(:+mq)), val(h(:))]�val(h(:)).

For any + # L+qZ, we also have ++mq # L+qZ, so

val( f (+))�min[val(h(++mq)), val(h(+))]>val(h(:)).

Thus, f (x) separates : from L+qZ. But deg ( f )<deg (h), contradicting
the minimality of h. We conclude that, for all m # Z, val(h(:+mq))=
val(h(:)), proving the lemma. K

The next lemma shows that, for any k, :, and L, if p is sufficiently large,
then there exists a minimum-degree polynomial separating : from L+qZ
which is a product of linear terms of the form (x&+), + # L.

Lemma 6.3. For any k, : and L, and any sufficiently large p, there exists
a minimum-degree polynomial separating : from L+qZ (where q= pk)
which is a product of linear terms of the form (x&+), + # L.

Proof. Choose p>2s. By Lemma 5.1, there is some polynomial h(x)
of minimum degree d separating : from L+qZ, and d�2s&1<p�2. By
Lemma 6.1, we may assume h(x) is a product of linear factors:

h(x)= `
d

i=1

(x&&i)

with &i # L+qZ. For each i, choose +i # L such that &i #+i (mod q). We
claim that the polynomial

f (x)= `
d

i=1

(x&+i)

also separates : from L+qZ.
Indeed, since : � L+qZ, it is clear that val( f (:))=val(h(:)). Choose any

& # L+qZ; since p>2d, there is some *#&(mod q) such that, for all i,
*�&i (mod pk+1) and *�+i (mod pk+1). Thus, for any i, val(*&& i)=
val(*&+i), and

val( f (&))�val( f (*))=val(h(*))>val(h(:))=val( f (:)).

This proves that f separates : from L+qZ. K
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Remark 6.1. We need the condition that p is sufficiently large in
Lemma 6.3. For example, consider q=27, :=0, and L=[1, 3, 6, 9, 12, 15,
18, 21]. The minimum-degree separating polynomial of the form > (x&+)
with + # L is

(x&9)(x&18)(x&3)(x&12)(x&21)(x&6)(x&15)(x&1)4

which has degree 11. However, this is not a minimum-degree polynomial
separating : from L+qZ, since

(x&9)(x&18)(x&3)(x&12)(x&21)(x&6)(x&15)(x&1)(x&28)(x&55)

is a degree-10 separating polynomial.

6.2. The Connection to the Optimization Problem

We recall the optimization problem defined in Section 2.2:

Definition 6.1. Let S(s, k) denote the maximal value of �k
i=1 si li

where:

v s1 , ..., sk are nonnegative integers with �k
i=1 si=s.

v For all t, lt=w� t&1
i=1 l isi (1& i

t)x+1.

In this section, we show that D(s, k)=S(s, k).

Lemma 6.4. D(s, k)�S(s, k).

Proof. We are given some : and L; assume, without loss of generality,
that :=0. Let Li=[+ # L | val(+)=i], and let si=|Li |. We will attempt to
construct a separating polynomial which is a product of linear terms of the
form (x&+), + # L. Let h(x) be such a polynomial, and write h(x)=
>+ # L (x&+)a+. Let di=�+ # Li a+ . We then have

val(h(0))= :
k&1

i=0

idi

and, for any j, and any & # Lj+qZ:

val(h(&))= :
j&1

i=0

idi+ :
k&1

i= j+1

jdi+ :
* # Lj

a* val(&&*)
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and hence

val(h(&))� :
j

i=0

idi+ :
k&1

i= j+1

jdi+(k& j ) a+ (9)

where + # Lj such that &#+(mod q).
This implies that h(x) will separate 0 from L+qZ if, for any j #

[0, ..., k&1] and any + # Lj ,

a+>
1

k& j
:

k&1

i= j+1

(i& j ) di . (10)

(This condition will be necessary if we have equality in (9).)
We now attempt to construct h(x) satisfying (9). Note that the expres-

sion (10) depends only on those di with i> j. Thus, when we construct
h(x), if we increase a& for some & with val(&)� j, this will not affect the
validity of inequality (10). If some a& with val(&)> j is increased, this can
only increase a+ , and hence the degree d=�k&1

i=0 di can only increase.
Hence it is optimal to make a+ as small as possible for each + in Lj ,
starting with j=k&1 and working down to j=0.

The lower bound does not depend on a specific choice of + # Lj , so for
every + # Lj it is optimal to choose the same minimal value of a+ , which we
will denote lj ; then, for all j, dj=lj sj . The optimal choice for lj is

lj=\ :
k&1

i= j+1
\1&

k&i
k& j+ lisi�+1.

The degree of h(x) is �k&1
i=0 lisi .

Since L can be any set of size s, we take the maximum over all [si] with
s0+ } } } +sk&1=s. After a change of indexing we get the problem in the
definition of S(s, k), so our upper bound on D(s, k) is exactly S(s, k). K

Note that if we have equality in (9) then we have construct an optimal
separating polynomial among polynomials which are products of linear
terms of the form (x&+), + # L. There is equality in (9) iff val(+&&)=i for
every i # [0, ..., k&1] and every distinct +, & # Li . If p>s then, for any
s0 , ..., sk&1 , it is possible to choose L satisfying this condition.

We are now in a position to show that S(s, k) gives the best possible
bound on D(s, k).

Theorem 6.1. For all s and k, D(s, k)=S(s, k).

Proof. We have already shown D(s, k)�S(s, k). For any s, choose
p>s sufficiently large for Lemma 6.3 to apply. Choose s0 , ..., sk such that
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the sum in the definition of S(s, k) achieves its maximum value. Chose L
such that, for all i, |Li |=sk&i , and such that, for distinct +, & # Li ,
val(+&&)=i. (As mentioned above, this is possible since p>s.)

Let h(x) be a polynomial separating 0 from L+qZ, and write
d=deg (h). By Lemma 6.3, there is a degree-d polynomial separating 0
from L+qZ which is a product of factors (x&+) with + # L. By the proof
of Lemma 6.4, and by our choice of L, any such polynomial has degree at
least S(s, k). This proves that D(s, k)�S(s, k).

6.3. Estimating D(s, k)

By Theorem 6.1, we can find the minimum degree of a separating poly-
nomial by finding S(s, k), or optimizing the sum in Definition 2.3. In
Section 7, we prove the following asymptotic estimates for D(s, k)=S(s, k).

We use Knuth's ``3'' notation: two functions f, g: 0 � R are said to
satisfy the relation f =3(g) if there exist positive constants c1 , c2 such that

c1 | f (x)|�| g(x)|�c2 | f (x)|

for all but a finite number of values x # 0. Our set 0 will typically be
N_N.

Theorem 6.2. For k�- s�e

ln S(s, k)=3 \k \2+ln
s

k2++ .

For - s�e�k�es�2

ln S(s, k)=3 \�s \2+ln
k2

s ++ .

For es�2�k

ln S(s, k)=3(s).

Furthermore, we can precisely answer another question: what is the best
bound we can give depending only on s?

As in Section 2.1, let D(s)=maxk[D(s, k)]=maxk [S(s, k)]. We showed
in Lemma 5.1 that D(s) exists, and that it is at most 2s&1. We now show
that D(s)=2s&1.

Theorem 6.3. For any s there exist p, k, : and L, with |L|=s, such that
the minimum degree of a polynomial separating : from L+qZ (where
q= pk) is exactly 2s&1.

54



Proof. Following Theorem 6.1, it suffices to find k and s1 , ..., sk such
that

:
k

i=1

si=s

lt=\ :
t&1

i=1

li si \1&
i
t+�+1

:
k

i=1

lisi=2s&1

We will inductively construct an infinite sequence [si], si # [0, 1], as
follows: let ? i denote the position of the i th one. Let ?1=1; then s1=1,
and l1=1.

Suppose, for some j, we have found ?1 , ..., ? j&1 ; these determine s1 , ...,
s?j&1

, and we can use the expression for lt to compute l1 , ..., l?j&1
. We will

let ?j=� j&1
i=1 ? i l?i

.
We conclude that, for any j>1,

l?j
=\ :

j&1

i=1

l?i
&

1
? j

:
j&1

i=1

?il?i�+1= :
j&1

i=1

l?i
.

Thus l?j
=2 j&2 for j>1.

Finally, let k=?s . Then

:
k

i=0

sili= :
s

j=1

l?j
=2s&1.

This proves the theorem. K

7. THE OPTIMIZATION PROBLEM

In this section we determine the logarithmic order of magnitude of
S(s, k) as stated in Theorem 6.2. In Section 7.1, we introduce two simplified
versions of the optimization problem, without the floor function, and show
that the optima remain within a constant factor. In Section 7.2, we examine
a related maximization problem. In Sections 7.3 and 7.4, we prove upper
and lower bounds on S(s, k). Finally, in Section 7.5, we complete the proof
of Theorem 6.2.
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7.1. The Problem without the Floor Function

We first restate the definition in a simpler form, without the floor func-
tion. There are two approaches we could take: overestimating li , or under-
estimating li .

Definition 7.1. Let Z(s, k) denote the maximal value of �k
i=1 sil8 i

where:

v s1 , ..., sk are nonnegative integers with �k
i=1 si=s.

v l8 i=� i&1
j=1 l8 jsj (1& j

i)+1 (1�i�k).

Definition 7.2. Let T(s, k) denote the maximal value of �k
i=1 si l� i

where

v s1 , ..., sk are nonnegative integers with �k
i=1 si=s

v l� i=� i&1
j=1 l� jsj (1& j

i ) (1�i�k).

For any sequence [si], we clearly have l� i�li�l8 i , so we can conclude
that T(s, k)�S(s, k)�Z(s, k).

We now make precise statements about Z(s, k) and T(s, k):

Lemma 7.1.

:
k

i=1

sil8 i= :
k

m=1

:
1�a1<a2< } } } <am�k \1&

a1

a2+\1&
a2

a3+ } } }

\1&
am&1

am + sa1
sa2

} } } sam
(11)

Proof. By induction on k. The lemma holds for k=1. For the induction
step we need to show

sk+1l8 k+1=sk+1+ :
k

m=1

:
1�a1<a2< } } } <am�k \1&

a1

a2+ } } }

\1&
am&1

am +\1&
am

k+1+ sa1
} } } sam

sk+1 .
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Using the recurrence for l8 k+1 and the induction hypothesis we obtain:

l8 k+1&1= :
k

i=1

l8 isi
k+1&i

k+1
=

1
k+1

:
k

j=1

:
j

i=1

l8 isi

=
1

k+1
:
k

j=1

:
j

m=1

:
1�a1< } } } <am� j \1&

a1

a2+ } } } \1&
am&1

am + sa1
} } } sam

=
1

k+1
:
k

m=1

:
1�a1< } } } <am�k \1&

a1

a2+ } } }

\1&
am&1

am + sa1
} } } sam

(k+1&am)

which proves the lemma. K

Lemma 7.2.

:
k

i=1

sil� i= :
k

m=1

:
1=a1<a2< } } } <am�k \1&

a1

a2+\1&
a2

a3+ } } }

\1&
am&1

am + sa1
sa2

} } } sam
. (12)

(Note that in (12) we have 1=a1 whereas in (11) we have 1�a1 .)

Proof. Similar to the proof of Lemma 7.1. K

We will use these expressions to determine upper bounds for Z(s, k) and
matching lower bounds for T(s, k). However, it is worth observing that this
first step of using Z(s, k) and T(s, k) instead of S(s, k) costs at most a
factor of 3.

Lemma 7.3.

Z(s, k)�3T(s, k),

and thus

1
3Z(s, k)�S(s, k)�Z(s, k).

Proof. Let s1 , ..., sk be the optimal assignment for Z(s, k). Note that
s1>0. If not we can set s$i=si+1 , 1�i<k and obtain Z(s$, k)>Z(s, k).
Now
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Z(s, k)&T(s, k)= :
k

m=1

:
1<a1<a2< } } } <am�k \1&

a1

a2+\1&
a2

a3+ } } }

\1&
am&1

am + sa1
sa2

} } } sam

�
2
s1

} :
k

m=1

:
1<a1<a2< } } } <am�k \1&

1
a1+\1&

a1

a2+ } } }

\1&
am&1

am + s1 sa1
sa2

} } } sam

�
2
s1

} T(s, k)�2 } T(s, k) K (13)

7.2. Estimating (1&a1 �a2) } } } (1&am �am+1)

To estimate Z(s, k), we will need to understand the following maximiza-
tion problem, which arises from Lemma 7.1:

Definition 7.3. Let M(m, k) denote the maximal value of

\1&
a1

a2+\1&
a2

a3+ } } } \1&
am&1

am +\1&
am

am+1+ (14)

where 1�a1<a2 } } } <am<am+1�k and each ai # Z.
We now prove a series of bounds on M(m, k).

Lemma 7.4. For m�k�(2e)

M(m, k)>�2m
k \ln

k
2m

2m +
m

.

Proof. Let t=(k�2m)1�m and let the sequence [a i] be roughly a
geometric progression with quotient t:

am+1&i={
k for i=0

�am+2&i

t | for 1�i�m
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Clearly am+1&i�
k
ti . We have

1&
ai

ai+1

�1&

ai+1

t
+1

ai+1

�1&
1
t
&

1
a2

�
ln t

- t
&

tm&1

k
=

ln t

- t \1&
tm&1�2

k ln t + .

Using

tm&1�2

k ln t
�

tm

k ln t
=

k�2m

k
1
m

ln(k�2m)
=

1
2 ln(k�2m)

�
1
2

,

we obtain

1&
ai

ai+1

�
ln t

2 - t
>0.

(Note that this also proves that the a i are distinct.) Thus,

M(m, k)�\ ln t

2 - t+
m

=� 2m
k \ ln

k
2m

2m +
m

. K

Lemma 7.5. For m�k

M(m, k)�
1

(m+1)!
.

Proof. Take ai=i for 1�i�m+1. K

The following weak upper bound on M(m, k) does not use the fact that
the ai are integers.

Lemma 7.6.

M(m, k)�(1&k&1�m)m.

Proof. Using the inequality between the arithmetic and geometric
means we obtain:

\1&
a1

a2+ } } } \1&
am

am+1+�\ m& :
m

i=1

ai

ai+1

m +
m

�\1&\ a1

am+1+
1�m

+
m

�(1&k&1�m)m. K (15)
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Lemma 7.7.

M(m, k)�\ e ln
ek
m

m +
m

.

Proof. For m=1 the upper bound is valid because it is greater than 1.
We have

M(m+1, k)= max
m<l<k

M(m, l) \1&
l

k+ .

Hence, to prove the upper bound it suffices to show that, for any m, k # N
and any l # R such that m+1�l�k&1:

\ e ln
el

m
m +

m

\1&
l

k+

\ e ln
ek

m+1
m+1 +

m+1
�1.

Let L(l, m, k) denote the left-hand side of the above inequality.
We have

L(l, m, k)=
(m+1)m+1

mm

1
e

\ln
el

m+
m

\ln
ek

m+1+
m+1 \1&

l

k+

=
(m+1)m+1

mm

1
e \1+

ln \1+
1
m+

ln
el

m+1
+

m

\ln
el

m+1+
m

\ln
ek

m+1+
m+1 \1&

l

k+ .

(16)
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Let a= el
m+1 and b= ek

m+1 . Using 1&x�ln 1
x and ln(1+x)�x we obtain

L(l, m, k)�
(m+1)m+1

mm

1
e \1+

1
m

ln a+
m

(ln a)m

(ln b)m+1 ln
b
a

�
(m+1)m+1

mm

1
e \1+

1
m+

m

\\ln a
ln b+

m

&\ln a
ln b+

m+1

+ .

Clearly 0� ln a
ln b�1 and, for 0�x�1, we have xm&xm+1� mm

(m+1)m+1 . Thus

L(l, m, k)�
1
e \1+

1
m+

m

�1. K

7.3. Upper Bounds on Z(s, k)

The m th symmetric polynomial _m (s1 , ..., sk) is the coefficient of xk&m in
>k

i=1 (x+sk). We define the m-th symmetric mean as follows:

pm (s1 , ..., sk)=\
_m (s1 , ..., sk)

\ k
m+ +

1�m

.

Note that p1 (s1 , ..., sk) is the arithmetic mean and pk (s1 , ..., sk) is the
geometric mean. In [8, p. 52] the following generalization of the inequality
between the arithmetic and geometric means is shown:

Lemma 7.8. For non-negative s1 , ..., sk :

p1 (s1 , ..., sk)�p2 (s1 , ..., sk)� } } } �pk (s1 , ..., sk).

For each of the inequalities, equality holds iff all the si are equal.

Lemma 7.9.

Z(s, k)� :
k

m=1
\ k

m+\
s
k+

m

M(m&1, k). (17)

For s�k

Z(s, k)� :
s

m=1
\ s

m+ M(m&1, k). (18)
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Proof. Choose [si] maximizing �k
i=1 sil8 i . Then, by Lemma 7.1,

Z(s, k)= :
k

m=1

:
1�a1< } } } <am�k \1&

a1

a2+ } } } \1&
am&1

am + sa1
} } } sam

� :
k

m=1

M(m&1, k) _m (s1 , ..., sk). (19)

Using Lemma 7.8 we obtain

_m (s1 , ..., sk)�\ k
m+\

s
k+

m

.

If s�k, we can use the fact that the si are integers. In this case the function
_m (s1 , ..., sk) attains its maximum when s of the si are 1, and hence

_m (s1 , ..., sk)�\ s
m+ . K

Lemma 7.10.

Z(s, k)�sk max
0�m�k \

es
m+

m

M(m, k).

Proof. Using (17) and ( k
m)�( ek

m )m, and then replacing m with m+1, we
obtain

Z(s, k)� :
k

m=1
\es

m+
m

M(m&1, k)

= :
k&1

m=0
\es

m+
m

\ m
m+1+

m+1

es
1
m

M(m, k)

�sk max
0�m�k \

es
m+

m

M(m, k).

Lemma 7.11. For k�- s�e

Z(s, k)�sk \e2s
k2 +

k

.
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Proof. Using Lemma 7.7, and the inequality ln x�x&1, we obtain

M(m, k)�\e ln
ek
m

m +
m

�\ ek
m2+

m

and hence by Lemma 7.10

Z(s, k)�sk max
0�m�k \

e2sk
m3 +

m

.

The maximum of ( e2sk
m3 )m is attained when m=(sk�e)1�3 and hence if k�

(sk�e)1�3 then

Z(s, k)�sk \e2s
k2 +

k

. K

Lemma 7.12. For c�1 the solution of

ln y+2y&
1
y

=c (20)

is in the range [(c&ln c
2)�2, (c&ln c

2)�2+2], where

2=
1

c&ln
c
2

&
1
2

ln \1&
ln

c
2

c + . (21)

Proof. Let f ( y)=ln y+2y& 1
y . Then

f \ c&ln
c
2

2 +&c=ln \1&
ln

c
2

c +&
2

c&ln
c
2

<0.

Note that f $( y)= 1
y+2+ 1

y2>2 and hence

f \c&ln
c
2

2
+2+&c�0. K
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Lemma 7.13. For k�- s�e

Z(s, k)�ks } e2e - s(1+1�2 ln k2�s).

Proof. Using Lemma 7.10 and Lemma 7.7 we obtain

Z(s, k)�ks max
0�m�k \ e2s ln

ek
m

m2 +
m

. (22)

Let x= m
ek . We have

Z(s, k)�ks max
0�x�1�e \

s
k2 ln 1�x

x2 .+
x } ek

(22)

The maximum value of

\
s

k2 ln 1�x

x2 +
x

is attained when

ln ln
1
x

+2 ln
1
x

&
1

ln
1
x

=2+ln
k2

s
.

By Lemma 7.12, when this occurs, we have

c&ln
c
2

2
�ln

1
x

�
c&ln

c
2

2
+2,

where c=2+ln k2

s and 2 is given by (21). This implies that

1
x2�ec&ln c�2+22 and x�e(&c+ln c�2)�2=� 1

e2 }
s

k2 \1+
1
2

ln
k2

s +
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and hence

max \
s

k2 ln 1�x

x2 +
x

�\ s
k2 \ c&ln

c
2

2
+2+ ec&ln c�2+22+

x

=\ c&ln
c
2

+22

c
e22+2+

x

. (23)

Since we know that c�2 and 2�1, and therefore that (c&ln c
2+22)�c

�2, we can conclude that

\ c&ln
c
2

+22

c
e22+2+

x

�e2 - s�k2(1+1�2 ln k2�s).

Substituting into inequality (22) we obtain

Z(s, k)�ks } e2e - s(1+1�2 ln k2�s). K

7.4. Lower Bounds on T(s, k)

Lemma 7.14. For any n # Z, 1�n�min[s, k]

T(s, k)�M(n&1, k) \ s
n

&1+
n

. (24)

Proof. In (12) consider only the part of the sum where m=n. Choose
1=a1<a2< } } } <am�k such that

M(m&1, k)=\1&
a1

a2+\1&
a2

a3+ } } } \1&
am&1

am + .

For 1�i�m let sai
=ws�mx. For this choice of [si], the contribution of

one term in the sum (12) is at least the right-hand side of (24). K

Lemma 7.15. For k�- 2s, ln k�s�2

T(s, k)�
1
e3 e0.03 - s(2+ln k2�2s).

Proof. If - s(2+ln k2

2s)�100, the result is trivial. We therefore assume
for the remainder of the proof that - s(2+ln k2

2s)>100.

65



Using Lemma 7.14 and Lemma 7.4 we obtain that for any m # N,
m�min[k�(2e), s],

T(s, k)��2m
k \ ln

k
2m

2m +
m

\ s
m

&1+
m

��2m
k \ s ln

k
2m

2m2 +
m

e&m2�s&m.

Let y= 2m
k . We have

T(s, k)�- y \
2s
k2 ln

1
y

y2 +
y } k�2

e&m2�s&m. (25)

We can approximate the maximum of the right-hand side of (25) with the
help of Lemma 7.12 from Section 7.3. If x is such that

ln
1
x

=
c&ln

c
2

2

where c=2+ln k2

2s (note that c�2), then

2s
k2 ln

1
x

x2 =
2s
k2 }

c&ln
c
2

2
ec&ln c�2=e2

c&ln
c
2

c
�e2 \1&

1
2e+�e1.75.

Hence, if we choose for m the value

m=\k
2

x�=\1
e �s

2 \1+
1
2

ln
k2

2s+� (26)

we have y�x, so

s ln
k

2m
2m2 �e1.75.

Also, since - s(2+ln k2

2s)>100, we have m�18, and hence

m�
18
19e �s

2 \1+
1
2

ln
k2

2s+�
18
19e �

s
2

.
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Since k�- 2s, we know m�k�(2e). Since ln k� 1
2 s, we get m� 1

2e s and
ln k2

2s�- s(2+ln k2

2s). (The statement m� 1
2e s follows from (26) for s�4;

when s<4, we conclude from (26) that m=0.) Therefore,

T(s, k)��2m
k

e1.75me&m2�s&m�� 18
19e \

2s
k2+

1�4

e (1.75&1�2e&1) m

�� 18
19e

e&(1.75&1�2e&1) e1�2e(1.75&1�2e&1) - s(2+ln k2�2s)&1�4 ln k2�2s

�
1
e3 e0.03 - s(2+ln k2�2s). K

Lemma 7.16. For k�- 2s

T(s, k)�
1

ke6 \es
k +

k

.

Proof. If we chose m=k, and let ai=i and si=w s
kx for 1�i�m we

obtain

T(s, k)�
1
k! \

s
k

&1+
k

.

Using k!�ke(k�e)k, we get

T(s, k)�
1
ke \

e
k+

k

\ s
k+

k

\1&
k
s+

k

�
1
ke \

es
k2+

k

e&k2�s&k�
1

ke6 \es
k2+

k

.

(The final step is straightforward for s�6, and can be checked case-by-case
for smaller s.) K

7.5. Proof of Theorem 6.2

We are now ready to prove Theorem 6.2.

Proof (of Theorem 6.2). From Lemmas 7.11, 7.13, 7.15, 7.16 we have

k�- s�e O ln S(s, k)�k \2+ln
s

k2++ln s+ln k (27)

k�- s�e O ln S(s, k)�- 2e �s \2+ln
k2

s ++ln(sk) (28)
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k�- 2s O ln S(s, k)�k \1+ln
s

k2+&6&ln k (29)

k�- 2s, k�es�2 O ln S(s, k)�0.03 �s \2+ln
k2

2s+&3. (30)

For k=es�2, inequality (30) gives ln S(s, k)=0(s). We know that S(s, k)�
2s&1 and that S(s, k) is increasing in s and k. Hence for k�es�2 we have
ln S(s, k)=3(s). K

8. INDEPENDENT SET SYSTEMS

We now introduce the higher incidence matrices used in the original
proof of the Deza�Frankl�Singhi inequality in [4] (following [5, 9]). We
define the notion of an s*-independent set system, and show that, if a set
system F satisfies our standard assumptions of Section 2, then F is
D*-independent for D as in Theorem 1.2. Our presentation closely follows
that in [3, Chapter 7].

Let F and T be families of subsets of a universe X of n points; we define
the (F, T)-inclusion matrix I(F, T) to be an |F|_|T| matrix, indexed
by F and T, where the entry indexed by (F, T) is 1 if T�F and 0
otherwise. (Note that this matrix is only defined up to relabeling of its rows
and columns, since we do not specify any labeling.)

We use I(F, s) as a shorthand for I(F, ( X
s )), in which the columns

correspond to all possible subsets of X of size s. We call this matrix the
s-inclusion matrix of F. A related matrix is the s-intersection matrix
As (F)=I(F, s) I(F, s)T; it is easy to see that the entry of As (F) indexed
by E and F is ( |E & F |

s ).
The s*-inclusion matrix of F is the matrix I*(F, s), with dimensions

|F|_( n
�s), obtained by concatenating the t-inclusion matrices for t�s:

I*(F, s)=[I(F, s)|I(F, s&1)| } } } |I(F, 0)].

Definition 8.1. A family F is s-independent if

v the matrix I(F, s) has full row-rank |F|.

A family F is s*-independent if

v the matrix I*(F, s) has full row-rank |F|.

Note that s-independence implies s*-independence, but the converse is
not true. Also note that rk(As (F))�rk(I(F, s)), so if As (F) is non-
singular then F is s-independent.
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It is immediate that any s-independent family has size at most ( n
s), and

any s*-independent family has size at most ( n
�s). Thus, the lemma below is

strictly stronger than Lemma 3.1.

Lemma 8.1. Let F satisfy our standard assumptions. Assume that, for
any : � L (mod q), there exists a degree-d univariate polynomial h: separat-
ing : from L+qZ. Then F is d*-independent.

The proof follows [5] for the case of prime modulus.

Proof. Suppose that I*(F, d ) does not have full row rank; then there
is some nontrivial linear combination of the rows that sums to 0, or, equiv-
alently, some nonzero v� # Q |F|, v� =(*E)E # F , such that v� I*(F, d )=09 . We
may assume that all *E are integers, and that, for some F # F, p does not
divide *F .

For all s�d, we have v� I(F, s)=09 , so v� As (F)=09 . In particular, looking
at the entry of v� As (F) corresponding to F, we get that �E # F *E ( |E & F |

s )
=0 for any s�d.

Now, let h(x)=h |F | (x), and r=val(h( |F | )). We can write h(x)=
�d

s=0 #s ( x
s ) where #s # Z. So, by the above paragraph, we must have

:
E # F

*Eh( |E & F | )= :
E # F

*E :
d

s=0

#s \ |E & F |
s +

= :
d

s=0

#s :
E # F

*E \ |E & F |
s +=0.

We can thus write

*Fh( |F | )= & :
E{F

*Eh( |E & F | ),

and therefore

val(*Fh( |F | ))�min
E{F

[val(*E h( |E & F | ))].

For any E{F, val(h( |E & F | ))>r, so we have val(*Fh |F | ( |F | ))>r. But
val(*F)=0, and val(h( |F | ))=r, so this is impossible. This contradiction
proves that no such nonzero v� exists, and hence F is d*-independent.

We say that a set system F is m-uniform if |F |=m for every F # F. The
above result gives us a slightly stronger version of Theorem 1.2 when F is
m-uniform, thanks to a lemma of Frankl and Wilson:
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Lemma 8.2 [5]. If F is m-uniform and s*-independent for some s<m,
then F is also s-independent.

Theorem 8.1. Let F be an m-uniform set-system, q= pk, and L/Nq

with |L|=s<log m. Suppose m � L(mod q), and F is L-intersecting mod q.
Then

|F|�\ n
2s&1+ .

Proof. By Lemma 5.1, there is a polynomial of degree d�2s&1 which
separates m from L+qZ. By Lemma 8.1, F is d*-independent. Since
d<m, we apply Lemma 8.1 and conclude that F is d-independent. Thus
|F|�( n

d). K

9. THE CASE L=[0, ..., s&1]

For any s, let c(s) be the least integer so that, for any prime power q and
any n�2, m(n, s, q)�nc(s). We have shown that c(s) exists, and that
c(s)�2s&1. However, the best known lower bound on c(s) is s+O(- s)
[6]. Is c(s) polynomial in s? Is it linear in s?

When L=[0, ..., s&1], we can improve our bound on |F| to ( n
�2s).

Lemma 9.1. If j<k, and 0<a<p, then L1=[0, ..., ap j&1] is a box.

Proof. Every congruence class modulo p j is represented in L1 , so, for
0�i< j, each node at level i has exactly p children. Each node at level j
has exactly a children, and, for i> j, each node at level i has exactly one
child. Thus, by definition, L1 is a box. K

Corollary 9.1. If L=[0, ..., s&1], and F satisfies our standard
assumptions, then F is (2s)*-independent, and hence |F|�( n

�2s).

Proof. Choose the largest j such that p j<s. Then either s<p j+1

<s+ p j, or s<ap j<s+ p j with a<p. In either case, there is a box of size
at most s+ p j<2s containing L. As in Lemma 5.1, we can construct the
desired polynomials of degree less than 2s; we then apply Lemma 8.1. K
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If we add an additional uniformity condition, we can do even better:

Theorem 9.1. Let L=[0, ..., s&1], and suppose F satisfies our standard
assumptions. Suppose further that, for all E # F, |E |#s (mod q). Then F

is s-independent, and hence |F|�( n
s).

Proof. Consider the matrix As (F). Any diagonal element is of the form
( |E |

s )=( apk+s
s ) for some a. For each j>0, the number of multiples of p j in

the set [apk+1, ..., apk+s] is exactly ws�p jx, so val((apk+s) } } } (apk+1))
=val(s!). Thus, no diagonal element is a multiple of p.

Now, consider an off-diagonal element ( |E & F |
s )=( apk+t

s ) for some a and
some t<s. For each j>0, the number of multiples of p j in the set
[apk+ j&s+1, ..., apk+ j ] is at least ws�p jx. Also, the number of multiples
of pk is 1, while ws�pkx=0. Thus, val((apk+ j ) } } } (apk+ j&s+1))>val(s!).
We conclude that every off-diagonal element is a multiple of p.

We have shown that As (F) is non-singular over Fp , so it must be non-
singular over Q. This implies that F is s-independent. K

The above theorem slightly generalizes a result of Frankl and Wilson in
[5], who prove this result for s= pk&1.

10. OPEN QUESTIONS

Our work raises several open questions. The most striking of these is the
large gap between our upper bounds and the best-known constructions.

We recall that, for L/Z, a family F of sets is L-avoiding mod pk if
|E | � (L+ pkZ) for all E # F, and that F is L-intersecting mod pk if
|E & F | # (L+ pkZ) for all E, F # F, E{F.

Question 1. Does there exist a constant c such that, for every prime
power pk, and every L/Z, every set system F on n points which is
L-intersecting mod pk and L-avoiding mod pk contains at most ncs sets,
where s=|L|?

In Theorem 1.1, we show that any such set system has size at most n2s&1
.

The largest known set system [6] has size roughly ns+- 2s.
Our work suggests sets L which might yield large families F. If there is

an integer : such that all sets E # F have size |E |#: (mod pk), then the
upper bound obtained by our methods is maximized when L satisfies the
following condition: for distinct +, & # L, if pi | (+&&), then pi | (+&:). For
example, we could take :=0, and L=[1, p, p2, ..., pk&1].

For the particular L above, we have k=s, so, by Theorem 6.2, we have
|F|�nexp(O(- s ln s)).
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Question 2. Does there exist a set system F on n points which is
L-intersecting mod p2 and L-avoiding mod p2 and which contains more
than ncs sets, where s=|L|?

When the modulus is p2, our methods show that |F| is at most nD,
where D=w(1+(s&1)�2)2xrs2�4. However, the largest known example is
that mentioned above ([6]), of size roughly ns+- 2s. Can we construct a
larger example? Can we reduce our upper bound to ncs?

Again, our work suggests a set L which might yield a larger set system.
If we assume |E |#0 (mod p2) for every E # F, then we need our set L to
contain both multiples of p and non-multiples of p, and our upper bounds
are maximized when L does not contain numbers + and & where
+#&�0 (mod p). For example, we could take L=[1, 2, ..., p&1, p, 2p, ...,
( p&1) p]. Sets in our system would have to intersect in one of two ways,
one yielding a multiple of p, the other a set of size at most p&1 (mod p2).

We recall that D(s, k) denotes the maximum, taken over all sets L with
|L|=s, all primes p, and all : � L+ pkZ, of the minimum degree of a poly-
nomial f (x) such that, for some r, pr | f (+) for any + # L+ pkZ, but
pr |% f (:).

Question 3. Determine D(s, s) asymptotically.

Question 4. How difficult is it to compute D(s, k) precisely, or to
estimate it within a constant factor?

The trivial approach, based on Definition 2.3, uses roughly ( s+k
k ) steps.

Ideally, we would wish to use only (log D(s, k))constant number of steps.
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