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Abstract We investigate the complexity of counting Eulerian tours (#ET) and its
variations from two perspectives—the complexity of exact counting and the com-
plexity w.r.t. approximation-preserving reductions (AP-reductions, Dyer et al., Algo-
rithmica 38(3):471–500, 2004). We prove that #ET is #P-complete even for planar
4-regular graphs.

A closely related problem is that of counting A-trails (#A-TRAILS) in graphs with
rotational embedding schemes (so called maps). Kotzig (Theory of Graphs, Proc.
Colloq., Tihany, 1966, pp. 219–230, Academic Press, San Diego, 1968) showed that
#A-TRAILS can be computed in polynomial time for 4-regular plane graphs (embed-
ding in the plane is equivalent to giving a rotational embedding scheme). We show
that for 4-regular maps the problem is #P-hard. Moreover, we show that from the ap-
proximation viewpoint #A-TRAILS in 4-regular maps captures the essence of #ET,
that is, we give an AP-reduction from #ET in general graphs to #A-TRAILS in 4-
regular maps. The reduction uses a fast mixing result for a card shuffling problem
(Wilson, Ann. Appl. Probab. 14(1):274–325, 2004).
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1 Introduction

An Eulerian tour in a graph is a tour which travels each edge exactly once. The
problem of counting Eulerian tours (#ET) of a graph is one of a few recognized
counting problems (see, e.g., [15], p. 339). The exact counting is #P-complete in
general graphs [4] and in planar graphs [5], and thus there is no polynomial-time
algorithm for it unless P = NP. For the approximate counting one wants to have a fully
polynomial randomized approximation scheme (FPRAS), that is, an algorithm which
on every instance x of the problem and error parameter ε > 0, will output a value
within a factor exp(±ε) of f (x) with probability at least 2/3 and in time polynomial
in the length of the encoding of x and 1/ε, where f (x) is the value we want to
compute. The existence of an FPRAS for #ET is an open problem [11, 14, 15].

A closely related problem to #ET is the problem of counting A-trails (#A-
TRAILS) in graphs with rotational embedding schemes (called maps, see Sect. 2 for
a definition). A-trails were studied in the context of decision problems (for example,
it is NP-complete to decide whether a given plane graph has an A-trail [1, 3]; on the
other hand for 4-regular maps the problem is in P [6]), as well as counting problems
(for example, Kotzig [13] showed that #A-TRAILS can be computed in polynomial
time for 4-regular plane graphs, reducing the problem to counting of spanning trees).

In this paper, we investigate the complexity of #ET in 4-regular graphs and its
variations from two perspectives. First, the complexity of exact counting is consid-
ered. We prove that #ET in 4-regular graphs (even in 4-regular planar graphs) is #P-
complete. We also prove that #A-TRAILS in 4-regular maps is #P-complete (recall
that the problem can be solved in polynomial time for 4-regular plane graphs).

The second perspective is the complexity w.r.t. the AP-reductions proposed by
Dyer, Goldberg, Greenhill, and Jerrum [7]. We give an AP-reduction from #ET in
general graphs to #A-TRAILS in 4-regular maps. Thus we show that if there is an
FPRAS for #A-TRAILS in 4-regular maps, then there is also an FPRAS for #ET in
general graphs. The existence of AP-reduction from #ET in general graphs to #ET
in 4-regular graphs is left open.

In order to understand whether #A-TRAILS in 4-regular maps can AP-reduce to
#ET in 4-regular graphs, we investigate the so-called signatures (these count connec-
tion patterns of trails in graphs with half-edges, see Sect. 5 for the formal definition)
of 4-regular map gadgets and 4-regular graph gadgets. It seems that the signatures
represented by 4-regular map gadgets form a proper superset of the set of signatures
represented by 4-regular graph gadgets. Moreover, it seems that the signature of a sin-
gle vertex in 4-regular maps cannot be simulated approximately by 4-regular graph
gadgets.

2 Definitions and Terminology

For the definitions of cyclic orderings, A-trails, and mixed graphs, we follow [8]. Let
G = (V ,E) be a graph. For a vertex v ∈ V of degree d > 0, let K(v) = {e1, . . . , ed}
be the set of edges adjacent to v in G. The cyclic ordering O+(v) of the edges
adjacent to v is a d-tuple (eσ(1), . . . , eσ(d)), where σ is a permutation in Sd . We



say eσ(i) and eσ(i+1) are cyclicly-adjacent in O+(v), for 1 ≤ i ≤ d , where we set
σ(d +1) := σ(1). The set O+(G) = {O+(v)|v ∈ V } is called a rotational embedding
scheme of G. For a plane graph G = (V ,E), if O+(v) is not specified, we usually set
O+(v) to be the clockwise order of the half-edges adjacent to v for each v ∈ V .

Let G = (V ,E) be a graph with a rotational embedding scheme O+(G).
An Eulerian tour v0, e1, v1, e2, . . . , e�, v� = v0 is called an A-trail if ei and ei+1 are
cyclicly-adjacent in O+(vi), for each 1 ≤ i ≤ �, where we set e�+1 := e1.

Let G = (V ,E,E′) be a mixed graph, that is, E is the set of edges and E′ is the
set of half-edges (which are incident with only one vertex in V ). Let |E′| = 2d where
d is a positive integer and assume that the half-edges in E′ are labelled by numbers
from 1 to 2d . A route r(a, b) is a trail (no repeated edges, repeated vertices allowed)
in G that starts with half-edge a and ends with half-edge b. A collection of d routes
is called valid if every edge and every half-edge is travelled exactly once.

We say that a valid set of routes is of the type {{a1, b1}, . . . , {ad, bd}} if it contains
routes connecting ai to bi for i ∈ [d]. We use VR({a1, b1}, . . . , {ad, bd}) to denote
the set of valid sets of routes of type {{a1, b1}, . . . , {ad, bd}} in G.

We will use the following concepts from Markov chains to construct the gadget in
Sect. 4 (see, e.g., [12] for more detail). Given two probability distributions π and π ′
on finite set Ω , the total variation distance between π and π ′ is defined as

‖π − π ′‖T V = 1

2

∑

ω∈Ω

|π(ω) − π ′(ω)| = max
A⊆Ω

|π(A) − π ′(A)|.

Given a finite ergodic Markov chain with transition matrix P and stationary dis-
tribution π , the mixing time from initial state x, denoted as τx(ε), is defined as
τx(ε) = min{t : ‖P t (x, ·) − π‖T V ≤ ε}, and the mixing time of the chain τ(ε) is
defined as τ(ε) = maxx∈Ω{τx(ε)}.

3 The Complexity of Exact Counting

3.1 Basic Gadgets

We describe two basic gadgets and their properties which will be used as a basis for
larger gadgets in the subsequent sections.

The first gadget, which is called the (X,Y,Y ) node, is shown in Fig. 1(a), and it
is represented by the symbol shown in Fig. 1(b). There are k internal vertices in the
gadget, and the labels 0, 1, 2 and 3 are four half-edges of the (X,Y,Y ) node which
are the only connections from the outside.

By elementary counting we obtain the following fact.

Lemma 1 The (X,Y,Y ) node with parameter k has three different types of valid sets
of routes and these satisfy

|VR({0,1}, {2,3})| = k2k−1,

|VR({0,2}, {1,3})| = |VR({0,3}, {1,2})| = 2k−1.

The gadget has k vertices.



Fig. 1 An (X,Y,Y ) node and its symbol. (a): an (X,Y,Y ) node consisting of k internal vertices; (b): sym-
bol representing the (X,Y,Y ) node

Fig. 2 A (0,X,Y ) node and its symbol. (a): a (0,X,Y ) node consisting of p copies of (X,Y,Y ) nodes;
(b): symbol representing the (0,X,Y ) node

The second gadget, which is called the (0,X,Y ) node, is shown in Fig. 2(a), and
it is represented by the symbol shown in Fig. 2(b). Let p be any odd prime. In the
construction of the (0,X,Y ) node we use p copies of (X,Y,Y ) nodes as basic com-
ponents, and each (X,Y,Y ) node has the same parameter k. As illustrated, half-edges
are connected between two consecutive (X,Y,Y ) nodes. The four labels 0, 1, 2 and
3 at four corners in Fig. 2(a) are the four half-edges of the (0,X,Y ) node, and they
are the only connections from the outside.

By elementary counting, binomial expansion, Fermat’s little theorem, and the fact
that 2 has a multiplicative inverse (modulo p), we obtain the following:

Lemma 2 Let p be an odd prime and let k be an integer. The (0,X,Y ) node with
parameters p and k has three different types of valid sets of routes and these satisfy

|VR({0,1}, {2,3})| = pA(A + B)p−1 ≡ 0 (mod p), (1)

|VR({0,2}, {1,3})| = (A + B)p − (B − A)p

2
≡ A (mod p), (2)

|VR({0,3}, {1,2})| = (A + B)p + (B − A)p

2
≡ B (mod p), (3)

where A = 2k−1 and B = k2k−1. The gadget has kp vertices.

3.2 #ET in 4-regular Graphs is #P-complete

Next, we will give a reduction from #ET in general Eulerian graphs to #ET in
4-regular graphs.

Theorem 1 #ET in general Eulerian graphs is polynomial time Turing reducible to
#ET in 4-regular graphs.



Fig. 3 Gadget Q with d input half-edges and d output half-edges

The proof of Theorem 1 is postponed to the end of this section.
We use the gadget, which we will call Q, illustrated in Fig. 3 to prove the theorem.

The gadget is constructed in a recursive way. The d labels 1, . . . , d on the left are
called input half-edges of the gadget, and the d labels on the right are called output
half-edges. Given a prime p and a positive integer d , the gadget consists of d − 1
copies of (0,X,Y ) nodes with different parameters and one recursive part represented
by a rectangle with d − 1 input half-edges and d − 1 output ones. For 1 ≤ i ≤ d − 1,
the i-th (0,X,Y ) node from left has parameters p and i. Half-edge 0 of the i-th
(0,X,Y ) node is connected to half-edge 3 of the (i − 1)-st (0,X,Y ) node except
that for the 1st (0,X,Y ) node half-edge 0 is the d-th input half-edge of the gadget.
Half-edge 1 of the i-th (0,X,Y ) node is the (d − i)-th input half-edge of the gadget.
Half-edge 2 of the i-th (0,X,Y ) node is connected to the (d − i)-th input half-edge
of the rectangle. Half-edge 3 of the (d − 1)-st (0,X,Y ) node is the d-th output half-
edge of the gadget. For 1 ≤ j ≤ d − 1, the j -th output half-edge of the rectangle is
the j -th output half-edge of the gadget. From the constructions of (X,Y,Y ) nodes
and (0,X,Y ) nodes, the total size of the d − 1 copies of (0,X,Y ) nodes is O(pd2).
Thus, the size of the gadget is O(pd3).

Lemma 3 Consider the gadget Q with parameters d and p. Let σ be a permutation
in Sd . Then

|VR(σ )| := |VR({IN1,OUTσ(1)}, . . . , {INd,OUTσ(d)})| ≡ Rd (mod p), (4)

where Rd ≡ ∏d−1
i=1 (2i(i−1)/2i!).

Moreover, any type τ which connects two IN (or two OUT) half-edges satisfies

|VR(τ )| ≡ 0 (mod p). (5)

Proof The proof is by induction on d , the base case d = 1 is trivial. Suppose the
statement is true for gadget Q with (d − 1) input half-edges, that is, |VR(	)| ≡
Rd−1 (mod p) for every 	 ∈ Sd−1.



Now, consider gadget Q with d input half-edges. For 1 ≤ j ≤ d − 1, we cut the
gadget by a vertical line just after the j -th (0,X,Y ) node and only consider the part
of the gadget to the left of the line, we will call this partial gadget Qj .

Claim 1 Let As be the set of permutations in Sd which map s to d . In the partial
gadget Qj we have that for s ∈ {d − j, . . . , d} have

∑

σ∈As

|VRQj
(σ )| ≡ j !2j (j−1)/2 (mod p),

where the subscript Qj is used to indicate that we count routes in gadget Qj .

Proof of Claim We prove the claim by induction on j , the base case j = 1 is trivial.
Now assume that the claim is true for j − 1, that is, for all s ∈ {d − j + 1, . . . , d}

in gadget Qj−1 we have

∑

σ∈As

|VRQj−1(σ )| ≡ (j − 1)!2(j−1)(j−2)/2 (mod p).

The j -th (0,X,Y ) node takes (d − j)-th input half-edge of the gadget and the half-
edge 3 of the (j − 1)-st (0,X,Y ) node, and has parameters p and j .

The type of the j -th (0,X,Y ) node is {{0,2}, {1,3}} if and only if the resulting
permutation in Qj is in Ad−j . Thus we have

∑

σ∈Ad−j

|VRQj
(σ )| ≡ 2j−1

j−1∏

k=1

(2k−1(k + 1)) ≡ j !2j (j−1)/2 (mod p),

where the first term is the number of choices (modulo p) in the j -th (0,X,Y ) node to
make it {{0,2}, {1,3}} and the k-th term in the product is the number of choices (mod-
ulo p) in the k-th (0,X,Y ) node to make it either {{0,2}, {1,3}} or {{0,3}, {1,2}}.

If the type inside the j -th (0,X,Y ) node is {{0,3}, {1,2}} then the resulting per-
mutation is in As for s ∈ {d − j + 1, . . . , d}. Thus

∑

σ∈As

|VRQj
(σ )| ≡ j2j−1

∑

σ∈As

|VRQj−1(σ )| ≡ j2j−1(j − 1)!2(j−1)(j−2)/2

≡ j !2j (j−1)/2 (mod p),

where j2j−1 is the number of choices (modulo p) in the j -th (0,X,Y ) node to make
it {{0,3}, {1,2}}. �

Now we continue with the proof of Lemma 3.
Let σ be a permutation in Sd . Let l = σ−1(d). In order for σ to be realized by

gadget Q we have to have l mapped to d by Qd−1 and the permutation realized by
the recursive gadget of size d − 1 must “cancel” the permutation of Qd−1. By the
claim there are (d − 1)!2(d−1)(d−2)/2 (modulo p) choices in Qd−1 which map l to d

and by the inductive hypothesis there are Rd−1 (modulo p) choices in the recursive



gadget of size d − 1 that give the unique permutation that “cancels” the permutation
of Qd−1. Thus

|VR(σ )| ≡ Rd ≡ (d − 1)!2(d−1)(d−2)/2Rd−1(mod p),

finishing the proof of (4).
To see (5) note that the number of valid sets of routes which contain route starting

and ending at both input half-edges or both output half-edges is 0 (modulo p). This is
because the number of valid set of routes of type {{0,1}, {2,3}} inside the (0,X,Y )

node is 0 (modulo p). �

Proof of Theorem 1 The reduction is now a standard application of the Chinese re-
mainder theorem. Given an Eulerian graph G = (V ,E), we can, w.l.o.g., assume that
the degree of vertices of G is at least 4 (vertices of degree 2 can be removed by con-
tracting edges). The number of Eulerian tours of a graph on n vertices is bounded by
nn2

(the number of pairings in a vertex of degree d is d!/(2d/2(d/2)!) ≤ nn).

We choose n2 primes p1, . . . , pn2 > n such that
∏n2

i=1 pi > nn2
and each pi is

bounded by O(n3) (see, e.g., [2], p. 296). For each pi , we construct graph Gi by
replacing each vertex v of degree d > 4 with Q gadget with d input and d output
half-edges where the (2j − 1)-st and 2j -th output half-edge are connected (for j =
1, . . . , d/2), and the input half-edges are used to replace half-edges emanating from
v (that is, they are connected to the input half-edges of other gadgets according to
the edge incidence at v). Note that Gi is a 4-regular graph. Since pi = O(n3), the
construction of Gi can be done in time polynomial in n. Having Gi , we make a
query to the oracle and obtain the number Ti of Eulerian tours in Gi . Let T be the
number of Eulerian tours in G. Then

Ti ≡ T

n∏

d=6

((
d

2

)
!2d/2Rd

)nd

(mod pi), (6)

where nd is the number of vertices of degree d in G.
Since Ti is of length polynomial in n, we can compute Ti (mod pi) for each i and

thus T (mod pi) (since on the right hand side of (6) T is multiplied by a term that
has an inverse modulo pi ). By the Chinese remainder theorem, we can compute T in
time polynomial in n (see, e.g., [2], p. 106). �

3.3 #ET in 4-regular Planar Graphs is #P-complete

First, it’s easy to see that #ET in 4-regular planar graphs is in #P. We will give a
reduction from #ET in 4-regular graphs to #ET in 4-regular planar graphs.

Theorem 2 #ET in 4-regular graphs is polynomial time Turing reducible to #ET in
4-regular planar graphs.

Proof Given a 4-regular graph G = (V ,E), we first draw G in the plane. We allow
the edges to cross other edges, but (i) edges do not cross vertices, (ii) each crossing
involves 2 edges. The embedding can be found in polynomial time.



Fig. 4 To replace a crossover
point by a (0,X,Y ) node with
parameters p and k = p

Let p be an odd prime, we will construct a graph Gp from the embedded graph as
follows. Let e, e′ be two edges in G which cross in the plane as shown in Fig. 4(a),
we split e (and e′) into two half-edges e1, e2 (e′

1, e
′
2, respectively). As illustrated in

Fig. 4(b), a (0,X,Y ) node with parameters p and k = p is added, and e1, e
′
1, e2, e

′
2

are connected to the half-edges 0,1,2,3 of the (0,X,Y ) node, respectively.
Let Gp be the graph after replacing all crossings by (0,X,Y ) nodes. We have that

Gp is planar since (X,Y,Y ) nodes and (0,X,Y ) nodes are all planar. The construc-
tion can be done in time polynomial in p and the size of G (since the number of
crossover points is at most O(|E|2) and the size of each (0,X,Y ) node is O(p2)).

In the reduction, we choose n = |V | primes p1,p2, . . . , pn such that pi = O(n2)

for i ∈ [n] and
∏n

i=1 pi ≥ 3n, where 3n is an upper bound for the number of Eulerian
tours in G (the number of pairings in each vertex is 3). For each pi , we construct a
graph Gpi

from the embedded graph as described above with p = pi . Let T be the
number of Eulerian tours in G and Ti be the number of Eulerian tours in Gpi

, we
have

T ≡ Ti (mod pi). (7)

Equation (7) follows from the fact that the number of Eulerian tours in which the
set of routes within any (0,X,Y ) node is not of type {{0,2}, {1,3}} is zero (modulo
pi ) (since in (2) we have A ≡ 1 (mod pi) and in (3) we have B ≡ 0 (mod pi)). We
can make a query to the oracle to obtain the number Ti . By the Chinese remainder
theorem, we can compute T in time polynomial in n. �

3.4 #A-TRAILS in 4-regular Graphs with Rotational Embedding Schemes Is
#P-complete

In this section, we consider #A-TRAILS in graphs with rotational embedding schemes
(maps). We prove that #A-TRAILS in 4-regular maps is #P-complete by a simple
reduction from #ET in 4-regular graphs.

First, it’s not hard to verify that #A-TRAILS in 4-regular maps is in #P.

Theorem 3 #ET in 4-regular graphs is polynomial time Turing reducible to #A-
TRAILS in 4-regular maps.



Fig. 5 Gadget simulating
vertex of degree 4

Proof Given a 4-regular graph G = (V ,E), for each vertex v of G, we use the gadget
shown in Fig. 5 to replace v.

The gadget consists of three vertices which are represented by circles in Fig. 5.
The labels 0, 1, 2 and 3 are the four half-edges which are used to replace half-edges
emanating from v. The cyclic ordering of the 4 (half-)edges incident to each circle is
given by the clockwise order, as shown in Fig. 5. There are three types of valid sets of
routes inside the gadget, VR({0,1}, {2,3}), VR({0,2}, {1,3}) and VR({0,3}, {1,2}).
By enumeration, we have the size of each of the three sets is 2.

Let G′ be the 4-regular map obtained by replacing each vertex v by the gadget.
Let T be the number of Eulerian tours in G, we have the number of A-trails in G′
is 2|V |T . �

Note that Kotzig [13] gave a one-to-one correspondence between the A-trails in
any 4-regular plane graph G (the embedding in the plane gives the rotational em-
bedding scheme) and the spanning trees in a plane graph G′, where G is the medial
graph of G′. By the Kirchhoff’s theorem (cf. [12]), the number of spanning trees of
any graph can be computed in polynomial time. Thus #A-TRAILS in 4-regular plane
graphs can be computed in polynomial time.

4 The Complexity of Approximate Counting

In this section, we show that #ET in general graphs is AP-reducible to #A-TRAILS

in 4-regular maps. AP-reductions were introduced by Dyer, Goldberg, Greenhill and
Jerrum [7] for the purpose of comparing the complexity of two counting problems in
terms of approximation (given two counting problems f,g, if f is AP-reducible to g

and there is an FPRAS for g, then there is also an FPRAS for f ).
In the AP-reduction from #ET to #A-TRAILS in 4-regular maps, we use the idea

of simulating the pairings in a vertex by a gadget as what we did in the construction
of the Q gadget. The difference is that the new gadget works in an approximate way,
that is, instead of having the number of valid sets of routes to be the same for each of
the types, the numbers can be different but within a small multiplicative factor. The
analysis of the gadget uses a fast mixing result for a card shuffling problem.

We use the gadget illustrated in Fig. 6. The circles represent the vertices in the
map. Let d be an even number. The gadget has d input half-edges on left and d

output half-edges (Fig. 6 demonstrates the case of d = 6). There are T layers in the
gadget which are numbered from 1 to T from left to right. In an odd layer t , the



Fig. 6 Construction of the gadget for a vertex of degree 6

(2i − 1)-st and the 2i-th output half-edges of layer t − 1 are connected to a vertex of
degree 4, for i ∈ [d/2]. In an even layer t , the 2i-th and the (2i + 1)-st output half-
edges of layer t − 1 are connected to a vertex of degree 4, for i ∈ [d/2 − 1]. In Fig. 6,
we illustrate the first two layers each of which is in two consecutive vertical dashed
lines. The cyclic ordering of each vertex is given by the clockwise ordering (in the
drawing in Fig. 6), and so we have that the two half-edges in each vertex which are
connected to half-edges of the previous layer are not cyclicly-adjacent.

Note that a valid route in the gadget always connects an input half-edge to an
output half-edge. Thus a valid set of routes always realizes some permutation σ con-
necting input half-edge i to output half-edge σ(i).

In order to prove that |VR(σ )| is almost the same for each permutation σ ∈ Sd , we
show that for T = Θ(d2 logd log(d!/ε)) we have

|VR(σ )|
/ ∑

	∈Sd

|VR(	)| ∈ [(1 − ε)/d!, (1 + ε)/d!]

for each permutation σ ∈ Sd . The gadget can be interpreted as a process of a Markov
chain for shuffling d cards. The simplest such chain proceeds by applying adjacent
transpositions. The states of the chain are all the permutations in Sd . In each time step,
let σ ∈ Sd be the current state, we choose i ∈ {1, . . . , d −1} uniformly at random, and
then switch σ(i) and σ(i +1) with probability 1/2 and stay the same with probability
1/2. For our gadget, it can be viewed as an even/odd sweeping Markov chain on d

cards [16]. The ratio |VR(σ )|/∑
	∈Sd

|VR(	)| is exactly the probability of being σ

at time T when the initial state of the even/odd sweeping Markov chain is the identity
permutation. By the analysis in [16], we can relate T with the ratio as follows.

Lemma 4 [16] Let T be the number of layers of the gadget with d input half-edges
and d output half-edges as shown in Fig. 6, and let μ,λ be two distributions on
Sd such that μ(σ) = |VR(σ )|/∑

	∈Sd
|VR(	)| and λ(σ ) = 1/d! (λ is the uniform



distribution on Sd ). For

T = O(d2 logd log(d!/ε)),
then ‖μ − λ‖T V ≤ ε/d!, and thus (1 − ε)/d! ≤ μ(σ) ≤ (1 + ε)/d!.

Theorem 4 If there is an FPRAS for #A-TRAILS in 4-regular maps, then we have an
FPRAS for #ET in general graphs.

Proof Given an Eulerian graph G = (V ,E) and an error parameter ε > 0, we can,
w.l.o.g., assume that the degree of vertices of G is at least 4 (vertices of degree 2
can be removed by contracting edges). We construct graph G′ by replacing each
vertex v of degree d > 2 with a gadget with d input half-edges, d output half-edges
and Td = Θ(d2 logd log(4d!n/ε)) layers where the (2i − 1)-st and 2i-th output half-
edge are connected (for 1 ≤ i ≤ d/2), and the input half-edges are used to replace
half-edges emanating from v (that is, they are connected to the input half-edges of
other gadgets according to the edge incidence at v). We have that G′ has O(n2Tn) =
O(n4 logn(n logn + log(1/ε))) vertices and can be constructed in time polynomial
in n and 1/ε.

Let A be an FPRAS for #A-TRAILS in 4-regular maps by the assumption of the
theorem, we run A on G′ with error parameter ε/2. Let A(G′, ε/2) be the output of
A and NA be the number of A-trails in G′, we have A(G′, ε/2) ∈ [e−ε/2NA,eε/2NA]
with probability at least 2/3. This process can be done in time polynomial in the size
of G′ and 1/ε, which is polynomial in n and 1/ε.

Let Dd be the number of vertices in the gadget of d input half-edges and d out-
put half-edges, and let Rd = 2Dd 2d/2(d/2)!/d! and R = ∏n

d=4 R
nd

d where nd is the
number of vertices of degree d in G. Our algorithm B will output

B(G, ε) = A
(
G′, ε/2

)
/R. (8)

We next prove that B is an FPRAS for #ET in general graphs. For every Eulerian
tour in G, the type of the pairing in each vertex in G is fixed. Note that each pairing
corresponds to (d/2)!2d/2 permutations in a gadget with d input half-edges and d

output half-edges. By Lemma 4, we have

(1 − ε/(4n))2Dd /d! ≤ |VR(σ )| ≤ (1 + ε/(4n))2Dd /d!
for each σ ∈ Sd where VR(σ ) is counted in a gadget with d input half-edges and d

output half-edges. Thus, the number of A-trails in G′ which correspond to the same
Eulerian tour in G is in [(1 − ε/(4n))nR, (1 + ε/(4n))nR]. Let NE be the number of
Eulerian tours in G, we have

NA ∈ [(1 − ε/(4n))nRNE, (1 + ε/(4n))nRNE],
and thus for ε ≤ 2n, NA/R ∈ [e−ε/2NE,eε/4NE] (the case when ε > 2n is trivial, B
can just output 3n). Since A(G′, ε/2) ∈ [e−ε/2NA,eε/2NA] with probability at least
2/3, then by (8), we have B(G, ε) ∈ [e−εNE, eεNE] with probability at least 2/3.
This completes the proof. �



5 The Power of 4-regular Gadgets

In this section, we consider 4-regular gadgets which are 4-regular graphs (or maps)
with 4 half-edges (which are labeled from 0 to 3 and are the only connection from out-
side). There are three types of valid sets of routes inside the gadget, VR({0,1}, {2,3}),
VR({0,2}, {1,3}) and VR({0,3}, {1,2}). Since we are interested in the relative size
of the above three sets, we define the signature of a gadget to be a triple (α,β, γ )

such that

α = |VR({0,1}, {2,3})|/N,

β = |VR({0,2}, {1,3})|/N,

γ = |VR({0,3}, {1,2})|/N,

where N = |VR({0,1}, {2,3})|+ |VR({0,2}, {1,3})|+ |VR({0,3}, {1,2})|. Note that
α,β, γ ≥ 0 and α + β + γ = 1.

We will investigate what values of (α,β, γ ) can be achieved by 4-regular gadgets.
The motivation mainly comes from the question of whether a vertex in 4-regular maps
can be simulated (exactly or approximately) by a 4-regular graph gadget. We omit the
proofs in this section since they are lengthy, readers can refer to [10] for details.

We will discuss the power of 4-regular maps and 4-regular graphs separately. Be-
fore that, we introduce an operation 2-glue on gadgets. Given two gadgets G1 and
G2, the 2-glue of G1 and G2 is a new gadget G3 where half-edge 3 and 2 of G1 are
connected with half-edge 0 and 1 of G2, respectively; and half-edge 0 and 1 of G1

and half-edge 2 and 3 of G2 are half-edges of G3. The 2-glue operation is illustrated
in Fig. 7.

The following theorem shows that 4-regular map gadgets can achieve almost all
rational points (α,β, γ ) on the plane α + β + γ = 1 and α,β, γ ≥ 0.

Theorem 5 [10] For every α,β, γ ∈ Q such that 0 ≤ α,β, γ < 1 and α +β +γ = 1,
there is a 4-regular map gadget having signature (α,β, γ ).

For 4-regular graph gadgets, let S contains of vectors P(α,β, γ )T, where P is
a 3 × 3 permutation matrix, α ≥ β ≥ γ ≥ 0, α + β + γ = 1 and γ ≥ f (β), where
f (x) = (1 − x)(1 − exp(2x/(x − 1)))/2. We illustrate S in Fig. 8. We first show that
signatures in S are achievable by 4-regular graph gadgets:

Fig. 7 2-glue of G1 and G2.
The half-edges labeled 2 and 3
of G1 are connected with
half-edges labeled 1 and 0
of G2, respectively. The outmost
straight lines are the half-edges
of the 2-glue of G1 and G2



Fig. 8 The shaded region S

contains the signatures which
can be achieved by 4-regular
graph gadgets as described in
Theorem 6. The triangle region
within dashed lines contains
signatures (α,β, γ ) s.t.
α + β + γ = 1 and α,β, γ ≥ 0

Theorem 6 [10] For every s ∈ S, and for every ε > 0, there is a 4-regular graph
gadget with signature s′ such that

‖s − s′‖1 ≤ ε.

On the other hand, we show S is closed under 2-glue operations.

Theorem 7 [10] For i = 1,2, let Gi be a 4-regular graph gadget with signature
(αi, βi, γi) ∈ S. Let G3 be the 2-glue of G1 and G2 with signature (α3, β3, γ3), hence
(α3, β3, γ3) ∈ S.

We performed experiment on all gadgets up to 7 vertices with random signature
from S for each vertex, the result was in S. It seems that S is the largest region we
can get for the signatures of 4-regular graph gadgets. Based on the results of our
experiment, we conjecture that S contains all signatures of 4-regular graph gadgets.

Conjecture 1 For every 4-regular graph gadget with signature s, s ∈ S.
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