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Abstract. We derive several algorithms for curves and surfaces rep-
resented using normal coordinates. The normal coordinate representa-
tion is a very succinct representation of curves and surfaces. For em-
bedded curves, for example, its size is logarithmically smaller than a
representation by edge intersections in a triangulation. Consequently,
fast algorithms for normal representations can be exponentially faster
than algorithms working on the edge intersection representation. Normal
representations have been essential in establishing bounds on the com-
plexity of recognizing the unknot [Hak61, HLP99, AHT02], and string
graphs [SSŠ02]. In this paper we present efficient algorithms for count-
ing the number of connected components of curves and surfaces, deciding
whether two curves are isotopic, and computing the algebraic intersec-
tion numbers of two curves. Our main tool are equations over monoids,
also known as word equations.

1 Introduction

Computational topology is a recent area in computational geometry that inves-
tigates the complexity of determining properties of topological objects such as
curves and surfaces [BE+99, DEG99]. For example, it is known that we can de-
cide whether two curves on a surface are homotopic in linear time if the surface
is represented by a triangulation, and the curves as sequences of intersections
with the triangulation [DG99].

In 1930 Kneser [Kne30] introduced a representation for curves and surfaces
in which these objects are described by their normal coordinates. This led to the
theory of normal surfaces which was used by Haken in 1961 to show that the un-
knot could be recognized by an algorithm (which, much later, was shown to run
in exponential time). Haken’s approach was pushed further by Hass, Lagarias,
and Pippenger who showed that the unknot could be recognized in NP [HLP99].
To this end they had to verify in polynomial time that a special type of normal
surface was an essential disk. The result of [HLP99] was recently extended by
Agol, Hass, and Thurston [AHT02]. The main contribution of [AHT02] was a
polynomial time algorithm for computing the number of connected components
of a normal surface. This immediately implies polynomial time algorithms for
checking whether a normal surface is connected, and whether it is orientable.

The theory of normal curves is much simpler than the theory of normal
surfaces. Nevertheless, it was one of three essential ingredients in the proof that



string graphs can be recognized in NP, a problem that had only recently been
shown to be decidable at all [SSŠ02].

With this paper we attempt to initiate a more systematic study of algorithms
for normal curves and surfaces. We believe that the examples mentioned earlier
show that this is a worthwhile attempt. There is also a more theoretical justifi-
cation of this approach: we get a clearer picture of the computational complexity
of a problem if we ensure that the object representations are succinct, meaning
that they are not compressible. It is easy to show that the representation of
an embedded curve as a sequence of intersections with a triangulation is never
succinct: if we consider it as a word over an alphabet made up of the edges
of the triangulation, it can always be compressed to polylogarithmic size (see
Section 4.1). For embedded curves this means that the normal coordinates are
a more succinct and natural way of representation.

Among other things we will give efficient algorithms to count components of
curves and surfaces, decide whether two curves are isotopic, and compute the
algebraic intersection number of a pair of curves.

A final word about technique. We extend the ideas from [SSŠ02] where we
based our algorithms on word equations. We believe the connection between
word equations and normal curves and surfaces is a very strong one, and, as
far as we can tell, has not been observed before. There have, of course, been
algorithms based on words in the fundamental group of a manifold, but words in
this context are always words in a group. The original observation here is that
the recent, and powerful, results about computational aspects of monoids can be
applied to embeddings and immersions of curves and surfaces [PR98, GKPR96,
Ryt99, DM01]. For example, the algorithm for counting components suggested
by Agol, Hass, and Thurston is quite involved, whereas our algorithm follows
quite naturally from the decidability of word equations with prescribed lengths
by using some topology. A second example is the recognition problem for string
graphs. Currently this problem can only be solved with the help of algorithms
for trace monoids [DM01, SSŠ02].

2 Normal Coordinates

In the following M will always be a compact orientable 2-manifold with boundary
∂M , unless stated otherwise. Let b be the number of the boundary components
of M and g the genus of M . The Euler characteristic of M is χ = 2 − 2g − b.

A simple arc is a homeomorphic image of the interval [0, 1]. A simple arc
γ : [0, 1] → M such that both its endpoints γ(0), γ(1) are on the boundary ∂M
and the internal points γ(x), 0 < x < 1 are in the interior of M is called a
properly embedded arc. A simple closed arc γ : [0, 1] → M , γ(0) = γ(1) such
that all the points γ(x), 0 ≤ x ≤ 1 are in the interior of M is called a properly
embedded circle. A curve is an embedded collection of properly embedded arcs
and properly embedded circles. Note that a curve cannot be self intersecting,
since it is embedded.



Two curves γ1, γ2 are isotopic rel boundary (γ1 ∼ γ2) if there is a continuous
deformation of γ1 to γ2 which does not move the points on the boundary ∂M
and during the deformation the curve stays embedded. From now on by isotopy
we mean isotopy rel boundary.

Let T = (VT , ET ) where VT is a set of points in M and ET is a embedded
set of embedded arcs in M with both endpoints in VT . T is a triangulation of M
if every connected component C of M − ET is homeomorphic to an open disc
and in a closed walk along the boundary of C we meet 3 points from VT (not
necessarily distinct). If the manifold M has non-empty boundary and VT ⊆ ∂M
then we call the triangulation T minimal.

Let T be a triangulation of M . Let γ be a curve. We say that γ is normal
w.r.t. T if all the intersections with T are transversal and if γ enters a triangle
t ∈ T via an edge e then it leaves t via an edge different from e (i.e no two
consecutive intersections of γ with T belong to the same edge e ∈ T ).

Let γ be a curve in M . Let c ∼ γ minimize the number of intersections with
T . If c enters and leaves some t ∈ T through the same edge e then the number of
intersections of c with T can be reduced by pulling the curve c, a contradiction.
Hence for each non-trivial curve γ in M there is c ∼ γ which is normal w.r.t.
T . If γ is an arc we can fix one of its endpoints as the initial point of γ, and
number the intersection points of γ with T in order (starting with 0). We call
this number the index of an intersection point along γ.

An isotopy which for each edge e ∈ T maps points in e to points in e is
called a normal isotopy. If the triangulation T is minimal then every isotopy is
a normal isotopy.

Given a curve γ in normal position w.r.t. T we can write on each edge of the
triangulation how many times γ intersects it. Such a representation is called a
representation using normal coordinates. In each triangle the numbers written
on its sides determine the behavior of the curve inside the triangle up to isotopy
(for this we need that the curve is properly embedded and in normal position
w.r.t. T ). Two curves which have the same numbering are normally isotopic
(assuming that the positions of the points on the boundary agree).

The size of the representation using normal coordinates is the total bitlength
of the labels. The number of intersections of γ with e ∈ T will be denoted γ(e).

The segments into which an edge e ∈ T is cut by γ are called ports. The ports
are representatives of points in M − γ. A port is given by (u, v) ∈ T on which it
occurs and a number from {0, . . . , γ(e)} encoding its order on (u, v). Similarly
an intersection point of γ with T is given by (u, v) ∈ T on which it occurs and
a number from {0, . . . , γ(e) − 1}.

3 Results

The goal of this paper is to prove the following results.

Theorem 1. Let M be a compact 2-manifold. Let T be a triangulation of M .
Let γ, δ be curves in M given by normal coordinates w.r.t. T . Let p, q be ports of
γ in T . Let r be an intersection point of γ with T . The following problems can
be solved in polynomial time.



(a) Find the normal coordinates of the connected component γ containing r.
(b) Count the number of connected components of γ.
(c) List all the non-isotopic connected curves γ1, . . . , γn which occur in γ. For

each γi find the number of occurrences of γi in γ.
(d) Decide whether γ and δ are isotopic (assuming γ, δ are normal isotopy dis-

joint).
(e) Decide whether ports p, q are in the same connected component of M − γ.

If they are in the same connected component find an embedded arc in M − γ
connecting them.

(f) Compute the algebraic intersection number of γ, δ.
(g) If γ is a properly embedded arc, we can for each intersection point with T

compute its index along γ (arbitrarily declaring one of γ’s endpoints the first
intersection).

Theorem 2. Let M be a compact 2-manifold. Let T be a triangulation of M . Let
γ, δ be curves in M given by normal coordinates w.r.t. T . The following problems
can be solved by a Las Vegas algorithm (an algorithm solving the problem in
expected polynomial time with zero probability of error).

(a) Decide whether γ and δ are isotopic (assuming ∂M �= ∅).
(b) Locate the intersection point with index n of γ with T .

Problem (b), and therefore (a) (by reduction), can be solved in polynomial
time, but the proof is more complicated, and we do not include it here. Part
(b) of Theorem 1 can be extended to normal surfaces; that is, we can count the
number of connected components of a surface given in normal coordinates in
polynomial time. This result was first shown in [AHT02], however, our proof is
simpler, and is based on ideas developed independently in [SSŠ02]. For lack of
space, we do not include the proof in this version.

4 Word Equations

Let Σ be an alphabet. Words in Σ∗ are represented by straight line programs
(SLP), a special type of context free grammar. A straight line program P of
length n is a sequence of assignments xi = expr for 1 ≤ i ≤ n where expr is
either a symbol from Σ or xjxk, 1 ≤ j, k < i. For a word w given by SLP we
denote the length n of the program by |SLP (w)|. Note that there are strings
(e.g. am) for which |SLP (w)| is exponentially smaller than |w|.
Lemma 1 ([GKPR96]). Let p, t be words represented by SLP’s. The following
two problems can be solved in time polynomial in |SLP (p)| and |SLP (t)|. How
many times does p occur in t? What is the position of the first occurrence of p
in t?

Lemma 2. Let t be a word given by an SLP. The following problem can be
solved in time polynomial in |SLP (t)|. Given two positions i ≤ j in t find an
SLP for the substring t[i . . . j] of t.



Let Θ be an alphabet of variables disjoint from Σ. A word equation u = v is
a pair of words (u, v) ∈ (Σ ∪ Θ)∗ × (Σ ∪ Θ)∗. The size of the equation u = v is
|u|+ |v|. A solution of the word equation u = v is a morphism h : (Σ ∪Θ)∗ → Σ∗

such that h(a) = a for all a ∈ Σ and h(u) = h(v) (h being a morphism means
that h(wz) = h(w)h(z) for any w, z ∈ (Σ ∪ Θ)∗). The length of the solution h
is

∑
x∈Θ |h(x)|. A word equation with specified lengths is a word equation u = v

and a function f : Θ → N. The solution h has to respect the lengths, i.e. we
require |h(x)| = f(x) for all x ∈ Θ. Let h : (Σ ∪ Θ)∗ → Σ∗ be a solution of
an equation u = v. The SLP encoding of h is the sequence of SLP encodings of
h(x) for all x ∈ Θ. The size of the encoding is |SPL(h)| =

∑
x∈Θ |SLP (h(x))|.

The usefulness of SLP encoding for word equations is demonstrated by following
result.

Theorem 3 ([PR98]). Let u = v be a word equation with lengths specified by
a function f . Assume that u = v has a solution respecting f . The SLP (h) of the
lexicographically least solution h can be found in polynomial time in the size of
the equation and the size of the binary encoding of f .

4.1 Curve Coloring Equations

In this section we construct a system of word equations with given lengths which
will allow us to color connected components of a curve γ on M normal w.r.t. a
triangulation T . The alphabet used in the word equations encodes the colors. Let
t ∈ T be a triangle with vertices u, v, w. We add the following twelve variables
to the system.

xt,(u,v), xt,(v,u), xt,(u,w), xt,(w,u), xt,(v,w), xt,(w,v), yt,u, yt,v, yt,w, yu,t, yv,t, yw,t

(1)
The variable xt,(u,v) encodes the order in which the colors occur on (u, v). We
specify |xt,(u,v)| = γ(u, v). The variable yt,u encodes the colors of the (directed)
segment of xt,(u,v) whose edges pass from (w, u) to (v, u). See Figure 1.
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Fig. 1. Some of the variables for triangle t.

The following equations are called triangle constraints.

xt,(u,v) = yu,tyt,v xt,(v,u) = yv,tyt,u xt,(v,w) = yv,tyt,w

xt,(w,v) = yw,tyt,v xt,(u,w) = yu,tyy,w xt,(w,u) = yw,tyt,u
(2)

Note that the lengths of the x variables determine the lengths of the y variables,
for example |yu,t| = (|xt,(u,v)|+|xt,(u,w)|−|xt,(v,w)|)/2. For each edge (u, v) which
is contained in two triangles s, t ∈ T we add the following edge constraint.

xs,(u,v) = xt,(u,v) (3)



Without additional equations the system has a solution in which all words
consist of a’s only. We can add additional equations specifying colors of some
intersection points of γ with T . If the constraints are consistent, the components
of γ in the resulting coloring will be monochromatic, otherwise there will not be
a solution. (This will be useful when counting connected components later.)

Now we can prove part (a) of Theorem 1. Find the lexicographically smallest
solution of the curve coloring equation with r colored by color b over alphabet
Σ = {a, b}. Assigning to each edge (u, v) ∈ t ∈ T the number of b’s in xt,(u,v)
yields a normal coordinate representation of γr.

Let γ be a properly embedded arc. There is a triangulation T ′ such that
γ is an edge of T and T ′ is in normal position w.r.t. T . Set up curve coloring
equations for the edges of T in the triangulation T ′ and color each edge of T with
different color. In the solution the word xγ written on γ is the edge intersection
representation of γ in T . By Lemma 3 xγ can be compressed to size polynomial
in log |γ| and size of the triangulations T ′ and T . Hence the edge intersection
representation is compressible.

4.2 Region Coloring Equations

We can modify the curve coloring equations (1), (2), (3) to color the connected
components of M − γ. The variable xt,(u,v) will now encode the colors of the
ports of γ on (u, v), hence we specify |xt,(u,v)| = γ(u, v) + 1. The variable yt,u

will encode colors of regions extending from (w, u) to (v, u). For each t ∈ T we
add a variable zt which encodes the color of the center region (the region which
has ports on all edges of t). The triangle constraints become

xt,(u,v) = yu,tztyt,v xt,(v,u) = yv,tztyt,u xt(v,w) = yv,tztyt,w

xt,(w,v) = yw,tztyt,v xt(u,w) = yu,tztyy,w xt,(w,u) = yw,tztyt,u
(4)

The edge constraints remain unchanged. Without additional constraints the sys-
tem has a solution with all regions colored by the same color a. We can add
additional equations specifying colors of some ports. In the resulting coloring (if
it exists) each region will be monochromatic.

Let p ∈ (u, v) be a port of γ in T , where (u, v) belongs to triangles s, t ∈ T .
We would like to modify the equations to color the connected components of
M − γ − p. It is enough to modify the edge constraints of (u, v) and (v, u). We
replace the equation xs,(u,v) = xt,(u,v) by the equations

xs,(u,v) = w1w2w3, w1w4w3 = xt,(u,v)

|w1| = p, |w2| = |w4| = 1, |w3| = γ(u, v) − p.

Similarly we can set up equations for coloring components of M − γ with poly-
nomially many ports of γ in T removed.

4.3 Intersection Counting Equations

If we are given an edge e, and a number that specifies an intersection of γ along
e, we want to compute the index of that intersection.



Again, this problem can be used solving word equations. In a first step we
need to determine for each edge (u, v) belonging to a triangle t how many of
the intersections of γ along (u, v) enter t, and how many leave t (we think of
traversing γ starting at the starting point we fixed). Call these two numbers
γi(u, v, t) and γo(u, v, t). We know that γi(u, v, t)+γo(u, v, t) = γ(u, v) for edges
(u, v) belonging to t.

We can determine the numbers γi(u, v, t) and γo(u, v, t) by setting up the
triangle and edge constraints shown in (2) and (3), and specifying that |xt,(u,v)| =
4γ(u, v). We then force the starting point of γ to be equal to the string cabc. The
solution for each edge will be a concatenation of cabc’s and cbac’s, depending
on whether the edge enters or leaves the triangle. Because of Lemma 1 we can
count the occurrence of these substrings in polynomial time, and therefore we
can compute γi(u, v, t) and γo(u, v, t) in polynomial time.

With this information we set up a new set of equations. Let m = |γ|+1. For
each triangle t we take two copies of the variables in (1), one for intersections
coming into t, and one for outgoing intersections. Distinguish the two set of
variables by superindexing them by i or o. For every edge (u, v) that belongs to
triangles s and t we set up the following equations:

xo
s,(u,v)a = axi

t,(u,v) axo
s,(v,u) = xi

t,(v,u)a xi
t,(u,v) = yi

u,ty
i
t,v

xi
t,(v,u) = yi

v,ty
i
t,u xo

t,(u,v) = yo
u,ty

o
t,v xi

t,(v,u) = yo
v,ty

o
t,u

(5)

We also specify that |xi
t,(u,v)| = |xi

t,(u,v)| = m · γi(u, v, t), and |xo
t,(u,v)| =

|xo
t,(u,v)| = m · γo(u, v, t), and set the startpoint of γ to be bam−1. Equations (5)

ensure that at every intersection point the b is moved by one position.
Suppose now we are given a coordinate k along an edge (u, v) of the tri-

angulation. Since we can determine the direction of the intersection, we know
the triangle t that γ enters along that point. Using a set of equations like the
one we used earlier to count the number of intersections in each direction, we
can determine the coordinate k′ of the intersection crossing into t. We can then
retrieve the string xi

t,(u,v)[k
′ ∗m . . . (k′ ∗m+m− 1)], and determine the position

of the single b in that string which immediately gives us the index we sought.
This proves part (g) of Theorem 1.

5 The Algorithms

5.1 Counting Connected Components

Let T be a triangulation of M , where τ is the number of triangles in T . Let γ be a
curve in M given by normal coordinates w.r.t. T . The number of components k of
γ can be exponential in the input size. However it is known that the components
fall into few normal isotopy classes [Kne30].

Lemma 3. The components of γ fall into at most 6τ normal isotopy classes.

We omit the proof. We can now prove parts (b) and (c) of Theorem 1. The
algorithm for computing the number of components of γ works as follows. Pick



an edge (u, v) in T which is intersected by γ. Let r be the intersection of γ and
(u, v) closest to u. Compute the normal coordinates of the connected component
γr of γ which contains r. Using binary search find the intersection point � of
γ with (u, v) whose connected component γ� is normally isotopic to γr. The
components of points between r and � are exactly the components of γ which
are normally isotopic to γr. Hence we can increase the component count by
(�−r+1) and run the algorithm for the curve γ −(�−r+1)γr. Lemma 3 implies
that the number of repetitions of the algorithm is bounded by 6τ .

The described algorithm also finds non-normally-isotopic γ1, . . . , γn which
occur in γ and their counts. Using part (d) of Theorem 1 we can merge the
counts for isotopic γi.

5.2 Deciding Isotopy I

Let R be a union of connected components of M − γ given as a solution of the
region coloring equations, where R is colored with color b and M − R is colored
with color a. We want to compute the Euler characteristic of R. We will cut
R by γ and T into regions and use the formula χ = V − E + F . To compute
V, E, F we just need to compute these quantities for each triangle t ∈ T with
appropriate weights and then sum them together. The edges in ∂t − ∂M get
weight 1/2 and the vertices which are also vertices of T get weight one over the
number of triangles they occur in.We will only need to compute the numbers of
occurrences of b, ab, bb, ba in each xt,(u,v) which can be done using Lemma 1.

Now we can prove part (d) of Theorem 1. Because of part (c) it is enough
to consider the case when γ is connected. It is known (see [FM97]) that two
disjoint properly embedded arcs are isotopic iff they bound a disc in M . Let
α = γ + δ, the curve whose normal coordinates is the sum of the coordinates of
γ and δ. Since γ and δ are normal isotopy disjoint the curve α contains both γ, δ
as components. We color the port between starting points of γ and δ with b and
check that the resulting region has Euler characteristic 1. The case where γ and
δ are properly embedded circles is similar, we only have to check whether they
co-bound an annulus.

5.3 Connecting Two Points

In this section we prove part (e) of Theorem 1. First we want to decide whether
ports p and q are in the same connected component of M − γ. Add an equation
coloring p with b to the region coloring equations. The ports p, q are in the same
connected component of M − γ iff port q has color b in the lexicographically
smallest solution of the equations.

Suppose that p and q are in the same connected component. We want to
find a curve connecting them. Let t ∈ T and let rt,1, rt,2, rt,3 be the ports of the
center region of t. A shortest path connecting p and q does not enter the center
region of t twice and hence one of the ports rt,1, rt,2, rt,3 can be removed while
keeping p, q in the same component. We find the port which can be removed,
remove it, and move on to another triangle which does not have a port removed.
After removing a port of the center region of each triangle the components of



M − γ − {rt,?; t ∈ T} are either discs or annuli. Finally we remove both p, q
and color just one side of p with color b. For one of the sides of p the coloring
will reach q. Let x? be the solution of this system of equations. The colored
component which reached from p to q is is a sequence of rectangular regions.
The curve connecting p, q which runs in the middle of the colored component
intersects edge (u, v) ∈ T , #bxt,(u,v) times.

5.4 Deciding Isotopy II

Let T be a triangulation of M and let γ be a curve in M given by normal
coordinates w.r.t. T . We will show how to compute normal coordinates of γ′ ∼ γ
w.r.t. a triangulation T ′ which is a modification of T . The modifications we will
consider are called bistellar moves (flip, add, drop) shown on the Figure 2. The
moves can be applied only when all the triangles shown in Figure 2 are distinct.
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Fig. 2. The bistellar moves.

The new coordinates after the add move can be chosen to be γ(14) =
0, γ(24) = γ(12), γ(34) = γ(13). For the flip move γ(23) = (γ(12) + γ(24) +
γ(13) + γ(34))/2 + |γ(12) − γ(24) + γ(34) − γ(13)|/2 − γ(14).

For the drop move we can w.l.o.g. assume that the curve γ inside the triangle
123 looks as the one at the Figure 3. The e curves around the point 4 can be
removed because they are homotopic to a point. We also need to pull the f
curves since they are not in normal position w.r.t. T ′.
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Fig. 3. The drop move.
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Fig. 4. Pulling the curve to a normal po-
sition (w.l.o.g. h ≥ g).

The pulling might propagate to neighboring triangle as shown in Figure 4.
We cannot follow the propagation directly because it can happen exponentially
many times.

When both g and h from Figure 4 are non-zero we say that the pulled curves
split. For each triangle t ∈ T at most once split occurs in t (otherwise the curve
γ would have to self-intersect).

The algorithm for pulling the curves will work as follows. Using word equa-
tions we will find the segment of the pulled curves until the first split. We pull the
curves, perform the split and repeat. The number of splits and hence repetitions
is bounded by the number of triangles in T .



To find the first split we extract the outermost of the f pulled curves, call it
δ. Then we cut δ in t. If δ is still connected we cut it once more at its midpoint
(using part (b) of Theorem 2). We obtain two embedded arcs α, β starting in t.
The first split occurs when α, β choose different route inside a triangle t. The
split can be easily found using binary search.

Lemma 4. Let M be a 2-manifold with non-empty boundary. Let T be a tri-
angulation of M . Let γ be a curve in M given by normal coordinates w.r.t. T .
We can find a minimal triangulation T ′ of M and normal coordinates of γ′ ∼ γ
w.r.t. T ′

Proof. Using bistellar moves and by possibly adding new triangles we can remove
vertices of T which are not on the boundary ∂M of M . Let v ∈ T be a vertex in
the interior of M . If deg v = 3 then there are three distinct triangles neighboring
v and we can apply the drop move to eliminate v. If deg v > 3 then we can apply
a sequence of flip moves to decrease the degree of v to 3 and then eliminate it
with a drop. If deg v = 2, then we have two triangles t1, t2 glued together along
two adjacent edges. If either t1 or t2 is glued to another triangle, we can apply a
flip to increase the degree to 3 and then flip. If not, then M is a disk consisting
of two triangles, and we will need to add another triangle to the boundary, and
proceed as in the following case. The last case is when deg v = 1. This implies
that a single triangle is glued to itself. If it is also attached to another triangle,
then we can apply a flip to increase the degree of v to 2. If it is not, then M is
a disk consisting of a single triangle and we must attach an additional triangle,
and then apply the flip.

Two curves given by normal coordinates w.r.t. a minimal triangulation are
isotopic iff the coordinates are equal (and the points on ∂M agree). Hence as a
corollary of Lemma 4 we obtained a proof of part (a) of Theorem 2.

5.5 Finding the n-th Intersection Point

There is a simple randomized (Las Vegas) algorithm to find the n-th intersection
point of an oriented embedded arc γ with the triangulation T . The intersection
points are numbered by 0, . . . , |γ|.

Pick a random intersection point r of γ with T . Using the curve coloring
equations color one side with b’s and the other side with a’s. We obtain two
embedded curves γ1, γ2 which when glued together at r yield γ. If |γ1| < n then
find the n−|γ1|th intersection point of γ2 with T , otherwise find nth intersection
point of γ1 with T . The expected number of repetitions is O(log |γ|).

5.6 Computing the Algebraic Intersection Number

The algebraic intersection number of two oriented curves γ, δ in an orientable
surface is defined as follows. For each intersection of γ and δ in which δ crosses
from left to right add +1, if it crosses from right to left add −1. The algebraic
intersection number is invariant under isotopy.



Since the algebraic intersection number of γ and δ is invariant under isotopy,
we can fix a drawing of the curves. For each edge (u, v) of the triangulation we
choose which of the curves will intersect (u, v) in the half closer to u, the other
one will intersect (u, v) in the half closer to v. Now we draw the curves so that
the segments of γ, δ in each triangle are geodesics.

For a triangle t ∈ T with vertices u, v, w we need to compute the number of
segments of γ oriented from (u, v) to (u, w). Take the curve coloring equations for
the curve 4γ. Using the same idea we saw earlier, color the copies cabc (in that
order) at one endpoint. The occurrences of cabc, and cbac show the orientation
of γ along an edge. Counting the number of occurrences of cabc, and cbac then
gives us the result.
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