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Abstract

We survey proofs of five Theorems which have applications in the Theory of Computing.
The common theme of the proofs is the use of various variants of harmonic analysis. The
proofs of following theorems are included:

e Theorem of Linial, Mansour and Nisan on the concentration of the Fourier coeffi-
cients of AC? functions. [LMN93] (harmonic analysis over the finite group Z%)

e Theorem of Kahn, Kalai and Linial on the influence of variables on Boolean functions
[KKLS88] (harmonic analysis over the finite group Z%).

e The analysis of Margulis’ expander graph by Gabber and Galil [GG79] (harmonic
analysis over the compact group T?).

e Transference Theorem of Banaszczyk [Ban93] (harmonic analysis over the locally
compact group R™).

e Theorem of Thérien on the column sums in matrices (mod m) [Thé94] (generalized
harmonic analysis over the finite group Z;_; with respect to the finite field I, ).

Acknowledgement: [ would like to thank my advisor Laszlé Babai for his support and suggestions
and Divakar Viswanath for helpful discussions.
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Introduction

Fourier analysis originated in the works of Euler and Fourier, who were working on problems
in mathematical physics. The subject had a large impact on the development of mathematics.
Dirichlet, in his work dealing with the convergence of Fourier series, defined the notion of function
as we know it today. Riemann introduced his notion of integral in his work on trigonometric series.
Cantor’s study of the so-called sets of uniqueness led him to the development of the theory of sets.
Today harmonic analysis is used in every branch of mathematics including group theory (where
it was started by Frobenius), probability theory, combinatorics, differential equations, and number
theory.

Methods of harmonic analysis also found their way to Computer Science. One of the most impor-
tant applications in Computer Science is the Fast Fourier Transform (FFT) algorithm of Cooley and
Tukey [CT65] and its application to the fast multiplication of numbers by Schénhage and Strassen
[SS71]. Chung, Diaconis and Graham used the convolution <> multiplication property of the Fourier
transform to analyze random walks on graphs [CDG87]. Linial, Mansour and Nisan [LMNO93] in-
vestigated the properties of the Fourier coefficients of functions computed by the AC? circuits and
obtained result about the learnability of AC? functions. The KM learning algorithm of Kushile-
vitz and Mansour [KM93] is based on estimating the Fourier coefficients of the function learned.
For more applications of harmonic analysis in learning theory see [Jac95, BFJ194]. Kahn, Kalai
and Linial [KKL88] used the Fourier transform and Beckner’s Lemmas [Bec75] to show that every
balanced Boolean function has a variable with large influence. Thérien [Thé94] applied generalized
harmonic analysis to study of circuits with MOD,, gates. Gabber and Galil successfully analyzed
a modified construction of Margulis [Mar73] using harmonic analysis on the two dimensional torus
T?2. Banaszczyk showed a transference theorem in lattices using Fourier transforms of Gaussian-like
measures in R”. J. Naor and M. Naor [NN93] used the Fourier transform to design polynomial size
sample spaces of e-biased (logn)-wise independent random variables.






Chapter 1

Harmonic Analysis over Finite Abelian
Groups

1.1 Introduction

Let A be a measure space with a non-negative measure ;2 and the corresponding Lebesgue integral.
For complex valued functions f, g € C* we define

e pointwise multiplication (fg)(z) = f(z)g(x), z € A,

e inner product (f,g) = [ f(y g(y 1(y), where T is the complex conjugate of = € C,
e p-norm |f]], = (f If(y)l”du y))
e convolution (f *g)(z) = [ f(y)g(z dp(y).

Let G be a finite abelian group written additively. Let n = |G|. Measure on G: We endow G
with the measure p(g) = 1/n, g € G. We define the inner product, the p-norm and the convolution
on the space C% as above.

By S! we denote the multiplicative group of complex numbers of modulus 1.

Definition 1.1.1 A character y of G is a homomorphism G' — S'. The unit character 1 is the
character which assigns 1 to every a € G.

Since G is finite a function y : G — C is a character iff it satisfies
x(a+0b) = x(a)x(b), a,b € G.
Note that
e x(a)" =x(n-a) =x(0) =1L

e x(—a) = x(a).



6 CHAPTER 1. HARMONIC ANALYSIS OVER FINITE ABELIAN GROUPS

e If v and 1 are characters then y¢ and Y are characters.

Lemma 1.1.2 Characters are an orthonormal set of functions.

Proof :
Note that for any character y and any a € G

(@)Y x(b) = x(a+b) = x(b).

beG beG beG

If x # 1 then there is an a such that x(a) # 1 and hence », . x(b) = 0. If characters 1, x are
different then ¢x¥ # 1 and hence

() == Y- (R)0) =0.
Clearly (¢, ¢) = 1. [ |

Characters with the pointwise multiplication form a group é, called the dual group of G. The
unit character is the unit of GG. Every finite abelian group is a direct sum of cyclic groups. Fix

G="T0, @ ® Ln,.

Let w; = exp(2mi/n;), a primitive n;-th root of unity. For b = (by,...,b;) € G let

k

wlr) = [ [

=1

Note that x, is a character for any b € GG. The x, are all distinct. They are all characters because
the dimension of C¢ is n and the characters are orthonormal. Thus the dual group of G is

@:{Xb|b:(b1,...,bk)eG,}. (1.1)

Theorem 1.1.3 Characters form an orthonormal basis of C©.

From Theorem 1.1.3 it follows that every function f in CY can be expressed as a linear combination
of characters. The coefficient of x, is denoted by f(x,) and called the Fourier coefficient. We
have

=Y Fowxe. (1.2)

beG

The function f: G — C is called the Fourier transform of /. Measure on G: We endow the
group G with the measure v(g) = 1, g € G. The corresponding inner product of f,g € C% is
denoted (f, g), the p-norm is denoted || f||, and the convolution of f, g € C“ is denoted f % g.
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Note that x,X» = Xaer» and hence

is an isomorphism between G and G. Hence we can view f as a function in C% and write f(b)

instead of f(X(,).
From the orthogonality of characters it follows that

-~

f(0) = {f, xe)- (1.4)
)

Expanding (1.4) and using x,(b) = xs(a) we obtain

=13 fow (15)

Theorem 1.1.4 The Fourier transform satisfies

° linearityf/—i-\g:f—l—/g\, a/?:af f,geC% acC,

~

e fg=1%G, Fxg="13g, f,9€CC.

Proof :
The linearity follows from the linearity of inner product. To prove fg = f % ¢ note that

9= (3 Flara) (X 006) = 3 xenl@it) = > x> Fla)ilc - a) = Y (F4a)e)x.

acG beG a,beG c€G  aeG ceG
and hence E — £ %3. The proof of m = 7§ uses (1.5) instead of (1.2). [

An important property of the Fourier transform is the following formula.
Theorem 1.1.5 (Plancherel formula) For any f,g € C

(f.9)=(f,

Proof :
Using the orthogonality of characters

= O f@)xa Y50 = > F@)al)(xe xs) = Y Fa)gla) = (£, 3

a€G beG a,beG a€G

Taking f = ¢ in the Plancherel formula we obtain

Theorem 1.1.6 (Parseval’s equality) For any f € C%
£ 112 = 11 ]2
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To obtain inequalities for other p-norms we will need the Riesz-Thorin interpolation theorem,
Minkowski’s and Holder’s inequality (see [Zyg59], vol 2, p.95, p.94, vol 1, p.19)

Theorem 1.1.7 (The Riesz-Thorin interpolation theorem) If T is a linear operator from a
measure space A to a measure space B such that

T e < allflhym
||Tf||1/q2 < 02||f||1/p2

where 0 < p1,pa, 1, G2 < 1, then for any t € [0, 1]

T fllsq < el fllyp
where p = tpy + (1 — t)pa, ¢ =tqr + (1 —t)qo and ¢ = cley .

Theorem 1.1.8 (Ho6lder’s inequality) Let A be a measure space. Let 1/p+1/g =1, p,q > 1.
For any f,g € C*

[ Fglle < 1111l

Theorem 1.1.9 (Minkowski’s inequality) Let A be a measure space. Let p > 1. For any
frgect

1+ glle < [[£1lp + llgllp-

An important generalization of Parseval’s equality is the

Theorem 1.1.10 (Hausdorff-Young inequality) Let 1/p+1/q = 1, p,q > 1 and f € C°.

Then
£l <[1Flg for2 <p<oo
Ul = 1f Ml for1<p<2
Proof :
Note that
~ 1 1
F@)l == Fla)xa(a) < =3 [f(@)] = Il
acG acG
and hence |A|j/‘\|A|OO < ||f]]1. From Parseval’s equality we know |A|f|A|2 =||f|]2. An application of the

Riesz-Thorin interpolation Theorem yields the Lemma for 2 < p < co. For 1 < p < 2 note that for
1/p+1/g=1
ALE = 1l f]lg-

The following inequalities for norms in C% and CC will be useful
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Lemma 1.1.11 Let p<r. For any f € C% and g € cé

Al < 1l
lglle = llgll
Proof :
Note that ||f]|, = || |£|?|[/* and |||}, = || |f|p||%§. Hence we can w.l.o.g. assume p =1 and r > 1.

Let g be the conjugate exponent to r i.e. 1/r + 1/q = 1. By Holder’s inequality

AV < TG = 1]l

For the second inequality using the same argument we can assume p = 1 and 7 > 1. Also w.l.o.g.
llg||]1 = 1. Hence |g(x)| <1 for all x € G. Therefore |g(x)|" < |g(z)| and ||g]], < 1. |

Theorem 1.1.12 (Young’s convolution inequality) Let 1 <p,q,r < oo, 1/r=1/p+1/q— 1.
For any f,g € C%

1+ gllr < [1f1lp 9]l

Proof :
We have ||f * g|l1 < ||f]l1]lg|l: and from Hélder inequality ||f * glloo < ||f]]oollg]]1. Hence using

Riesz-Thorin interpolation Theorem

1f* glly < 1l F1lallglh- (1.6)

From Holder inequality
1]+ glloo < [If1lpllgllg, for 1/p+1/q=1. (1.7)
Now using Riesz-Thorin interpolation Theorem on (1.6) and (1.7) we obtain the Lemma. |

Given a subgroup H < G, the characters for which x|, = 1y form a subgroup of G. lts
corresponding (via (1.3)) subgroup in G is denoted H-. Note that the characters which are 1 on
H are in one-to-one correspondence with the characters of G/H (let x(aH) = x(a)). Thus we have

H'~G/H.

Theorem 1.1.13 (Poisson Summation Formula) For a subgroup H < G

ﬁ S fata) =Y Fw)xyla).
Proof :
1 1 ~ ~ 1
@) =g 33 Fte +a) =3 Fumn(@ gy Y ) = ()

zeH zeH yeG yel zeH
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is a character of H and hence by the orthogonality

The restriction x|,

() =" Fuxyla)xyl, = 1).

yeG
|

Finally we compute the Fourier coefficients of the function which has value 1 at 0 and value 0
elsewhere. For a set A C GG the characteristic function of A is denoted by 14,

lA(x):{ 1 ifze A

0 otherwise

For a one element set {a} we write 1, instead of 1y,.

Example 1.1.14 For 1, we have

~ 1 1
1o = —v.(0) = —
0 nX() n

and hence

1o = %ZX&-

a€G

1.2 Representations of Boolean Functions

Let B = {0, 1} where 0 represents false and 1 represents true. Given a Boolean function f : B" — B,
we can view it as a function f: Z% — {T, F} C C. Usually we choose

e '=0, T=1;o0r
o ['=1 T =-1.

Let f, be the {0, 1}-representation of f and f, be the £1 representation of f. We have f, =1—2f,
and hence R
-~ —2f.(x for x £0
1 —=2f(z) forz=0

Thus the choice of representation does not have a big influence on the Fourier transform. To simplify
notation we will use the correspondence between Z1 and the subsets of [n], (a4, ..., a,) <> {i;a; = 1}.
We define the degree of f as

~

deg f = min{e]; f(z) #0}.

If all f(xz) =0 we let deg f = 0. Note that the degree is independent of the choice of the represen-
tation.
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1.3 Random Restrictions and the Fourier Transform

Random restrictions have proven to be useful in the analysis of Boolean functions [FSS81, Has86,
LMNO93]. In this section we will prove a relationship between the Fourier coefficients of a function
and its random restriction. Lemma 1.3.6 will be used in section 1.4 to analyze the Fourier coefficients
of the AC? functions.

Definition 1.3.1 Let f : Z} — C be a function. Let A C [n] be a subset of variables of f. Let «
be an assignment of values to the variables in A. The restriction f,. , is the function obtained
from f by assigning the values « to the variables in A.

Definition 1.3.2 Let 0 < p < 1. A p-random restriction of f : Z} — C is fa, o where

e A is random subset of [n], each element is included in A independently with probability 1 — p,

e « is a random {0, 1}-assignment to variables in A.
First we will look at the relation between the Fourier coefficients of a restriction of f and the Fourier

coefficients of f.

Lemma 1.3.3 Let f: Z% — C, A C [n] and v C A. Then
fA(—a Z (@ +y)xaly

yCA

Lemma 1.3.4 ([LMIN93]) Let f : Z% — C, A C [n] and x C A. Then we can calculate the

following expected value and the second moment 0f]§<_\a where « is a random {0, 1}-assignment to
variables in A.

Proof of Lemma 1.3.3:

> f@+y)xaly) Z Zf )X+ Y)Xa(y) =

yCA yCA 2Cln

—_—

1
on— |A\ Z F2)x:(= 2\A| > x(z+a) = oAl Y. FEx:(x) = Facal)

yCA 2C[n};zNA=a

Proof of Lemma 1.3.4:
Using Lemma 1.3.3

2%4 > Facalw) = ﬁ Y S fe+yxaw) =D flo +y)2|LA > Xaly) = Fl@).

aCA aCAyCA yCA aCA
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Again using Lemma 1.3.3

%%Zf/a;( 2‘A|Z N7 Fl@+y) F@+ g Xalys + 1) =

aCA aCAyy,y2CA
Y 2
S Fla ) fla+ ) 2|A‘ D Xalyr+u2) = Fla+y)
y1,y2CA aCA yCA
[ |
Using the Lemma 1.3.4 we will obtain a relationship between the Fourier coefficients of a random
restriction of f and the Fourier coefficients of f. For x; € A the function f4., is not a function

of z;. However we can view it as a function of x; which does not depend on z;. Then we have
facaly) =0 if y contains x.

Lemma 1.3.5 Let f : Z} — C. We can compute the expected value and the second moment of
faca where A < « is a p-random restriction.

Epolfaca(@)] = pf(a),
Baalfaca(®)? =p 3" flo + )% (1 - ).

yCT
Proof : /\ .
If the set of set variables A intersects x then fa. o(z) = 0, otherwise by Lemma 1.3.4, fa. o(z) =

F(z). The probability that no element of z is chosen to A is pl! and hence EA,a[ji;é(x)] = pll f(z).
Let p(A) denote the probability that the set A is chosen in the random restriction A <— «. Then

Exalfaca@? =Y p(A)enA=03 fleuy)? =

ACTn) yCA
S F@uy?? Y pA)rnA=0)(yCA) = fl@uy)pa—p).
yCln) ACIn) e

Finally we express the sum of high Fourier coefficients of a random restriction of f using the
Fourier coefficients of f. Let B(n,p) denote a random variable with the binomial probability
distribution with parameters n (the number of coin tosses) and p (the probability of heads).

Lemma 1.3.6 Let f : Z) — C. Then

3" Facal@)

ja|>k 2Cln]

[l
)
S
—~
EX
S
V

X
N

where A < « is a p-random restriction.
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Proof :
For fixed A and a random assignment « using Lemma 1.3.4

Eo | Y Faca@?l = Y Y Ja+yr= Y f)*
|zNA|>k

x| >k |z|>k,zCA YCA

If we let A be random where each element is chosen independently with probability p then

Eaa | Y Facal@?| = 3 J@?’Pen@>k) = Y J@)P(B(le].p) > k).
xC[n] zCn]

|z|>k

1.4 AC° Circuits

Let €2 be a set of Boolean functions. An {2-Boolean circuit with n inputs is a directed acyclic graph.

It has vertices of two types: input nodes 1, ..., z, and gates. One of the gates is the output gate.
Each gate g is labeled by a function f, from €. We define the function B" — B computed by a
gate g of the circuit inductively as fy(ai,...,a;) where ay,...,a; are the functions computed by

the predecessors of g. The function computed by the circuit is the function computed by the output
gate. The size M of the circuit is the number of gates, not counting the input nodes. The depth d
of the circuit is the length of longest path from an input node to the output gate.

Let {C,} be a sequence of circuits where C,, has n inputs. Let {f,} be the corresponding sequence
of Boolean functions (f, is the function computed by C,,). With the usual abuse of language we
say that the circuit C' computes the function f.

An AC? circuit consist of AND and OR gates of unbounded fan-in and NOT gates. It has
polynomial size and constant depth. Using deMorgan’s laws we can normalize the circuit so that
it contains only n NOT gates connected directly to the inputs. The normalization at most doubles
the size of the circuit.

It is well known that the AC? circuits cannot compute parity [Ajt83, FSS81, FSS84, Yao85]. They
even cannot approximate parity [Ajt83]. Stronger results were shown by Hastad and Boppana (see
[Has86], p. 63).

A Fourier coefficient of a Boolean function f : Z% — {0,1} can be expressed as

fly) = P(f(x) = @ieyrs) = P(f(2) # @ieyi).

Thus f(y) measures the correlation between f and the parity of variables x;, i € y. Since the
functions computed by AC? circuits cannot approximate the parity it follows that each high Fourier
coefficients of f € AC? must be small.

Theorem of Linial, Mansour and Nisan [LMN93] shows that even the sum of squares of high
Fourier coefficients must be small. The rest of this section is devoted to a proof of their result. The
proof is a slightly modified version of the proof in [LMN93].
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Theorem 1.4.1 Let Boolean f : Z% — {—1,1} be computed by AC® circuit of depth d

and size M. Then .
> Far < 2 e (L2
e

|z|>t

Remark 1 The result proved in [LMN93] has slightly different bound than Theorem 1.4.1

S Fla)? < 20270700

|z|>t

Theorem 1.4.1 has interesting applications [LMN93], for example functions computed by AC? cir-
cuits can be learned approximately by sampling their value at quasipolynomial (2P°Y!°8 ) randomly
chosen inputs (chosen under the uniform distribution). Another corollary [LMN93] of Theorem 1.4.1
is that the average sensitivity of a function computed by an AC? circuit of depth d is O((logn)?).

Let f be a Boolean function on n variables, let x be an assignment and let f(x) = i. There exists
smallest A C [n] such that fa. o = 7 where & = (z N A). You can view A < « as a proof that
f(z) =i. It can happen that for every z there is small such proof.

Definition 1.4.2 Define the non-deterministic decision tree complexity of f

D;(f) = max min{|A[; A+ a, faca =i, 2N A= a}.

z; f(z)=1

Let D.(f) = max{Dy(f), D:i(f)}.

In [Nis91] D, (f) is called the certificate complexity. We say that f is computed by a t-CNF (resp.
t-DNF) formula if f is computed by a CNF (resp. DNF) formula with clauses of size at most ¢. Let
s (resp. sq) be the smallest number such that f can be expressed as an s.—CNF (resp. s4-DNF).
Then Dy = s, and Dy = s4.

We say that in a DNF formula clauses accept disjoint inputs if for each input either 0 or exactly
1 clause is satisfied. We will use the following stronger version of Hastad’s Switching Lemma (see

[Has86], p.65).

Theorem 1.4.3 (Hastad’s Switching Lemma [Has86]) Let f be computed by a t-CNF formula
and A < « be a p-random restriction. With probability at least 1 — (5pt)®, faca is computed by an
s-DNF formula in which clauses accept disjoint inputs.

If a function ¢ is just a disjunction of s atoms, then g(z) = 0 for |z| > s because g does not
depend on at least one of the variables in x. A function f which is computed by an s-DNF formula
in which clauses accept disjoint inputs can be viewed as a sum of functions which are disjunctions
of s atoms and hence f(z) =0 for |z| > s. Hence we have

Corollary 1.4.4 Let
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L Dz(f) S t: and
e A+ « be a p-random restriction.

Then Dy i(faca) < s and deg f < s with probability at least 1 — (5pt)°.

Using Corollary 1.4.4 we will obtain the following Lemma.

Lemma 1.4.5 Let
o f be computed by AC® circuit of depth d and size M, and

e A+ « be a p-random restriction.

Then for any s > 1 with probability at least 1 — M (5p'/4s!=1/d)s

deg(fAea) S S.

Proof :
Let fi,..., fx be functions such that D,(f;) <t <'s, i € [k]. Observe that

Do( N\ fi) <t pi(\ £i) <t
ic[k] i€[k]

because to prove that Af; is zero (or that Vf; is one) it is enough to prove that any of the f; is zero
(or that any of the f; is one). If A <— « is a g-random restriction then by Hastad’s Lemma

p((As), )= (VH), )= (L9
i€[k] i€[k]

where each of the two events happens with probability at least 1 — (5¢t)*.

Let V; denote the set of nodes of height 7 in the circuit. The functions computed by the leaves of
the circuit have D, = 1. By (1.8) after applying ¢s-random restriction, all functions computed by
the nodes of height 1 will have D, < s with probability at least 1 — |V;|(5gs)®.

Now inductively, if the functions computed by the nodes of height ¢ have D, < s then after
applying a ¢g-random restriction, the functions computed by the nodes of height ¢ + 1 have D, < s
with probability at least 1 — |[V;11](5¢s)°.

After applying a g-random restriction d — 2 times we obtain that with probability at least 1 —
(M — 1)(5gs)® the functions computed by the nodes of height d — 1 have D, < s. After applying
one more g-random restriction we obtain that the function computed by the circuit has deg < s
with probability at least 1 — M(5gs)®. Hence we obtained that for a function f computed by an
ACP[d] circuit of size M and sq’random restriction A < a, deg faro < s with probability at least
1 — M (5gs)®. |

We will use Chernoff’s bound to estimate B(n,p) (see [MR95], p. 235):
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Theorem 1.4.6 (Chernoff’s Bound) Let X1,..., X, be independent random variables. Let X =
Xi+--+ X, and p=FE[X]. For0<§<1

P(X <(1-d)p) < e~ /2,

Proof of Theorem 1.4.1
Let p € [0,1] and s > 1. By Lemma 1.3.6

Z F@)?P(B(ls),p) > 5) = Ean | Y Facal®)?

|| >s?

For a Boolean f, ||f||2 = 1 and hence by the Plancherel formula the random variable in the paren-
thesis has value at most 1. Moreover by Lemma 1.4.5 with probability at least 1 — M (5p*/4s!=1/d)s
it has value 0. Thus

Z F(@)2P(B(|z],p) > s) < M (5p"/%s'=1/d)s.

Since P(B(t,p) > s) is an increasing function of ¢ we obtain

(5p1/d81—1/d)s
Iz;tf (B(t,p) > s) '

Let p = 2s/t and s > 3. By Chernoff’s Bound
tp —tp/8
P(B(t,p) > 5) >1— e8> 12,

For s = 2 (¢/2)"/? we obtain

> Fop < 2t exp (5072,

|z|>t

1.5 The Influence of Variables

The influence of a variable z; on a Boolean function f is the probability that for a random
assignment A < a, A = [n]\ {7} of values to the other variables the function f4, , is not constant.
For the AND function every variable has a tiny influence 2!"". However if the function is more
balanced e.g. if f is zero on a half of the inputs then there is a variable with a large influence
Q(logn/n). This result is due to Kahn, Kalai and Linial [KKLS88|.
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Theorem 1.5.1 For a function f : ZY — {0,1} such that P(f =1) =p <1/2
1 2
L) o2 1087
n
i€[n]

in particular there is i € [n] such that

where ¢y, ¢y are constants.

The theorem is tight up to the multiplicative constant, see [BL90]. It has been extended to
functions [0, 1] — C in [BKK*92]. The rest of the section contains the proof of Theorem 1.5.1.

For any 1 > £ > 0 define the linear operator 7. : C?* — C”?
Z fla)elx (1.9)

In [Bec75] it was shown that 7. is a norm 1 operator from L'*<*(Z7) to L*(Z1).
Lemma 1.5.2 For any f: 75 — C

ITeflle < (1 f]lse

We will prove Lemma 1.5.2 using Beckner’s Lemmas in section 1.6.

Proof of Theorem 1.5.1
Let fi(z) = f(x) — f(z +i). Clearly for any p, I;(f) = ||fi|[5. We have

T 1 . = ; 2/\(17) ifiex
) — . _1)\lznyl — _(_1)i€T) —
o) = 5 32 500 = -+ )0 = Fo 1= (1)) @ e
yLn
Hence
- S 2faeth
Y]
By Plancherel’s equality and Lemma 1.5.2
S aF@?e = LAl < il = L(HZOHD. (1.10)

1

Summing (1.10) over i € [n] we obtain

4 Z 2| f(x)%2 < ZI £ 0+ (1.11)
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The following equation is a linear combination of (1.11) with 2 = 1 and 2 = 1/2. For any a > 0
we have

LS+ Y ez b3 ( #2741 ol o)
i€[n] i€[n]

We have | |
min (— + 2_:”> x> g
z>1 \ a a
and hence
1 loga
- |zl
5 ( +2) fal o) PR
zC[n n);z#0
We have S f(z)2=p— f(0)2=p—p> > p/2 and hence
zClnl;z#0

loga
Z +ZI Y3 >2p =

ZG[ ]

Let w = Y I;(f)? From Lemma 1.6 we have

i€[n]
ZI < (wn) 1/2 and ZI 4/3 < w?Ppl/3.
i€[n]
Hence . |
—(wn)1/2 T+ w?Ppl3 > 2 ogap‘
a a
For a = n'/% we obtain .
1/2 2/3 11087
w't+w 3 2 —=P.
Since for w < 1, w'/? > w?/? we have
w5 L,
— 36 n

1.6 Beckner’s Lemmas

This section contains the proof of Lemma 1.5.2. The following Lemmas 1.6.2 and 1.6.4 needed in
the proof of Lemma 1.5.2 were proven by Beckner [Bec75]. The proofs given here are simplified
versions of Beckner proofs.
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Lemma 1.6.1 For1 <p<2anda €R

(1 + sin 2a)”’% + (1 — sin 20)"/?

> (14 (sin)*(p — 2))‘7)/2 .

2
Proof :
Note that for 1 <p<2and -1 <2<1
(I+2)P+(1—-2)P - P\ o p(p—1) 2 2
— >14 20 2> (1 — 1))/ 1.12
> ki_jo%z_+ ;2 2 (12— 1)) (1.12)

The first inequality in (1.12) follows from the fact that the () are positive. The second one follows
from 1+t > (1 + )%, 0<z,t<1. Hence

(1+ 22 +22)P/2 + (1 + 22 — 22)P/2
2

> (1+22(p - 1)""

Divide both sides by (1 + 22)?/2 and let = (sina)?. |

1+ 2
Lemma 1.6.2 For any x,y € C and any 1 < p < 2 we have

<|96+y\/zv—1|2+|96—y\/p—1|2>1/2 < <Ifc+y|”+|x—y|”>l/p
9 = 9

(1.13)

Proof :
We can scale inequality (1.13) so that 2T + y7 = 1. Let a = 27 + Ty and (sina)? = yy. Note that
a® < (sin 2a)?. The inequality becomes

5 a)P/? — aq)P/?
(14 (sina)?(p— 2))"% < _((”) nal ) )

. (1.14)

The right hand side of (1.14) is a decreasing function of |a| and hence it is enough to prove (1.14)
for |a| = sin 2a.. Now use Lemma 1.6.1. |

For simplicity we will consider finite dimensional function spaces. Given a linear operator T : C* —
CC, let Kp(x,c) = (T1,)(c), K1 : A x C — C is called the kernel of T. From the linearity of T

¢) =Y Kr(z,c)f(x)

T€EA

For any B and f € C**8 we let Tf : C**B — C“*P where we apply T to a — f(a,b) for each b
separately

(Tf)(c,b) ZKT.Z'C (z,b)

TEA
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Given two operators T; : C4% — C%, i = 1,2, their product is the operator T : CA1 x4z — CC1xC2
T =TT, where we apply T, for each a € A; separately and then T for each d € Cy separately.
Note that the kernel of T is

KT((a; b)7 (xa y)) - KTI (aa x)KTz (b7 y)'

The definition of the product of operators can be easily generalized for the product of more than two
operators. Note the following relationship between the product and the composition of operators

(Tl O Sl)(TQ O SQ) = (TlTQ) o (5152) (115)
Given C* with a p-norm and CP with a ¢g-norm and f € C**B let

@ 9)ap =y = 1f (2, )l

We define a p-norm on C**B

)l = 1T (s ) e [y = 1S @ 0) yip asp-
We will need generalized Minkowski’s inequality, see [HLP34] p. 148.

Lemma 1.6.3 For 1 <p<gq and any f : C**F — C

s 9L g < AL 9) g [

Lemma 1.6.4 Let 1 <p<ygq. Let T; : C — C%, i = 1,2 be linear operators. If for any f; € C

T fillg < (I fillp

then for T =TTy and any f € CA1*42

T fllg < 11 f]lp-
Proof :

Since 1 < p < ¢, we can use Lemma, 1.6.3

(T ) e, Dlg = [1TUT2f) (e d)lleg llag < TS (@ D) lacp [azg <
(o) (@ )l lap < AT (@ 0)op llazp = [[F]p-

Lemma 1.6.4 can be easily extended for the product of more than 2 operators. Now we can finally
prove Lemma 1.5.2.

Proof of Lemma 1.5.2
Take the operator T, : (2 — C) — (Z} — C) defined by (1.9). Take any function f : Zy — C and
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let & = F(0), y = F(1). Then £(0) = ay, f(1) = 2—y and (T}, f)(0) = 2-+2y, (T, )(1) = 2 —ey.
Taking p = 1 4+ &2 in Lemma 1.6.2 we obtain that T; . : L'** (Zy) — L?(Z,) is a norm 1 operator.

Now we will show that T}, . is product of n copies of T, and hence by Lemma 1.6.4 has norm 1
as an operator from L't<*(Z2) to L(Z7).

Let F, : C’% — €75 be the Fourier transform operator. Let U, : C?% — 7% have kernel
Ky(x,¢) = (z = ¢)el*l. Clearly F, is the product of n copies of F} and U, is the product of n copies
of U;. Now since T, = F;' o U, o F;, we have using (1.15) that T}, is the product of n copies of 7.
|
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CHAPTER 1.

HARMONIC ANALYSIS OVER FINITE ABELIAN GROUPS



Chapter 2

Harmonic Analysis over Locally
Compact Abelian Groups

2.1 Introduction

We will only use harmonic analysis on R*, Z" and T" = R"/Z". It might be useful to mention a
more general setting. A locally compact abelian (LCA) group is a locally compact Hausdorff
topological space with group operations which are continuous i.e. the mappings + : G x G — G
(where G' x G has Cartesian product topology) and — : G — G are continuous.

On such a group there always exists unique (up to multiplicative factor) Borel measure u invariant
under the group operations i.e. for every measurable set £ and x € G, pu(E) = u(E + x). The
measure is called the Haar measure. The measure of a compact set is finite and the measure of
an open set is positive. The integral corresponding to the Haar measure is called the Haar integral.

A character of G is a continuous homomorphisms from G to the multiplicative group of complex
numbers of modulus 1. The group G of all characters of G with topology generated by

Uc. ={x € GVz € C Ix(x) — 1] <e,}, C'— compact,e >0

(and their translates) is a locally compact abelian group called the dual group of G. Pontryagin’s
duality theorem says that the dual of G is isomorphic (as a topological group) to G. Moreover if

G is discrete then G is compact and vice versa.
The Fourier Transform of f € L'(G) is defined as

Foo = [ roxads
If f is continuous and f € L'(G) then we have the inversion formula
f(z) = /@f(m)x(m) dy, forallzeG
where dy is an appropriate normalization of the Haar measure on G.

23
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If f € L}(G) N L*(G) then f € L*(G) and we have the Plancherel formula

1£1l2 = [ F1l2

Remark 2 If G is compact we usually normalize the Haar measure on G so that p(G) = 1. This

normalization makes the characters orthonormal. The normalization of the Haar measure on G
(which is discrete) for which the inversion formula holds is p(x) =1, = € G.

Note that the Haar measures defined for a finite group G in section 1 correspond to viewing G
as a compact group and G as a discrete group.

2.2 Fourier transform over T"

Let T" = R"/Z" with the standard Lebesgue measure and integral. Two functions f, g : T* — C
are equivalent f ~ g if they differ in a set of points of measure 0.

Let L?(T") be the space of measurable functions T" — C such that [, |f(z)]> du < oo factored
by the equivalence relation ~. The space L?(T") with inner product

(f.g) = / £ (g (®) dp

is a Hilbert space.
Let L?(Z™) be the space of functions f : Z" — C such that Y, ;. |f(2)[* < co. The space L*(Z")
with inner product

(f.9)="Y_ f(2)9(2)

ZEL™

is a Hilbert space.
Theorem 2.2.1 Inner product and metric satisfy
o |(f,9)] <|Ifllz-llgll2 (the Cauchy-Schwarz inequality)
o [|f +glla < |[[fll2+lgll2 (triangle inequality)
Theorem 2.2.2 The characters of T" are
{x.(7) = exp(2miz"z); 2 € Z"}.

They form an orthonormal basis of L*(T") i.e. any function f € L*(T") can be written as

=Y flo)x..

ZEL™

~ ~

The f(z) € C are called the Fourier coefficients, f(z) = (f, x.)-
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Theorem 2.2.3 (Riesz-Fischer) The map L*(T") % L*(Z") is linear, bijective map.
Moreover we have

e (f,9)= <J?, g) (Parseval’s identity)

e ||ll2=|I7]]> (the Plancherel formula)

o |Ifllee < IIflls

and hence the Fourier transform is an isometry of L?(T") and L?*(Z,).

A nice application of the Plancherel formula is computing the sum

[o¢]
1 w2

- )
—n 6

-~ -~

Consider f(z) =z on T'. Then ||f||3 = 1/3, f(0) = 1/2 and f(n) = i/(2wn) for n # 0. Now use
the Plancherel formula.

2.3 Expander Graphs Construction

The first expander graph construction is due to Margulis [Mar73]. We are going to show an expander
graph construction due to Gabber and Galil [GGT79]. The construction can be analyzed without
harmonic analysis, using linear algebra (eigenvalues) [JM87]. Expanders with much better expansion
have been constructed in [LPS88, Mar88].

Definition 2.3.1 A bipartite graph G = (AU B, E) is (n,d,a) expander if |A| = |B| = n,
|E| < nd and for every X C A
X
N0 = (1+ab 1) x)

n

Explicit expanders of bounded degree have a great number of applications in the Theory of Com-
puting. They are used in the logn-depth sorting network of Ajtai, Komlds and Szemerédi [AKS83],
in extraction of random bits from weak random sources [AKS87, CW89, 1Z89], or in explicit con-
struction of fault tolerant networks [ACS88].

Definition 2.3.2 Let G,, be graph with A, B = Z2 and (z,y) € A connected to {o;(x,y);i €
{0,...,4}} where

O'()(IL',y) = (1‘,y)
o(z,y) = (v +y,y), oor,y)=(r+y+1y)
o3(x,y) = (v,x+y), ou(z,y)=(r,c+y+1)

Theorem 2.3.3 G,, is an (m?,5,(2 — \/3)/4) expander.
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Proof :
We need to show for any X C Z2,

oy (X)U- - Uoy(X) - X| >«

There is a natural mapping between the subsets of Z2, and the subsets of the 2-dimensional torus
with sides of length m (i.e. R?/mZ?), where (i,7) corresponds to ((z,7) = (i,i + 1) x (4,7 + 1).

Let 71 be a linear transformation on R?>/mZ? 7 (x,y) = (v + y,y). Under 7, the 0(s, ) is
transformed to a parallelogram one half of which lies in ((i + j, j) and the other in O(i + j + 1, j).
Hence the nonempty squares in 71 (X’) — X’ correspond to the elements in (o (X) U 02(X)) — X
where X' C R?/Z2, corresponds to X C Z2,. Thus

|01 (X) U 02(X) = X| > p(ma (X7) = X).
Similarly for 7 (z,y) = (2,2 + y), |03(X) Uoa(X) — X| > p(r2(X') — X'). Hence

o (X) U - Uoy(X) — X| > max{|o(X) Uoa(X) — X|,|o3(X) Uou(X) — X|} >

£ (H(n(X) = X') + uln(X') — X))

and to show the expansion property of GG, it is enough to show
U (X') = X7) 4+ p(na(X') = X7) 2 2apu(X")u(X7) /. (2.1)

We will show that (2.1) is true not only for X’ arising from the mapping between Z2, and R* /mZ?
but for all measurable X’. Scaling down to standard torus S? = R? /Z? inequality (2.1) becomes

u(ri(X) = X) + p(ra(X) = X)) > 20p(X) (1 p(X)). (2.2)

From now on we are working on the standard torus S? = R?/Z?. Note that the 7; are measure
preserving and hence pu(7;(X) — X) = pu(X) — p(7:(X) N X). Now (2.2) becomes

(1 (X) N X) + p(r2(X) N X) < 2u(X)(1 - ap(X)). (2.3)
Now we rephrase (2.3) in terms of functions
<1x, (T1 + T2)1X> = <1X,T11)(> + <1)(,T21X> S 2(1)(, ]-X>(]- -+ Of(lx, ]-X>) (24)

where T;f = f o TZ-_I is a linear operator. Now it looks that we need to estimate the Rayleigh
quotient of the operator 77 + T, on some class of functions. Theorem 2.4.4 shows that on the space
of L? functions for which [ fd?z = 0 the operator T} + T, has Rayleigh quotient 3 = /2 + 1/2.
Let us subtract a constant function from 1x so that we can apply Lemma 2.4.4

(Ix — (X)), (T + T3)(1x — p(X))) < B{1lx — p(X), 1x — p(X)). (2.5)
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Using (u(X), (X)) = u(X)?, (u(X),1x) = u(X)?* and (1x,1x) = u(X) on (2.5) we obtain
(L, (T1 + T3)1x) < 2u(X)(B/2+ (1 = B/2)u(X))

which proves (2.4) fora =1 — 3/2 = (3 —/2)/4 < (4 — 2V/3) /4.
To fix the proof note that if for every measurable X,

(7 (X) = X) + p(75(X) = X)) > dop(X)u(X) (2.6)

then also (2.2). The proof of (2.6) follows exactly the same steps as the proof of (2.2), using an
estimate on the Rayleigh quotient of 7" = T o T} + 15 o T5. [ |

2.4 The Rayleigh quotient of Operators

In this section we compute the Rayleigh quotient of the operator T} + 15 and T o T} + 15 o T3 from
the section 2.3 following the proof of Gabber and Galil [GGT9].
Given a bounded linear operator 7" its spectral norm is

171l = sup {|[Tzl2: llell. = 1},

its spectral radius is
p(T) = lim |71},

and its Rayleigh quotient is

r(1) = sup { (T, 2)]; [Joll = 1}
The Cauchy-Schwarz inequality yields
p(T) < r(T) < [Tl
If T is self-adjoint then p(T') = r(T) = ||T||2-

The linear operator T on L*(T") gives us a linear operator 7 = F o T o F~1 on L?(Z") where
F' is the Fourier transform operator. By Parseval’s identity the operators T and T have the same
spectral norm, radius and Rayleigh quotient. In our application it will turn out to be easier to
analyze the operator T.

Lemma 2.4.1 Let A be an integral n X n matriz with determinant 1 and (T'f)(z) = f(Ax) a linear
operator on L*(T™). Then

~

(TH(z) = f(A T2). (2.7)
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Proof : R
Since T is linear, it is enough to see (2.7) for f =

(Tla)(l') = / 6_2m$TZT(€2maTZ) d"z = / eQm(“TA_xT)Z d"z = (IL‘ = ATG) — ]-a(A_T:L'),
" T

n

Let X be the subspace of L?(T?) containing the functions satisfying f(O) = [ fd*xz = 0. Our
goal now is to compute the Rayleigh quotient of the operator "= T + T, (defined in (2.4)) on the
space X. Recall that

(Tf)(@,y) = fle—y,y) + flz,y —2).
Hence by Lemma 2.4.1

(TH(x,y) = fle,z+y)+ flz +y,9)
where T is operator on the space Y which is a subspace of L?(Z?) consisting of functions with
f(0) =0.

Consider an undirected graph H; with vertices Z* — {0} and (a, b) being connected to (a + b, b)
and (a,a + b). We define a function r on undirected locally finite graphs so that r(Hy) = r(T).

A connected component of Hj.

Definition 2.4.2 Let G = (V, E) be a locally finite undirected graph. Let

G)=sup{>  flu)f(v);Y fw)’=1, f:V >R}

{u,w}€FE veV
The following Theorem gives us an upper bound for r(G) of a graph G.

Theorem 2.4.3 Let A be a labeling of arcs of G with positive real numbers such that \(u,v) =
1/A(v,u). Then

r(G) < 1fsup Z AMu, v).

ueV vEN (u)
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Proof :
Using the inequality between arithmetic and geometric mean and the property of A\ we obtain

S S < S5 (F@Mw,0) + S Aw,w) = (+)

{uv}eE {up}eE

Now

=30 3 M) <5 {smp 32 M) | 35007

uev vEN(u ueV uev

Now we use Theorem 2.4.3 to compute r(H;)

Theorem 2.4.4

r(Hy) < 1/2+ V2.

Proof :

From Euclid’s algorithm it follows that for any d € N the vertices (a,b) such that ged(a,b) = d
form a connected component of H;. These connected components are isomorphic and hence it is
enough to consider only one of them, e.g. the one with d = 1. The mappings (z,y) — (—y,x) and
(z,y) — (y, ) are automorphisms of H;. Consider the following labeling A of arcs (the arcs in the
same orbits have the same labels)

e for the self loop e at (0,1) let A(e) =
e for the arc e from (0,1) to (1,1) let A(e) = a (the opposite arcs have label 1/a)

e for an arc e from u to v which was not labeled yet let

Me)=q b i [Jullee < o]l

{ L ifflulloo = [[0]]oo
1/b otherwise

The labeling satisfies the conditions of Theorem 2.4.3. For v = (0,1) we have >y, A(v,u) =
2a + 2, for v = (1,1) we have }_ () A(v,u) = 2/a+ 2b. For the other vertices two neighbors
have larger, one has smaller and one has equal infinity norm (for vertex (x,y), w.lo.g. x >y > 0,

then (x +y,y), (z,z +y) have larger, (z,y — x) has equal and (x — y, y) has smaller infinity norm).
Hence },c v A(v,u) = 1420+ 1/b. For b= 1/v/2 and a = v/2 — 1/2 we have max(2a + 2,2/a +

2b,1 + 2b + l/b) =1+ 2v/2 and hence r(H;) < 1/2+ /2. u

The operator 7" mentioned at the end of the proof of Theorem 2.3.3 was defined as

(T"f)(z,y) = flz = 2y,y) + f(z,y — 22).
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Hence by Lemma 2.4.1 . R R

(T"f)(@,y) = fz, 2+ 2y) + fz + 2y, ).
Again we can show an upper bound on the Rayleigh quotient of 7" in the space X by considering
graph H, for which r(H,) = r(T") = r(T"). Let H, be the undirected graph with vertices Z* — {0}
and (a, b) connected with (a + 2b,b) and (a, b+ 2a).

A part of graph H,.

Theorem 2.4.5

r(Hy) < V3.

Proof :

The mappings (x,y) — (—y,z) and (z,y) — (y,z) are automorphisms of H;. Every vertex u =
(x,y) where both x, y are non-zero, |x| # |y| is connected to three vertices with larger and one with
smaller oo norm. If one of the x, y is zero or |z| = |y| then u is connected to two vertices with larger
and two vertices with equal co norm (possibly via a self-loop). Label the arc e between the vertices
U, v

Ae) =

a i flufleo < [v]o
1/a otherwise

{ L if fulloo = 0]l

For any u we have either »_ ., A(u,v) =3a+1/a or 3 ¢y, AMu,v) =2+ 2a. Fora = V3 we
obtain r(Hy) < v/3. |

It is not hard to find labelings of the vertices of H; and H, which show that the constants in
Theorems 2.4.4 and 2.4.5 are optimal.

2.5 Lattice Duality: Banaszczyk’s Transference Theorem

Given an an n x n regular matrix B a lattice L is
L={Bx;xzecZ"}.

Alternatively a lattice can be viewed as a discrete additive subgroup of R™. Define the successive
minima Ay, ..., A, of the lattice L

Ai = min{r > 0;dimspan(L NrB,) > i},
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where B,, is the unit ball in R”. The dual lattice L* of the lattice L is the lattice with matrix B~7.
Our goal is to prove the Transference Theorem of Banaszczyk [Ban93]

Theorem 2.5.1 For any lattice L in R

The Theorem is tight up to a multiplicative constant as there exist a self dual lattice L such
that Ay (L)* > $£-(1 + o(1)) as n — oo, a result of Conway and Thompson (see [Mil73], p. 42).
A transference theorem was used in [LLS90] to show that O(n)-approximation of shortest lattice
vector in L? norm cannot be NP-hard unless NP=co-NP.

In addition to the material covered in section 2.1 we will only need that characters of R” are

{xslb € R"}

where x;(z) = exp(b”x)}. The Fourier transform of a finite measure p is defined as

i) = [ vl duty).

For A C R"” let
p(A) = el (2.8)

TEA

Later in section 2.6 we will prove the following Lemma.

Lemma 2.5.2 Let n > 2. Let A be a ball of diameter % n centered around the origin and let

u € R". Then
L A
p(L)
Given a lattice L we define a discrete measure on R by
p(ANL)
op(A) = —=.
L( ) p(L)
Let ( )
plL+u
or(u) = .
H) ="

Later in section 2.6 we will prove
Lemma 2.5.3 For a lattice L and its dual lattice L*

oL = ¢~
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Proof of Theorem 2.5.1

For n = 1, A\{(L)A(L*) = 1. Assume that n > 2. Suppose that there is a lattice L such that
Ai(L)Aps1-i(L*) > n. We can scale the lattice so that A\;(L) > 2v/n and Apy1-i(L*) > 2y/n + .
Let A and A* be the balls of diameters 3\/n and 2/n + % centered around the origin. We have
dimspan(L N A) < i and dimspan(L* N A*) < n + 1 —i. Hence there is a vector u which is
perpendicular to all vectors in LN A and all vectors in L* N A*. We can chose u such that ||u|| = 3.

e Since u is perpendicular to all vectors in LN A,

¢r-(u) = op(u) = ZUL(a:)e’Q’”“TI = Z or(z) + Z o (z)e 2T >

zeL reLNA zeL\A

Z or(x) — Z op(z) =1-2 Z or(z) > 0.43. (2.9)

zELNA zeL\A zeL\A

e We have
p((L* N A*) +u) p((L*\A*)ﬂLu).

R

Since u is perpendicular to vectors in L* N A*

L*n A* L
p(( : ) +u) _ e—ﬂllu\\“’(ir:) < 0.135. (2.10)
p(L*) p(L*)
The length of vectors in (L* \ A*) + u is at least 2\/n and hence
p((L*/A*) + u) - p((L* 4+ u) \ 2\/nB)
p(L*) N p(L*)

From (2.9),(2.10),(2.11) we obtain 0.43 < ¢« (u) < 0.42, a contradiction. |

< 0.285. (2.11)

2.6 Gaussian-like Measures on Lattices

In this section we will prove Lemmas 2.5.3 and 2.5.2. Our only tool from harmonic analysis on R”
will be the Poisson Summation Formula.

Theorem 2.6.1 (Poisson Summation Formula) Let f : R* — R" be a continuous function,
such that for some e > 0 and c € R

r) < c¢(l+|z[)™" (2.12)
() < eI+ |z)™° (2.13)

where f s the Fourier transform of f over R". Then

> fa) =" fla).

(VAL aEZ™

Ry
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Proof :
Define a function F : T" - R

= Zf(x—i—a). (2.14)

The right-hand side of (2.14) converges uniformly because of (2.12). Clearly F' is continuous and
integrable. We have

~

F\(y) _ /TLF( ) —2miyT T _/ Z f £U+Cl —2miyT x+a) oy — f( ) 2riyTx d"r = f(y)

acZ™

Condition (2.13) gives us F € L'(Z"). Hence for any = € T" the inversion formula holds

— Z f(a)e—Qm'aTx

a€EZ™

and for £ = 0 we obtain the result. [ |

Lemma 2.6.2 Let B be an n x n matriz and u € R*. For f(z) = exp ( — (Bz + u)T(Bz + u))

—~ /2 B B _ .
fly) = g e (=7 (B77y) (B y) + 2riu (B™"y)).
Remark 3 For f(z) = exp ( — 7(Bz + u)T(Bz 4 u)) we obtain

fly) = dei 7 €XP ( — (B~ y)" (B~ Ty) + QWiUT(B_Ty)).

Proof of Lemma 2.6.2

fly) = / exp (— (Bz +u)" (Bx +u) — 2miy"z) d"v =

/ exp (— (Bx +u+miB™"y)" (Bx + u+ miB~"y) + 2miy" B~'u — (B~ y)" (B "y)) d"x =
7.‘.n/2

det B

exp (— (B~ Ty)" (B Ty) + 2min” (B Ty)).
|

For notational convenience we define for A C R"

p(A) = Ze—\\x\\?

TEA

Note that p'(A) = p(7~'/2A) where p is defined by (2.8).
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Lemma 2.6.3 For a lattice L CR", any 0 <t <1 and any u € R"”
1
L +u) < 2p'(L).

Proof :
Let B be the matrix of the lattice L. Using the Poisson summation formula

n/2 2 9ri
— T _ T T T \NT(p-T T -1
P (tL4u) = E exp (—(tBz+u)" (tBr+u)) = T det Byieznexp (——t2 (B~"y)" (B y)—l——t y'B u)

Again by the Poisson summation formula

tlnp(L m Z exp(—(Bz)" (Bx)) = detB EZ: (—7r (B~ Ty)'(B~ Ty)).

TEL™

Now it is enough to notice that for any y € Z"

w2 271

(BT (B™y) + Sy B )

exp ( - < exp ( - 7r2(B_Ty)T(B_Ty))-

Lemma 2.6.4 For any lattice L any u € R” and ¢ > \/n/2

(L+w\eB) _ (22\"*
. ;(m )§<27> = (5-¢).

Proof :
Let z € (L4 u) \ ¢B and let 0 < ¢ < 1. The corresponding element ¢z € (L + u) contributes to
p'(t(L + u)) by exp(—t*||z[|?). We have

exp(—t*||z(|*) 2 2 2\ .2
——————————= =-exp ((1 = t)||z|]?) > exp ((1 —t°)c7).
(el ~ P ) 2 e (1 -5))
Hence
((L +u)\ ¢B) < p'(t(L +u)) exp ((t* — 1)c?).
By Lemma 2.6.3, p(t(L + u)) < (1/t)"p'(L) and hence we have
p ((L )\ eB) < (1/8)" exp (2 = D) (L),
For t* = 3% (optimal value) we obtain the result. |

Corollary 2.6.5 (of Lemma 2.6.4) Forc> \/n/(2n)

(L+u)\cB e\ "? n 5
. 0 )§<2n> ow (5 -7e).
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Proof of Lemma 2.5.2
Plugging in ¢ = % n into Corollary 2.6.5 we obtain

P((L+U)\%\/HB) § 1- 97 " n/2
(L) < <27re > < (0.285)™/=.

which for n > 2 proves 2.5.2. |

Proof of Lemma 2.5.3
Let B be the matrix of the lattice L. We have
p(L + u) 1

br(u) = o) = o) xe%:n exp (— m(Bz + u)" (Bz + u)). (2.15)

By Lemma 2.6.2 and the Poisson summation formula

(2.15) = m Z exp (— m(B™"y)" (B™"y)) exp (2miv" (B™"y)) =

yezn
1 p(L*)
R — - ) ) ).
p(L) de tByEXL: exp (= llyll) exp (= 2minty) = o) dec’
To finish the proof note
- p(L7)
= Z exp (— m(Bz)"(Bz)) = det Z exp (— (B "y)" (B "y)) = aet(B)’

Maximum of z"e~*" is attained for 2 = \/n/2.
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Chapter 3

Generalizations of Harmonic Analysis

3.1 Introduction

In this section we will consider the theory from section 1 with the field of complex numbers replaced
by a finite field. Most of the theorems from 1 remain valid even in this setting. We omit the proofs
because they are identical with those in section 1.

Let G be a finite abelian group, let n = |G|. Let ¢t be the exponent of G i.e. the smallest positive
number such that ¢ - g = 0 for every g € G. Let F be the finite field with ¢ elements where t|q — 1.
Note that we have primitive ¢-th roots of unity and 1/n in F. (To see that (n,¢) = 1 note that any
prime p that divides n divides ¢ and hence does not divide q.)

We consider the space F“ of functions with

e pointwise multiplication (fg)(a) = f(a)g(a), a € G,

e convolution (f *g)(z) =+ > f(a)g(z —a), v € G, and

ac€G
~1
_ . - _ (= forz #0
e inner product (f,g) = - G;G f(a)g(a). where 7 = { - forr=0"

Characters are homomorphisms from G to the multiplicative group of F. The set of all characters
is an orthonormal basis of F¢. They also form a group (called the dual group of G over F). Fix
G=12Zn & P Ly, and w; be a primitive n;-th root of unity in F (since n;|t we have w; € F). For
b= (by,...,bg) € G let

k
Xb(x) — walmz
=1

The functions y;, are characters, they are distinct and by a dimension argument they are all char-
acters of GG. Hence

@:{X,,|beG, } (3.1)

Any function f € F can be expressed as a linear combination of characters. The coefficient of x;
is denoted by f(xs). The function f : G — F is called the Fourier transform of f.

37
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Mapping b — X3 is an isomorphism of G and G and hence we view J? as a function in F¢ and
write f(b) instead of f(xs).
The space F¢ is endowed with

e inner product (f,¢)= > f(a)g(a), and

acG

e convolution (f*g)(x) = > f(a)g(z — a).

aclG
By the orthogonality of characters
f( ) f: Xb Zf Xa . (32)
aeG
Theorem 3.1.1 The Fourier transform satisfies
o linearity f/—l—\g = f+3, af=af, f,geF¢, aeC
o fg=7%3 Fxg=17

AN A

e (f,g9) = {f,9) (the Plancherel formula)

3.2 Sums of matrix columns (mod m)

We are going to prove a Theorem of Thérien [Thé94]. It was used to show that a circuit with
MOD,, gates where m is composite needs at least {(n) gates to compute the AND of n inputs. A
MOD,, gate is a gate which outputs 0 iff the sum of its inputs is divisible by m.

Theorem 3.2.1 Let m,s,t be positive integers. If t > ¢-s-m'"Y?Inm where ¢ is an
absolute constant, then for any s x t integer matrix there exists a set of columns which
sum to the zero column modulo m.

We shall use the following explicit version of Dirichlet’s Theorem about primes in arithmetic
progressions.

Theorem 3.2.2 ([Hea90]) For any a coprime to m there is a prime p = a (mod m) such that
p < em'/? where ¢ is an absolute constant.

The estimate in Theorem 3.2.2 can be improved to 2(m Inm)? under the assumption of the Extended
Riemann Hypothesis [BS94]|. Theorem 3.2.1 follows from Theorem 3.2.2 and the following Lemma

Lemma 3.2.3 Let p be a prime and A be an s X t integer matriz. Ift > s(p — 1)In(p — 1) then
there exists a set of columns which sum to the zero column modulo p — 1.
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We use harmonic analysis on the space of functions G — I, where G’ = Zf,_l. Define the weight
wt(f) of f as the number of non-zero Fourier coefficients of f. When we write f and g as linear
combination of characters we see

o wi(f-g) < wt(f)-wt(g)

o wi(f+g) < wt(f)+ wt(g)

For example 1(z) = < for any z and hence

wt(1y) = (p— 1) (3.3)
Let B = {0,1} C Z} ;. We have
Do) == 3w = 21 0m) . (140 (3.4)
n oy n

Since (3.4) is non-zero for (p — 2)* choices of x we obtain
wt(1p) = (p —2)". (3.5)

Proof of Lemma 3.2.3
Let A be an s x t integer matrix such that no set of columns sums to the zero column modulo p —1.
For each row of the matrix define a function

fz(l") — w$lai,i+"'+ivtai,t, = [8]

Consider the function ,

f:H(l— 1—f)P ).

If = 0 then each f;j(x) =1 and hence f(z) = 1. Since no set of columns sums to the zero column
modulo p — 1, for any = € B\ {0} there is ¢ such that f;(x) # 1 and hence f(x) = 0. Thus
f|B = 10|B-

Each f; is a character. The function 1 — (1 — f;)?"! is a linear combination of powers of the
character f; and hence has weight at most p — 1. Hence by the submultiplicativity of weight
wt(f) < (p—1)"

Since f-1p = 1

(p—1)" = wt(lo) = wt(f - 15) < (p—1)"(p — 2)f

and hence

1 \!
el/r=1) < <1 +m> <(p-1y

which yields ¢t < s(p — 1) In(p — 1). |
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