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Abstract
We study the q-state ferromagnetic Potts model on the n-vertex complete graph known as the
mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov
chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor
large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site
Glauber dynamics. The case q = 2 (the Swendsen-Wang algorithm for the ferromagnetic Ising
model) undergoes a slow-down at the uniqueness/non-uniqueness critical temperature for the
infinite ∆-regular tree ([16]) but yet still has polynomial mixing time at all (inverse) temperatures
β > 0 ([7]). In contrast for q ≥ 3 there are two critical temperatures 0 < βu < βrc that are
relevant, these two critical points relate to phase transitions in the infinite tree. We prove that
the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Potts model on the n-
vertex complete graph satisfies: (i) O(logn) for β < βu, (ii) O(n1/3) for β = βu, (iii) exp(nΩ(1))
for βu < β < βrc, and (iv) O(logn) for β ≥ βrc. These results complement refined results of Cuff
et al. [10] on the mixing time of the Glauber dynamics for the ferromagnetic Potts model. The
most interesting aspect of our analysis is at the critical temperature β = βu, which requires a
delicate choice of a potential function to balance the conflating factors for the slow drift away from
a fixed point (which is repulsive but not Jacobian repulsive): close to the fixed point the variance
from the percolation step dominates and sufficiently far from the fixed point the dynamics of the
size of the dominant color class takes over.
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1 Introduction

The mixing time of Markov chains is of critical importance for simulations of statistical
physics models. It is especially interesting to understand how phase transitions in these
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models manifest in the behavior of the mixing time; these connections are the topic of this
paper.

We study the q-state ferromagnetic Potts model. In the following definition the case
q = 2 corresponds to the Ising model and q ≥ 3 is the Potts model. For a graph G = (V,E)
the configurations of the model are assignments σ : V → [q] of spins to vertices, and let Ω
denote the set of all configurations. The model is parameterized by β > 0, known as the
(inverse) temperature. For a configuration σ ∈ Ω let m(σ) be the number of edges in E

that are monochromatic under σ and let its weight be w(σ) = exp(βm(σ)). Then the Gibbs
distribution µ is defined as follows, for σ ∈ Ω, µ(σ) = w(σ)/Z(β), where Z(β) =

∑
σ∈Ω w(σ)

is the normalizing constant, known as the partition function.
A useful feature for studying the ferromagnetic Potts model is its alternative formulation

known as the random-cluster model. Here configurations are subsets of edges and the weight
of such a configuration S ⊆ E is

w(S) = p|S|(1− p)|E\S|qk(S),

where p = 1− exp(−β) and k(S) is the number of connected components in the graph G′ =
(V, S) (isolated vertices do count). The corresponding partition function Zrc =

∑
S⊆E w(S)

satisfies Zrc = (1− p)|E|Z.
The focus of this paper is the random-cluster (Curie-Weiss) model which in computer

science terminology is the n-vertex complete graph G = (V,E). The interest in this model is
that it allows more detailed results and these results are believed to extend to other graphs
of particular interest such as random regular graphs. For convenience we parameterize the
model in terms of a constant B > 0 such that the Gibbs distribution is as follows:

µ(σ) = 1
Z(β) (1−B/n)−m(σ). (1)

(Note that β = − ln(1−B/n) ∼ B/n for large n.) The following critical points Bu < Bo <

Brc for the parameter B are well-studied 1 and relevant to our study of the Potts model on
the complete graph:

Bu = sup
{
B ≥ 0

∣∣∣ B − z
B + (q − 1)z 6= e−z for all z > 0

}
= min

z≥0

{
z + qz

ez − 1

}
, (2)

Bo = 2(q − 1) ln(q − 1)
q − 2 , Brc = q. (3)

These thresholds correspond to the critical points for the infinite ∆-regular tree T∆ and
random ∆-regular graphs by taking appropriate limits as ∆ → ∞. (More specifically, if
B(∆) is a threshold on T∆ or the random ∆-regular graph then lim∆→∞∆(B(∆)− 1) is the
corresponding threshold in the Curie-Weiss model.) In this perspective, Bu corresponds to the
uniqueness/non-uniqueness threshold on T∆; Bo corresponds to the ordered/disordered phase
transition; and Brc was conjectured by Häggström to correspond to a second uniqueness/non-
uniqueness threshold for the random-cluster model on T∆ with periodic boundaries (in
particular, he conjectured that non-uniqueness holds iff B ∈ (Bu,Brc)). For a detailed
exposition of these critical points we refer the reader to [10] (see also [11] for their relevance
for random regular graphs).

1 Bo is βc in [9, Equation (3.1)] andBu is equivalent to βs in [10, Equation (1.1)] under the parametrization
z = B(qx− 1)/(q − 1). We follow the convention of counting monochromatic edges [9] as opposed to
counting monochromatic pairs of vertices [10]; hence our thresholds are larger than those in [10] by a
factor of 2.
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The Glauber dynamics is a classical tool for studying the Gibbs distribution. These are
the class of Markov chains whose transitions update the configuration at a randomly chosen
vertex and are designed so that its stationary distribution is the Gibbs distribution. The
limitation of local Markov chains, such as the Glauber dynamics, is that they are typically
slow to converge at low temperatures (large B). The Swendsen-Wang algorithm is a more
sophisticated Markov chain that utilizes the random cluster representation of the Potts
model to potentially overcome bottlenecks that obstruct the simpler Glauber dynamics. It is
formally defined as follows.

The Swendsen-Wang algorithm is a Markov chain (Xt) whose transitions Xt → Xt+1 are
as follows. From a configuration Xt ∈ Ω:

Let M be the set of monochromatic edges in Xt.
For each edge e ∈ M , delete it with probability 1 − B/n. Let M ′ denote the set of
monochromatic edges that were not deleted.
In the graph (V,M ′), independently for each connected component choose a color uniformly
at random from [q] and assign all vertices in that component the chosen color. Let Xt+1
denote the resulting spin configuration.

Recall, the mixing time Tmix of an ergodic Markov chain is defined as the number of steps
from the worst initial state to get within total variation distance ≤ 1/4 of its unique stationary
distribution. For the Swendsen-Wang algorithm for the ferromagnetic Ising model on the
complete graph, Cooper et al. [7] showed that Tmix = O(

√
n) for all temperatures. Long et

al. [16] showed more refined results establishing that the mixing time is Θ(1) for β < βc,
Θ(n1/4) for β = βc, and Θ(logn) for β > βc where βc is the uniqueness/non-uniqueness
threshold.

For the Swendsen-Wang algorithm for the ferromagnetic Potts model, it was shown that
the mixing time is exponentially large in n = |V | at the critical point B = Bo by Gore
and Jerrum [13] for the complete graph, Cooper and Frieze [8] for G(n, p) for p = Ω(n−1/3),
Galanis et al. [11] for random regular graphs, and Borgs et al. [4, 5] for the d-dimensional
integer lattice for q ≥ 25 at the analogous critical point. For the Glauber dynamics for
the ferromagnetic Potts model on the complete graph, Cuff et al. [10] showed that the
mixing time satisfies (their results are significantly more precise than what we state here for
convenience): Θ(n logn) for B < Bu, exponentially slow mixing for B > Bu, and Θ(n4/3)
mixing time for B = Bu (and a scaling window of O(n−2/3) around Bu).

We can now state our main result which is a complete classification of the mixing time of
the Swendsen-Wang dynamics when the parameter B is a constant independent of n.

I Theorem 1. For all q ≥ 3, the mixing time Tmix of the Swendsen-Wang algorithm on the
n-vertex complete graph satisfies:
1. For all B < Bu, Tmix = O(logn).
2. For B = Bu, Tmix = O(n1/3).
3. For all Bu < B < Brc, Tmix = exp(nΩ(1)).
4. For all B ≥ Brc, Tmix = O(logn).

In an independent work, Blanca and Sinclair [2] analyze a closely related chain to the
Swendsen-Wang dynamics which is also suitable for sampling random cluster configurations.
They provide an analogue of Theorem 1, though their analysis excludes the critical points
B = Bu and B = Brc.

In the following section, we discuss the critical points Bu,Bo,Brc, present a function F
which captures a simplified view of the Swendsen-Wang dynamics, and then we present a
lemma connecting the behavior of F with the critical points. We also present in Section 2 a

APPROX/RANDOM’15
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high-level sketch of the proof of Theorem 1. In Section 3 we prove the slow mixing result
(Part 3 of Theorem 1). We then prove the rapid mixing results for B > Brc in Section 4 and
for B = Bu in Section 5. The cases B = Brc and B < Bu are given in Sections C and D,
respectively, of the full version [12].

2 Proof Approach

2.1 Critical Points for Phase Transitions
We review the thresholds Bu,Bo,Brc for the mean-field Potts model, the reader is referred
to [3] for further details which also apply to the random-cluster model. The thresholds
Bu,Bo,Brc are related to the critical points of the following function of the partition function.
We first need to introduce some notation. For a configuration σ : V → [q] and a color i ∈ [q],
let αi(σ) be the fraction of vertices with color i in σ, i.e., αi(σ) = |{v ∈ V : σ(v) = i}|/n.
We also denote by α(σ) the vector (α1(σ), . . . , αq(σ)), and refer to it as the phase of σ.

For a q-dimensional probability vector α, let Ωα be the set of configurations σ whose
phase is α. Let

Zα =
∑
σ∈Ωα

w(σ) and Ψ(α) := lim
n→∞

1
n

lnZα.

There are two relevant phases: the uniform phase u := (1/q, . . . , 1/q) and the majority
phase m := (a, b, . . . , b) and its q permutations. For the majority phase, a, b are such that
a+ (q − 1)b = 1 and a > 1/q is a local maximum of

Ψ1(a) := Ψ
(
a, b, . . . , b

)
= −a ln a− (1− a) ln 1− a

q − 1 + B

2

(
a2 + (1− a)2

q − 1

)
(4)

and hence satisfies

ln (q − 1)a
1− a = B(a− (1− a)/(q − 1)). (5)

The thresholds Bu,Bo,Brc relate to the critical points of Ψ, see Figure 1 for an illustration
of the following. For B ≤ Bu the uniform phase is the unique local maximum of Ψ. For
Bu < B < Brc there are q + 1 local maxima: the uniform phase and the q majority phases,
and at B = Bo they are all global maxima. Finally, for B ≥ Brc the q majority phases are
the only local maxima.

2.2 Connections to Simplified Swendsen-Wang
The following function from [1/q, 1] to [0, 1] will capture the behavior of the Swendsen-Wang
algorithm.

F (z) := 1
q

+
(

1− 1
q

)
zx, (6)

where x = 0 for z ≤ 1/B and for z > 1/B, x ∈ (0, 1] is the unique solution of

x+ exp(−zBx) = 1. (7)

The function F captures the size of the largest color class when there is a single heavy
color where heavy means that the color class is supercritical in the percolation step of the
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(a) B < Bu (b) B = Bu (c) Bu < B < Bo

(d) B = Bo (e) Bo < B < Brc (f) B ≥ Brc

Figure 1 The function Ψ1 (free energy) plotted in different regimes of B (defined in (4)). The
critical points Bu,Bo,Brc are given by (2) and (3). In the regime B < Bu (figure 1a), the function
Ψ1 has a unique local maximum at the disordered phase. At B = Bu (figure 1b), the function
Ψ1 has a saddle point at the ordered phase. In the regime Bu < B < Brc (figures 1c, 1d and 1e)
the function Ψ1 has two local maxima; these are both global maxima iff B = Bo. In the regime
B ≥ Brc (figure 1f), the function Ψ1 has a unique local maximum at the ordered phase and a saddle
point at the disordered phase.

Swendsen-Wang process. Hence after the percolation step this heavy color will have a giant
component and the other color classes will all be broken into small components. So say
initially the one heavy color has size zn for 1/B < z < 1 and let’s consider its size after one
step of the Swendsen-Wang dynamics. After the percolation step, this heavy color will have
a giant component of size roughly xzn (where x is as in (7)) and all other components will
be of size O(logn). Then a 1/q fraction of the small components will be recolored the same
as the giant component, and hence the size of the largest color class will be (roughly) nF (z)
after this one step of the Swendsen-Wang dynamics.

Our next goal is to tie together the functions F and Ψ1 so that we can relate the behavior
of the Swendsen-Wang dynamics with the underlying phase transitions of the model. We first
need some terminology. A critical point a of a function f : R → R is a hessian maximum
if the second derivative of f at a is negative (this is a sufficient condition for a to be a
local maximum). A fixpoint a of a function F : R → R is a jacobian attractive fixpoint if
|F ′(a)| < 1 (this is a sufficient condition for a to be an attractive fixpoint).

I Lemma 2. The critical points of Ψ1 correspond to fixpoints of F . The hessian maxima of
Ψ1 correspond to jacobian attractive fixpoints of F .

Lemma 2 is proved in Section E of the full version [12].
The behavior of F is the basic tool for proving Theorem 1. Recall the earlier discussion

of the uniform vector u := (1/q, . . . , 1/q) and the q permutations of the majority phase
m := (a, b, . . . , b). The following lemma (proved in Section F of the full version [12]) provides
some basic intuition about the proof of Theorem 1, see Figure 2 for a depiction of the various
regimes.

APPROX/RANDOM’15
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(a) B < Bu (b) B = Bu (c) Bu < B < Brc

(d) B = Brc (e) B > Brc

Figure 2 The drift function F (z) − z, where F is defined by (6), (7). The critical points
Bu,Bo,Brc are given by (2) and (3). In the regime B < Bu (figure 2a), the function F has a unique
attractive fixpoint at the disordered phase. At B = Bu (figure 2b), F also has a (non-jacobian)
repulsive fixpoint at the ordered phase. In the regime Bu < B < Brc (figures 2c), F has attractive
fixpoints at the ordered and disordered phases. At B = Brc (figure 2d), the disordered phase is no
longer attactive; it is jacobian repulsive. Finally, in the regime B > Brc (figure 2e), the function F
has a unique attractive fixpoint at the ordered phase.

I Lemma 3. For the function F ,
1. For B < Bu, u = 1/q is the unique fixpoint and it is jacobian attractive.
2. For B = Bu, there are 2 fixpoints: u and a where a is defined as in the majority phase

m. Of these, only u is (jacobian) attractive. The fixpoint a is repulsive but not jacobian
repulsive.

3. For Bu < B < Brc there are 2 attractive fixpoints: u and a where a is defined as in the
majority phase m. Both of these are jacobian attractive.

4. For B = Brc, both a and u are fixpoints. The fixpoint u is (jacobian) repulsive, while the
fixpoint a is jacobian attractive.

5. For B > Brc, a is the only fixpoint and it is jacobian attractive.

The reason that u abruptly changes from a jacobian attractive fixpoint (B < Brc) to a
jacobian repulsive fixpoint (B = Brc) stems from the fact that in the regime B < Brc, F is
constant in a small neighborhood around 1/q (precisely, in the interval [1/q, 1/B]), which is
no longer the case for B = Brc.

2.3 Proof Sketches
We explain the high-level proof approach for the various parts of Theorem 1 before presenting
the detailed proofs in subsequent sections.

Slow mixing: For Part 3 of Theorem 1, the main idea is that the function F has 2 attractive
fixpoints (see Lemma 3). At least one of the corresponding phases, u or m, is a global
maximum for Ψ. Consider the other phase, say it is u for concreteness. Consider the local
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ball around u, these are configurations that are close in `∞ distance from u. The key is that
since u is an attractive fixpoint for F , if the initial state is in this local ball then with very
high probability after one step of the Swendsen-Wang dynamics it will still be in the local
ball (see Lemma 4, and Lemma 5 for the analogous lemma for m). The result then follows
since one needs to sample from the local ball around the phase which corresponds to the
global maximum of Ψ to get close to the stationary distribution.

Fast mixing for B > Brc: For a configuration σ and spin i, say the color class is heavy
if the number of vertices with spin i is > n/B and light if it is < n/B. If a color class is
heavy then it is super-critical for the percolation step of Swendsen-Wang and hence there
will be a giant component. The key is that for any initial state X0, then with constant
probability the largest components from all of the colors will choose the same new color
and consequently there will be only one heavy color class and the other q − 1 colors will be
light. Hence we can assume there is one heavy color class and q − 1 light color classes, and
then the function F suitably describes the size of the largest color class during the evolution
of the Swendsen-Wang dynamics. Since the only local maximum for F corresponds to the
majority phase m, after O(logn) steps we’ll be close to m – the difference will be due to
the stochastic nature of the process. Then it is straightforward to define a coupling for two
chains (Xt, Yt) whose initial states X0, Y0 are close to m so that after T = O(logn) steps we
have that XT = YT .

Fast mixing for B = Brc: The basic outline is similar to the B > Brc case except here
the argument is more intricate when the heaviest color lies in the scaling window (for the
onset of a giant component). We need a more involved argument that we get away from
initial configurations that are close to the uniform phase; informally, the uniform fixpoint is
jacobian repulsive, so an initial displacement increases geometrically by a constant factor.

Fast mixing for B < Bu: Here the argument is similar to the B > Brc case, in fact it
is easier. The critical point for a giant component in the percolation step is density 1/B.
In this case we have that B < Bu and since Bu < Brc = q we have that in the uniform
phase (which is the only local maxima) the color classes are all subcritical. Hence once we
are close to the uniform phase all of the components after the percolation step will be of
size O(logn). So the basic argument is similar to the B > Brc case in how we approach the
local maxima, which is the uniform phase in this case. Then once we reach density < 1/B
then in the next step the configuration will be close to the uniform phase in the next step
and then it is straightforward to couple two such configurations.

Fast mixing for B = Bu: This is the most difficult part. As in the B > Brc case with
constant probability there will be at most one heavy color class after one step. We then
track the evolution of the size of the heavy color class. The difficulty arises because the
size of the component does not decrease in expectation at the majority fixpoint. However
variance moves the size of the component into a region where the size of the component
decreases in expectation. The formal argument uses a carefully engineered potential function
that decreases because of the variance (the function is concave around the fixpoint) and
expectation (the function is increasing) of the size of the largest color class, see Section 5.

APPROX/RANDOM’15
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3 Slow Mixing for Bu < B < Brc

Let B(v, δ) be the `∞-ball of configuration vectors of the q-state Potts model in Kn around
v of radius δ, that is,

B(v, δ) = {w ∈ Zq | ‖w/n− v‖∞ ≤ δ}.

We will show that for B < Brc the Swendsen-Wang algorithm is exponentially unlikely
to leave the vicinity of the uniform configuration.

I Lemma 4. Assume B < Brc. There exists ε0 > 0 such that for all ε ∈ (0, ε0) for
S = B(u, ε)

PSW (S, S) ≥ 1− exp(−Θ(n1/2)).

The reason for Lemma 4 failing for B > Brc is that the first step of the Swendsen-Wang
algorithm on a cluster of size n/q yields linear sized connected components, and these allow
the algorithm to escape the neighborhood of u.

We also analyze the behavior of the algorithm around the majority configuration (for the
configuration to exist we need B ≥ Bu).

I Lemma 5. Assume B > Bu and let m = (a, b, . . . , b) where a > 1/q is the attractive
fixpoint of F of Lemma 3. There exists ε0 > 0 such that for all ε ∈ (0, ε0) for S = B(m, ε)
we have

PSW (S, S) ≥ 1− exp(−Θ(n1/3)).

Combining Lemmas 4 and 5 we obtain Part 3 of Theorem 1.

I Corollary 6. For B ∈ (Bu,Brc), the mixing time of the Swendsen-Wang algorithm on the
complete graph on n vertices is exp(Ω(n1/3)).

We prove here Lemma 5, the (very similar) proof of Lemma 4 is given in Section G of the
full version [12].

We will need several known results on the G(n, p) model in the supercritical regime
(p = c/n, where c > 1). The size of the giant component is asymptotically normal [19]. We
will use the following moderate deviation inequalities for the sizes of the largest and second
largest components of G.

I Lemma 7. Let G ∼ G(n, c/n) where c > 1. Let β ∈ (0, 1) be the solution of x+exp(−cx) =
1. Let X,Y be the sizes of the largest and second largest components of G respectively. Then

P (|X − βn| ≥ n2/3) ≤ exp(−Θ(n1/3)), (8)

P (Y ≥ n1/3) ≤ exp(−Θ(n1/3)). (9)

Equation (8) is proved in [1, Theorem 3.1]. Equation (9) of Lemma 7 is proved in Section
A.1 of the full version [12].

I Lemma 8 (see, e.g., [15], p.109). Let t ∈ (0, 1] be a constant. Let G ∼ G(n, c/n) where
c < 1. Let X be the size of the largest component of G.

P (X ≥ nt) ≤ exp(−Θ(nt)).

Proof of Lemma 5. Let X0 ∈ S and let γ := F ′(a) (recall that |γ| < 1, since a is Jacobian
attractive fixpoint by Lemma 3). The first step of the Swendsen-Wang algorithm chooses,
for each color class, a random graph from G(m, p), where p = B/n and m is the number of
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vertices of that color. Let m1 be the number of vertices of the dominant color. Since X0 ∈ S
we have m1/n = a+ τ =: a′ where |τ | < ε. We can write

p = (m1B/n)/m1 = (a′B)/m1,

where a′B > 1 for sufficiently small ε0 > 0 (using aB > 1 from Lemma 38 in the full
version [12]). This means that the G(m, p) process in this component is supercritical. Let
β ∈ (0, 1] be the root of x + exp(−a′Bx) = 1. By Lemma 7 the random graph will have,
with probability ≥ 1− exp(−Θ(n1/3)), one component of size a′βn± n2/3 and all the other
components will have size at most n1/3.

Let m2 be the number of vertices in one of the non-dominant colors. Since X0 ∈ S we
have m2/n =: b′ where

b− ε0 ≤ b− ε ≤ b′ ≤ b+ ε ≤ b+ ε0. (10)

We can write
p = (m2B/n)/m2 = (b′B)/m2,

where b′B < 1 for sufficiently small ε0 > 0 (using bB < 1, again from Lemma 38 in the
full version [12]). This means that the G(m, p) process in this component is subcritical. By
Lemma 8 (with t = 1/3), with probability ≥ 1− exp(−Θ(n1/3)) the random graph will have
all components of size at most n1/3.

To summarize: starting from a configuration in S after the first step of the Swendsen-
Wang algorithm we have, with probability ≥ 1 − q exp(−Θ(n1/3)) one large component
of size a′βn ± n2/3 and the remaining components are of size ≤ n1/3 (small components).
In the second step of the algorithm the components get colored by a random color. By
symmetry, in expectation each color obtains (n − a′βn ∓ n2/3)/q vertices from the small
components and by Azuma’s inequality this number is (n − a′βn ∓ n2/3)/q ± n5/6 with
probability ≥ 1− exp(−Θ(n1/3)). Combining the analysis of the first and the second step
we obtain that at the end with probability ≥ 1− 2q exp(−Θ(n1/3)) we have one color with
F (a′)n± 2n5/6 vertices and the rest of the colors have 1−F (a′)

q−1 n± 2n5/6 vertices each.
For sufficiently small ε0 > 0 there exists γ′ ∈ (γ, 1) such that for all |τ | < ε0 we have

|F (a + τ) − a| < γ′τ . Hence for sufficiently small ε0 > 0 and sufficiently large n we have
|F (a′)n± 2n5/6 − an| ≤ εn and | 1−F (a′)

q−1 n± 2n5/6 − bn| ≤ εn. This finishes the proof of the
lemma. J

4 Fast mixing for B > Brc

The lemmas stated in this section are proved in Section H of the full version [12].
Once the phases align then it is straightforward to couple the chains so that the configu-

rations agree. The following lemma is essentially identical to [7, Lemma 4], which is also
used in [16, Lemma 4.1].

I Lemma 9 ([7], Lemma 4). For any constant B > 0, for all q ≥ 2, all ε > 0, for T = O(logn)
there is a coupling where Pr[XT 6= YT | α(X0) = α(Y0)] ≤ ε.

It is enough to get the phases within O(
√
n) distance from m and then there is a coupling

so that with constant probability the phases will be identical after one additional step. More
precisely, we have the following.

I Lemma 10 ([16], Theorem 6.5). Let B > Bu. Let X0, Y0 be a pair of configurations where
‖α(X0)−m‖∞ ≤ Ln−1/2, ‖α(Y0)−m‖∞ ≤ Ln−1/2, for a constant L > 0. There exists a
coupling such that with prob. Θ(1), α(X1) = α(Y1).

APPROX/RANDOM’15
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Let ε > 0. We say a color i is ε-heavy if αi ≥ (1 + ε)/B. We say that a color is ε-light if
αi ≤ (1− ε)/B. For a state Xt, we denote by St the size of the largest color class in Xt. We
will show that the SW-algorithm has a reasonable chance of moving into a state where one
color is ε-heavy and the remaining q − 1 colors are ε-light.

I Lemma 11. Assume B > Brc is a constant. There exists ε > 0 such that the following
hold. For any n and any initial state X0 with probability Θ(1) the next state X1 has one
ε-heavy color and the remaining q − 1 colors are ε-light. Further, if X0 has one ε-heavy
color and the remaining q − 1 colors are ε-light, then the same is true for X1 with probability
1− o(1).

Afterwards the behavior of the algorithm will be controlled by the function F (St+1 will
be close to nF (St/n)) and then with constant probability after O(1) steps the state will be
close to the majority phase m.

I Lemma 12. Assume B > Brc is a constant. For any constant δ > 0 and any starting
state X0 after T = O(1) steps with probability Θ(1) the SW-algorithm moves to state XT

such that ‖α(XT )−m‖∞ ≤ δ.

Then we show that once we are within constant distance from m then in O(logn) steps
the distance to m further decreases to O(n−1/2).

I Lemma 13. For B > Bu, there exist δ, L > 0 such that the following is true. Suppose
that we start at a state X0 such that ‖α(X0)−m‖∞ ≤ δ. Then in T = O(logn) steps with
probability Θ(1) the SW algorithm ends up in a state Xt such that

‖α(XT )−m‖∞ ≤ Ln−1/2. (11)

From Lemmas 9, 10, 12 and 13 we conclude the following.

I Corollary 14. Let B > Brc be a constant. The mixing time of the Swendsen-Wang
algorithm on the complete graph on n vertices is O(logn).

Proof. Consider two copies (Xt), (Yt) of the SW-chain. We will show that for T = O(logn),
there exists a coupling of (Xt) and (Yt) such that Pr(XT = YT ) = Ω(1). It will then follow
by elementary arguments that the mixing time is O(logn).

Let δ, L be as in Lemma 13. By Lemma 12, for T1 = O(1) with probability Θ(1) we have
that

‖α(XT1)−m‖∞ ≤ δ and ‖α(YT1)−m‖∞ ≤ δ.

By Lemma 13, for T2 = O(logn) with probability Θ(1), we have that

‖α(XT1+T2)−m‖∞ ≤ Ln−1/2 and ‖α(YT1+T2)−m‖∞ ≤ Ln−1/2. (12)

Let T3 = T1 + T2 + 1. Conditioning on (12), by Lemma 10 there exists a coupling so that
α(XT3) = α(YT3) with probability Ω(1). Once the phases agree we can apply Lemma 9 to
get the two chains to agree. More precisely, by Lemma 9, there exists T4 = O(logn) and
a coupling such that Pr(XT3+T4 = YT3+T4 | α(XT3) = α(YT3)) = Ω(1). Let T = T3 + T4.
We have shown that for all X0, Y0 there is a coupling so that Pr(XT = YT ) = Ω(1). For
all η > 0, by repeating this coupling O(log(1/η)) times we obtain a coupling so that for
T ′ = O(T log(1/η)) we have that Pr(XT ′ 6= YT ′) ≤ η, which completes the proof by setting
η = 1/4. J
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5 Fast Mixing at B = Bu

We will track the size of the largest color class. Roughly, our goal is to show that the chain
reaches the uniform phase in O(n1/3) steps.

As a starting point, we have the following analogue of Lemma 11.

I Lemma 15. For sufficiently small (constant) ε > 0, for any starting state X0 of the
SW-chain, with probability Θ(1), there are at least q − 1 colors in state X1 which are ε-light.
Further, if state X0 has q − 1 ε-light colors, then with probability 1− exp(−nΩ(1)), the same
is true for X1.

Let St be the size of the largest color class in state Xt of the SW-chain. The key part
of our arguments is to track the evolution of St when there are (q − 1) ε-light colors. The
following lemma gives some statistics of St/n throughout the range (1/B, 1], i.e., when the
largest color class is supercritical in the percolation step of the SW-dynamics. Recall the
function F defined in (6),(7).

I Lemma 16. Let ε > 0 be a constant and condition on the event that Xt has q − 1 colors
which are ε-light.

Assume that ζ satisfies (1 + ε)/B ≤ ζ/n ≤ 1. Let Z = E[St+1 |St = ζ]. Then, for all
sufficiently large n, it holds that

nF (ζ/n)− n1/10 ≤ Z ≤ nF (ζ/n) + n1/10. (13)

Also, there exist absolute constants Q1, Q2 (depending only on ε) such that

nQ1 ≤ V ar[St+1 |St = ζ] ≤ nQ2, (14)

Finally, for every integer k ≥ 3 and constant ε′ > 0, there exists a constant c > 0 such that

E
[∣∣St+1 − Z

∣∣k|St = ζ
]
≤ cnk/2+ε′

. (15)

The trickiest part of our arguments is to argue that the SW-chain escapes the vicinity of the
majority phase, i.e., when the largest color class St is roughly na (recall that a is the marginal
of the majority phase and satisfies F (a) = a). In particular, note that when St/n = a, from
(13) the expected value of St+1/n is a as well. More generally, the drift of the process in the
window |St − na| ≤ εn2/3 for some small ε > 0 is very weak. An expansion of F around the
point a yields that in this region nF (St/n) ≈ St − c(St − an)2/n for some constant c > 0, so
the change (in expectation) of St+1 relative to St is roughly ε2n1/3. In particular how does
the process escape this window?

The rough intuition is that inside the window the variance of the process aggregates
the right way, that is, after n1/3 steps, the process is displaced by the square root of the
“aggregate variance”, i.e., roughly

√
n1/3n = n2/3. In the meantime, it holds that F (z) ≤ z

so St is bound to escape the window from its lower end. From that point on, the drift coming
from the expectation of St (or else the function F ) is sufficiently strong to take over and
drive the process to the uniform phase.

The easiest way to capture the progress of the chain towards the uniform phase is by a
potential function argument. Namely, we use Lemma 16 to show the following.

I Lemma 17. There exist constants M, τ > 0 such that for all constant ε > 0, for all
sufficiently large n the following holds. There exists a three-times differentiable potential
function G : [1/q, 1]→ [0,Mn1/3] with G(1/q) = 0 such that for any ζ ≥ (1 + ε)n/B, if Xt

has (q − 1) colors which are ε-light it holds that

E[G(St+1/n) |St = ζ] ≤ G(ζ/n)− τ. (16)

APPROX/RANDOM’15
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To motivate briefly our choice of G, by taking expectations in the second order expansion of
G(St+1/n) around E[St+1 |St = ζ] we obtain

E[G(St+1/n) |St = ζ] ≈ G(F (ζ/n)) + 1
2V ar[St+1/n |St = ζ]G′′(F (ζ/n)). (17)

(The precise conditions on the derivatives of G such that the approximation in (17) is
sufficiently accurate are given in Lemma 26 of the full version [12].) From (17), in order
to satisfy (16), the function G has to be carefully chosen to control the interplay between
G(F (x)) − G(x) and G′′(F (x)). The first derivative of G should correspond to the drift
F (x)− x of the process coming from its expectation while the second derivative of G to the
variance of the process. More precisely, when x is outside the critical window, the choice of
the potential function is such that G(F (x))−G(x) is bounded above by a negative constant
(i.e., its derivative is 1/(x−F (x))); by our earlier remarks this should be sufficient to establish
progress outside the critical window. Indeed, with this choice it turns out that |G′′(x)|/n
is bounded above by a small constant outside the critical window, so that (16) is satisfied.
Inside the critical window, where x ≈ F (x) and hence G(F (x))−G(x) ≈ 0, we choose G so
that G′′(x) is negative. More precisely, to satisfy (16), since V ar[St+1/n |St = ζ] = Θ(1/n)
from Lemma 16, we set G′′(x) = −Cn for some constant C > 0. The remaining part is then
to interpolate between these two regimes keeping G′(x)/G′′(x) sufficiently large (so that (16)
is satisfied) and G(x) small (i.e., O(n1/3)); this is possible due to the quadratic behaviour of
F (z)− z around z = a. (See Lemma 27 in the full version [12] and its proof for the explicit
specification of G.)

Lemmas 16 and 17 capture the SW-dynamics when the largest color class is supercritical.
In the complementary regime, we have the following.

I Lemma 18. Let ε > 0 be a sufficiently small constant. Suppose that X0 is such that q − 1
colors are ε-light and that S0 < (1 + ε)n/B. Then with probability 1− exp(−nΩ(1)) it holds
that S1 < (1 + 3qε)n/q.

We next combine Lemmas 15, 17 and 18 to show the following.

I Lemma 19. For B = Bu, there exists L > 0 such that the following is true. For any
starting state X0, in T = O(n1/3) steps, with probability Θ(1) the SW algorithm ends up in
a state XT such that ‖α(XT )− u‖∞ ≤ Ln−1/2.

Proof. Let ε > 0 be a sufficiently small constant, to be picked later. We will assume that
the state X1 has q− 1 ε-light colors since (by the first part of Lemma 15) this event happens
with probability Θ(1). Henceforth, we will condition on this event.

Recall that St is the size of the largest color component at time t. We first prove that with
probability Θ(1) for some T = O(n1/3) it holds that ST < (1 + ε)n/B. Assuming this for the
moment, then in the next step, i.e., at time T + 1, by Lemma 18 all color classes have size at
most (1 + 3qε)n/q and (for all sufficiently small ε) are thus subcritical in the percolation step
of the SW-dynamics. It follows that the components sizes after the percolation step satisfy, by
Lemma 22 in the full version [12], E

[∑
i |Ci|2

]
= O(n). Hence, after the coloring step, using

Azuma’s inequality with constant probability we have color classes of size (n+O(n1/2))/q
(see the derivation of Equations (91) and (92) in the full version [12] for details).

It remains to argue that T = O(n1/3). We will show in fact that T = 3Mn1/3, where
M is the constant in Lemma 17. Let Pt be the probability that at time t it holds that
St < (1 + ε)n/B. Our goal is to show that PT = Θ(1). We will use Lemma 17 and the
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potential function G therein to bound PT . In particular, we will show that for all n sufficiently
large, for all t = 1, . . . , T − 1, it holds that

E[G(St+1/n)] ≤ E[G(St/n)]− τ(1− Pt) + τ/2, (18)

where τ is the constant in Lemma 17. Prior to that, let us conclude the argument assum-
ing (18). Note that if St < (1 + ε)n/B then St+1 < (1 + ε)n/B with probability at least
1− exp(−nΩ(1)) (by Lemma 18), so Pt ≤ Pt+1 +O(1/n). It thus follows from (18) that

E[G(ST /n)] ≤ E[G(S1/n)]− τT (1/2− PT ) + o(1),

which gives PT ≥ 1/2 − Mn1/3/T + o(1) where M is the constant in Lemma 17. For
T = 3Mn1/3 we thus have PT ≥ 1/6 as wanted.

Finally, we prove (18) for t = 1, . . . , T − 1. Note that Lemmas 17 and 18 apply whenever
Xt has q − 1 ε-light colors, so we will need to account for the (small-probability) event
that this fails. Namely, let Et denote the event that Xt has q − 1 ε-light colors. Since we
condition on the event that E1 holds, we have that

⋂T
t=2 Et holds with probability at least

1− exp(−nΩ(1)) (by the second part of Lemma 15).
Let Ft be the event that St < (1 + ε)n/B and note that Pt = Pr(Ft). By taking

expectations in inequality (16) of Lemma 17, we have

E
[
G(St+1/n) | Et,¬Ft

]
≤ E[G(St/n) | Et,¬Ft]− τ. (19)

Note that if St < (1 + ε)n/B, then by Lemma 18, with probability 1− exp(−nΩ(1)) we have
St+1 < (1 + 3qε)n/q and thus (by choosing ε sufficiently small) the continuity of G and
G(1/q) = 0 yield G(St+1/n) ≤ τ/3. It follows that

E
[
G(St+1/n) | Et,Ft

]
≤ τ/3. (20)

Let P ′t be the probability that at time t it holds that St < (1 + ε)n/B conditioned on the
event Et, i.e., P ′t := Pr(Ft | Et). Note that Pt ≥ P ′t(1 − exp(−nΩ(1))) ≥ P ′t − exp(−nΩ(1)).
Combining (19) and (20), we obtain

E[G(St+1/n) | Et] ≤ E[G(St/n) | Et]− τ(1− P ′t ) + τ/3. (21)

Since G is bounded by a polynomial and since the probability of the event ¬Et is exponentially
small, removing the conditioning in (21) only affects the inequality by an additive o(1).
Similarly, replacing P ′t with Pt in (21) only affects the inequality by an additive o(1). This
proves that (18) holds for all sufficiently large n, thus concluding the proof of Lemma 19. J

Using Lemma 19, it is not hard to obtain the following corollary.
I Corollary 20. Let B = Bu. The mixing time of the Swendsen-Wang algorithm on the
complete graph on n vertices is O(n1/3).
Proof. Consider two copies (Xt), (Yt) of the SW-chain. As in the proof of Corollary 14, it
suffices to show that for T = O(n1/3), there exists a coupling of (Xt) and (Yt) such that
Pr(XT = YT ) = Ω(1).

By Lemma 19, for T1 = O(n1/3), it holds that with probability Θ(1)

‖α(XT1)− u‖∞ ≤ Ln−1/2 and ‖α(YT1)− u‖∞ ≤ Ln−1/2. (22)

Conditioning on (22), by an analogue of Lemma 10 (see Lemma 36 in the full version
[12]), there exists a coupling such that with probability Θ(1) for T2 = T1 + 1, it holds
that α(XT2) = α(YT2). By Lemma 9, there exists T3 = O(logn) and a coupling such that
Pr(XT2+T3 = YT2+T3 | α(XT2) = α(YT2)) = Ω(1). It is now immediate to combine the
couplings to obtain a coupling such that Pr(XT = YT ) = Ω(1) with T = T2 + T3 = O(n1/3),
as desired. J
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