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Abstract. A drawing of a graph is x-monotone if every edge intersects
every vertical line at most once and every vertical line contains at most
one vertex. Pach and Tóth showed that if a graph has an x-monotone
drawing in which every pair of edges crosses an even number of times,
then the graph has an x-monotone embedding in which the x-coordinates
of all vertices are unchanged. We give a new proof of this result and
strengthen it by showing that the conclusion remains true even if adjacent
edges are allowed to cross oddly. This answers a question posed by Pach
and Tóth. Moreover, we show that an extension of this result for graphs
with non-adjacent pairs of edges crossing oddly fails even if there exists
only one such pair in a graph.

1 Introduction

The classic Hanani-Tutte theorem states that if a graph can be drawn in the
plane so that no pair of independent edges crosses an odd number of times,
then it is planar [6,19]. (Two edges are independent if they do not have a shared
endpoint.) There are many ways to look at this result; for example, in algebraic
topology it is seen as a special case of the van Kampen-Flores theorem [9, Chap-
ter 5] which classifies obstructions to embeddability in topological spaces. This
point of view leads to challenging open questions (see, for example, [10]), but
even in 2-dimensional surfaces the problem is not understood well (see [18] for
a survey of what we do know).

Here, we study a variant of the problem for x-monotone drawings which was
introduced by Pach and Tóth [12]. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line contains



at most one vertex. The natural analogue of the Hanani-Tutte theorem in this
context would state that every x-monotone drawing in which no pair of inde-
pendent edges crosses an odd number of times has an x-monotone embedding,
that is, a crossing-free drawing—without moving the vertices. The truth of this
result was left as an open problem by Pach and Tóth.We prove it as Theorem 2
in Section 3. The extension of this result in the spirit of [11,15] is not possible,
which is proved in Section 4.

The weak version of the classic Hanani-Tutte theorem states that if a graph
can be drawn so that no pair of edges crosses oddly, then it is planar. The
analogue for x-monotone drawings states that there is an x-monotone embedding
if there is an x-monotone drawing in which no pair of edges crosses an odd
number of times. This variant of the weak Hanani-Tutte theorem was first proved
by Pach and Tóth.1 We give a new proof of this result as Theorem 1 in Section 2,
which continues an elementary topological approach similar to earlier papers on
the Hanani-Tutte theorem, e.g. [15].

A traditional approach to Hanani-Tutte style results is via obstructions; this
sometimes leads to very slick proofs, like Kleitman’s proof of the Hanani-Tutte
theorem for the plane [7], but there are two drawbacks: complete obstruction
sets are not always known, e.g. for the torus or, in spite of several attempts, for
x-monotone embeddings (as discussed in [5]); and this approach is of little help
algorithmically. Pach and Tóth took another approach, building on a proof of
the weak Hanani-Tutte theorem for surfaces by Cairns and Nikolayevsky [2].

Before we begin, we introduce some basic terminology and notation. For any
graph G = (V, E) and S ⊆ V (G), let G[S] denote the subgraph induced by S;
that is, the graph on vertex set S with edge set {uv ∈ E(G) : u ∈ S, v ∈
S}. By a multigraph we understand a graph for which the set of edges is a
multiset. A topological graph is a graph drawn in the plane where the vertices
are represented by distinct points, and edges as Jordan arcs connecting the
incident vertices, but not passing through any other vertex and any pair of
edges crosses a finite number of times. Throughout the paper by a drawing of a
graph we understand its representation as a topological graph. By an embedding
of a graph we understand its (edge) crossing-free drawing.

The rotation at a vertex in a drawing of a graph is the clockwise ordering
of edges at that vertex. The rotation system of a graph is the collection of
rotations at its vertices. In an x-monotone drawing, the right (left) rotation
is the clockwise order of the edges leaving the vertex towards the right (left). So
(perhaps unfortunately), the right rotation is ordered from top to bottom, and
the left rotation is ordered from bottom to top. We will not carefully distinguish
between an abstract graph and a topological (drawn or embedded) graph, and
“vertex” and “edge” are used in both contexts. We use x(v) to denote the x-
coordinate of a vertex v located in the plane.

Remark 1. We are also preparing an extended version of this paper in which our
results are used to solve algorithmic questions regarding level-planarity.

1 There is a gap in the original argument; an updated version is now available [12,13].



2 Weak Hanani-Tutte for Monotone Drawings

An edge is even if it crosses every other edges an even number of times (including
0 times). A drawing is even if all its edges are even.

Theorem 1 (Pach, Tóth [12,13]). If G has an x-monotone and even drawing,
then G has an x-monotone embedding in which each vertex keeps its x-coordinate
and the rotation system remains unchanged.

Remark 2. The weak Hanani-Tutte theorem states that every graph with an
even drawing is planar (without changing the rotation system). For background
and variants of the weak Hanani-Tutte theorem, see [18].

Theorem 1 remains true if we require the resulting embedding to be straight-
line. This has nothing to do with the Hanani-Tutte part of the result; it is entirely
due to the fact that any x-monotone embedding can be turned into a straight-line
embedding in which every vertex keeps its x-coordinate [4,12]. This redrawing
can lead to an exponential blow-up in the area required for the drawing [8] (the
examples in the paper allow multiple vertices in each layer, but these can be
replaced by the requirement that vertices are not too close to edges they are not
incident to).

Theorem 1 may prompt the reader familiar with Hanani-Tutte style results
(in particular [11, Theorem 1] and [15, Theorem 2.1]) to ask whether something
stronger is true: a “removing even crossings” lemma which would say that all
even edges can be made crossing-free in the drawing of a graph which contains
odd edges (while maintaining monotonicity). We will see in Section 4 that there
cannot be any such lemma for monotone drawings.

Nearly the same result is claimed by Pach and Tóth in [12, Theorem 1.1], but
instead of maintaining the rotation, Pach and Tóth state that we can find an
equivalent x-monotone embedding for a given x-monotone and even drawing of
G, where two drawings are equivalent if no edge changes whether it passes above
or below a vertex. However, there are simple examples that show that one cannot
hope to maintain equivalence in this sense, see Figure 1. The example can easily
be turned into a 2-connected graph by replacing edges and vertices with cycles,
so equivalence cannot be obtained by assuming 2-connectedness. On the other
hand, see Corollary 1 for a positive result.

The original proof by Pach and Tóth contains a gap: it is not immediately clear
how multiple faces that share a boundary can be embedded simultaneously.2

Filling in the details of this gap requires dropping equivalence. Pach and Tóth
have prepared an updated version of the paper that includes a more detailed
argument [13].3

2 In the text after Lemma 2.1 on page 42 of [12], Dκ cannot necessarily be glued
together without changing equivalence.

3 In this newer version, equivalence is redefined to mean having the same rotation
system.
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Fig. 1. y lies above xv and x lies above uv. So in any equivalent x-monotone embedding
with the same relative x-order of the vertices, xv lies above uv, forcing y above uv; but
this contradicts y being below uv.

We approach Theorem 1 in the spirit of earlier papers on the Hanani-Tutte
theorem, e.g. [15]. The proof, which is omitted, repeatedly makes use of a simple
topological observation: suppose we are given two curves (not necessarily mono-
tone) starting at x = x1 and ending at x = x2 which lie entirely between x1 and
x2. The two curves cross an even number of times if and only if they have the
same vertical order at x = x1 and x = x2 (if they start or end in the same point
the vertical order at x is determined by the order in which they enter x).

We will also find the following redrawing tool useful.

Lemma 1. Suppose a multigraph G has an x-monotone embedding and let f
be an inner face of the embedding, with mf and Mf being the leftmost and the
rightmost vertex of f . If we add an edge mfMf so that mfMf lies in f , then the
resulting graph G∪{mfMf} has an x-monotone embedding in which the relative
x-order of the vertices and the rotation system remain the same. Note that we
do not require mfMf to be x-monotone initially and that there may be multiple
ways of inserting mfMf into the rotations at its endpoints.

Note that while the redrawing in Lemma 1 keeps the rotation system the same, it
will destroy equivalence in the sense of Pach and Tóth. Indeed, this is necessarily
the case as witnessed by a z-shaped corridor as the face in question:

mf Mf

Fig. 2. Adding a monotone edge mfMf into the corridor requires destroying
equivalence



Proof (of Lemma 1). If G consists of multiple components, it is sufficient to prove
the result for the component containing f and shift its embedding vertically so
that it does not intersect any other component. This allows us to assume that
G is connected. Then every face is bounded by a closed walk.4 The boundary of
f can be broken into two mf , Mf -walks, B1, B2 with B1 starting above mfMf

in the rotation at mf , and B2 starting below.
Let Df be the drawing of G intersected with Uf := {(x, y) ∈ R

2 : x(mf ) <
x < x(Mf )}. (Df is a subset of the plane, not a graph.) We will locally redraw
G in Uf so that mfMf can be inserted as a straight-line segment. For each
(topologically) connected component Z of Df , either (i) for every x between
x(mf ) and x(Mf ), there is a y-value of B1 at x that is below all y-values of Z
at x, or (ii) for any x between x(mf ) and x(Mf ), there is a y-value of B2 at x
that is above all y-values of Z at x.

Let Z1 be the union of all components of the first type, and Z2 be the union
of all components of the second type. Let L be the line through mf and Mf .
We will show how to move Z1 to the half-plane above L, without changing the
x-value of any point in Z1 while fixing the points on the boundary of Uf . Let
P be an x-monotone curve with endpoints mf and Mf that lies strictly below
Z1 in Uf (note that mf and Mf do not belong to Uf ). Now move every point
v of Z1 up by the vertical distance between P and L at x = x(v). We proceed
similarly to move Z2 strictly below L, at which point L is the desired embedding
of mfMf . ��
In the proof of Theorem 1, all redrawing steps maintain equivalence except for
applications of Lemma 1. This part of the proof, however, only arises in the case
that G−{v1, . . . , vi}, where vj denote j-th leftmost vertex of G, is not connected.
Hence, if we can make an assumption on G so that this case never occurs, we
can conclude that the resulting embedding is equivalent to the original drawing
in the sense of Pach and Tóth. We already saw that 2-connectedness is not
sufficient, however, another notion is: a graph in which the vertices are ordered
is a hierarchy if every vertex except the rightmost one has an edge leaving it
towards the right [3].

Corollary 1. If G has an x-monotone and even drawing and G is a hierarchy,
then G has an equivalent x-monotone embedding in which each vertex keeps its
x-coordinate and the rotation system remains unchanged.

The assumption in Theorem 1 can be weakened, somewhat surprisingly, replacing
x-monotonicity of edges by a weaker notion. Let us say that an edge uv in a
drawing is bounded if every interior point p of uv satisfies x(u) < x(p) < x(v).
That is, an edge is bounded if it lies strictly between its endpoints; it need not
be x-monotone within those bounds.

Lemma 2. Suppose we are given a drawing of a graph G with a bounded edge
e. Then e can be redrawn, without changing the remainder of the drawing or the
4 Walks are like paths except that vertices and edges can be repeated. In a closed walk

the last vertex is the same as the first vertex.



position of e in the rotations of its endpoints, so that e is x-monotone and the
parity of crossing between e and any other edge of G has not changed.

Proof. Suppose that e = ab and let v ∈ V (G) be an arbitrary vertex between a
and b: x(a) < x(v) < x(b). Now e has to cross the line x = x(v) an odd number
of times since it connects a to b. In particular, v splits x = x(v) into two: a
part which is crossed an odd number of times by e, and the other part which
is crossed evenly. In a small neighborhood of x = x(v) redraw G by pushing all
crossings of e with x = x(v) from the even side across v to the odd side. Note
that the odd side of x = x(v) remains odd and there are no crossing with e
left on the even side. Moreover, the parity of crossing between e and any other
edge does not change since e is moved an even number of times across v. Repeat
this for all v between a and b; now e only passes above or below each such v,
never both. We can now deform e into an x-monotone edge connecting a and
b, without having the edge pass over any vertices. Therefore, this deformation
does not affect the parity of crossing between e and any other edge, so we have
found the redrawing required by the lemma.

In hindsight we see that the redrawing of e is quite effective: for each vertex
v between a and b we only need to know whether e passes oddly above or below
it, and we can build a polygonal arc from a to b that passes each vertex on the
odd side. ��

3 Strong Hanani-Tutte for Monotone Drawings

Pach and Tóth [12] wrote “It is an interesting open problem to decide whether
[Theorem 1] remains true under the weaker assumption that any two non-
adjacent edges cross an an even number of times.” The goal of this section
is to establish this result, which was also conjectured in [18].

Theorem 2. If G has an x-monotone drawing in which every pair of indepen-
dent edges crosses evenly, then G has an x-monotone embedding in which each
vertex keeps its x-coordinate.

Remark 3. As in the case of Theorem 1, the statement of Theorem 2 remains
true if we only require edges to be bounded rather than x-monotone: simply
redraw edges one at a time using Lemma 2, before applying Theorem 2.

Let G = (V, E) and G′ = (V ′, E′) denote two graphs. We say that G < G′,
if |V | < |V ′| or if |V | = |V ′| and |E| < |E′|. In the sequel we consider mini-
mal counterexamples with respect to this relation. In a proof of the standard
Hanani-Tutte theorem, it is obvious that a minimal counterexample has to be
2-connected, since embedded subgraphs can be merged at a cut-vertex. Unfor-
tunately, the merge requires a redrawing that does not maintain monotonicity,
so here we must use structural properties that are more tailored to x-monotone
redrawings.

Lemma 3. Suppose that G is a minimal counterexample to Theorem 2. Then:
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Fig. 3. Lemma 3(ii), forbidden subgraph H
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Fig. 4. Lemma 3(iii), forbidden edge ac (left) and forbidden subgraph H ′ (right)

(i) G is connected.
(ii) G has no subgraph H and vertices a, b ∈ V (G) \ V (H) such that x(a) <

x(v) < x(b) for all v ∈ V (H), N(H) = {a, b}, and V (G)\(V (H)∪{a, b}) �=
∅.

(iii) If G has a cut-vertex a and G − {a} has a component H such that x(a) <
x(v) for all v ∈ V (H), then H has only one vertex b, and G has no edge
ac with x(b) < x(c). Also, in this case G has no induced subgraph H ′ �= ∅
so that x(a) < x(v) < x(b) for all v ∈ V (H ′), a ∈ N(H ′) �= {a}, and
x(v) > x(b) for all v ∈ N(H ′) \ {a}.

Proof. If a minimal counterexample G is not connected, none of its components
are counterexamples to Theorem 2. But then we could embed each component
separately and stack the drawings vertically so they do not intersect each other,
yielding an embedding of G. This contradiction establishes (i).

Consider case (ii) (see Figure 3). Since G is a minimal counterexample, both
G−V (H) and G[V (H)∪{a, b}] have embeddings (both graphs are smaller than
G by assumption). We can deform the crossing-free drawing of G[V (H)∪{a, b}]
so that it becomes very flat. If ab ∈ E(G) we can then insert this drawing into
the drawing of G−V (H) near the edge ab, without adding crossings. This gives
us a crossing-free drawing of G, which is a contradiction. If ab �∈ E(G) then we
add ab to the drawing of G− V (H) so that it has no independent odd crossings
(we will presently see how this can be done); the resulting G−V (H)∪ {ab} has
fewer vertices than G so it also has an embedding, and we can proceed as in the
case that ab ∈ E(G), removing the edge ab in the end.

When ab �∈ E(G), here is how we draw the edge ab with no independent odd
crossings: Let P be any a, b-path with interior vertices in H . By suppressing the
interior vertices of P , we can consider it a bounded edge (in the sense defined
earlier) between a and b, so Lemma 2 tells us that we can draw an x-monotone
edge that has the same parity of crossing with all edges of G as does P .

Finally, we consider (iii) (see Figure 4), where H is a component of G − {a}
so that x(a) < x(v) for all v ∈ V (H). If |V (H)| > 1, let b be the vertex with the
largest x-value in H and apply the part (ii) with H := H − b. Since the previous
proof requires that H �= ∅, we are in the case that V (H) = {b}. If G has an edge



ac with x(b) < x(c), we can embed G−{b} (since it is smaller than G), and then
add ab and b to the embedding alongside of ac without crossings.

It remains to consider an induced subgraph H ′ �= ∅ so that x(a) < x(v) < x(b)
for all v ∈ V (H ′), a ∈ N(H ′) �= {a}, and x(v) > x(b) for all v ∈ N(H ′) \
{a}. By minimality, G − {b} has an embedding. Consider the face which lies
immediately below H ′; let B be its boundary, and let c be the vertex on B with
maximum x-value. B is a closed walk that intersects H ′, and H ′ has edges to
the left and right, so B must contain neighbors of H ′ on its left and on its right.
Therefore, B contains a (to the left of H ′), and by the choice of H ′, x(c) > x(b).
Using Lemma 1, we can add the edge ac to the embedding of G − {b} without
introducing crossings. Since x(a) < x(b) < x(c), we can instead add ab to the
drawing without crossings, so G has an embedding which is a contradiction. ��

The proof of Theorem 2 now proceeds by induction on the number of odd pairs
(pairs of edges that cross an odd number of times). Roughly speaking: If we
encounter an odd pair (by necessity its edges are adjacent), we can either make
it cross evenly or we are in a situation which has been excluded by Lemma 3. To
realize this goal, we need more intermediate results. These results are not about
minimal counterexamples, but are true in general.

For the lemmas we introduce some new terminology generalizing our usual
notion of lying above or below a curve to curves with self-intersections: Let C be
a curve in the plane with endpoints p and r so that for every point c ∈ C \{p, r},
x(p) < x(c) < x(r). (This is similar to the definition of a bounded edge except
that we allow self-intersections.) Suppose that q is a point for which x(p) ≤
x(q) ≤ x(r). Extend C via a horizontal ray from p to x = −∞ and a horizontal
ray from r to x = ∞, and consider the plane R

2 minus that extended curve. We
can 2-color its faces so that adjacent faces (faces whose boundaries intersect in
a nontrivial curve) have opposite colors. We say that q is above (below) C if q
lies in a face with the same color as the upper (lower) unbounded region.

In the following two lemmas, let G satisfy the assumption of Theorem 2,
that is, we assume that every pair of independent edges in G crosses evenly.
Both lemmas deal with the following scenario: G contains three edges ei = v0vi,
i ∈ {1, 2, 3} so that e3 lies between e1 and e2 in the right rotation of v0, with e1

above e2 at v0, e1 and e2 cross oddly, and e3 crosses each of the other two edges
evenly.

Lemma 4. With an arbitrary vertex vR > x(v0) define G′ as the graph induced
by G on vertices v with x(v0) < x(v) ≤ x(vR). Let G′

i be the component of G′

that contains vi. (If x(vi) > x(vR), then G′
i = ∅.)

If G′
1, G′

2, G′
3 are pairwise disjoint and if for every i there is a path Pi from

v0 through ei to some vertex v′i satisfying x(v′i) ≥ x(vR) so that all vertices v
of Pi satisfy x(v) ≥ x(v0), then each G′

i has no neighbors (in G) to the left of
x(v0), for i ∈ {1, 2, 3}.

Lemma 5. Suppose that for some distinct j, k ∈ {1, 2, 3}, there is a cycle C
that contains ej and ek such that every vertex v of C satisfies x(v) ≥ x(v0). Let



vR be the vertex on C with largest x-value. Let i be the unique index such that
{i, j, k} = {1, 2, 3}. Suppose that vi is not in C.

Let G′
i be the component of G − V (C) that contains vi. Then every vertex v

of G′
i satisfies x(v0) < x(v) < x(vR).

We are finally in a position to prove Theorem 2. We need one more piece of
terminology: the distance between two edges e,f is the number of edge ends
between the ends of e,f in the right (or left) rotation. (We do not measure
distance within the entire rotation; only within the right or left rotation.)

Proof (of Theorem 2). Let G be a minimal counterexample to the theorem. Fix
a drawing of G which minimizes the number of odd pairs, that is, the number of
pairs of edges crossing oddly. If there are no odd pairs, then Theorem 1 completes
the proof.

Suppose that there are edges e1 and e2 that cross oddly. Then e1 and e2 have
a shared endpoint v0, and we may assume that v0 is the left endpoint of e1 and
e2. Choose e1 and e2 so that their ends at v0 have minimal distance in the right
rotation at v0, with e1 above (that is, preceding) e2. Then e1 and e2 are not
consecutive in the rotation at v0; if they were, they could be redrawn so that
they cross once more near v0, by switching their order in the rotation at v0; this
contradicts the choice of drawing of G. So there is at least one edge incident to
v0 that lies between e1 and e2 in the rotation at v0, and by minimality, all such
edges cross each other evenly and cross both e1 and e2 evenly. Pick one such
edge, e3. Let v1, v2, v3 be the right endpoints of e1, e2, e3, respectively, and let
G0 be the subgraph of G induced by all vertices v fulfilling x(v) ≥ x(v0).

Case 1. The right endpoints of e1, e2, e3 are in different components of G0 − v0.

In Case 1, for each i ∈ {1, 2, 3}, consider the component of G0−v0 that contains
vi and let v′i be its vertex with largest x-value. Assign i, j, k so that {i, j, k} =
{1, 2, 3}, and x(v′i) is smaller than x(v′j) and x(v′k). Apply Lemma 4 with xR =
x(v′i), which defines G′

i, G
′
j , G

′
k. By Lemma 3(iii), G′

i has only the one vertex
vi = v′i, and G′

j and G′
k are non-empty because x(vi) is greater than x(vj) and

x(vk) (using a = v0, c ∈ {vj , vk} and b = vi). Then we can apply the second
part of Lemma 3(iii) with H ′ equal to G′

j (or G′
k) restricted to the vertices with

x-coordinate smaller than x(v′i), and we are done.
If we are not in Case 1, then let vL be the vertex with x(vL) chosen to be

smallest such that the subgraph induced by vertices v such that x(v0) < x(v) ≤
x(vL) has a component that contains at least two right endpoints of e1,e2,e3.
Then there is a cycle C that contains ej and ek for some distinct k, j ∈ {1, 2, 3},
and so that x(v0) ≤ x(v) ≤ x(vL) for all v ∈ V (C). If vvL ∈ {e1, e2, e3}, then we
may assume that C contains vvL.

Let i be the unique index for which {i, j, k} = {1, 2, 3}. By the previous
assumption, vi �= vL. By Lemma 5, x(vi) < x(vL) or vi ∈ V (C) − vL.

Suppose that there is a path Q from vi to C so that x(v0) < x(v) < x(vL)
for all v ∈ V (Q). Then Q ∪ ei ∪ C − vL contains a cycle C′ with ei and either
ej or ek. But every vertex v of C′ satisfies x(v0) ≤ x(v) < x(vL) for all v in C′,
contradicting the choice of vL.



We can conclude that vi is not in V (C)−vL, and if we let G′
i be the component

of G − V (C) that contains vi, then G′
i has no neighbors in V (C) \ {v0, vL}. By

Lemma 5, G′
i lies between x = x(v0) and x = x(vL) (since vi �= vL). Let v′i be

the vertex of G′
i with largest x-value. Apply Lemma 4 with xR = x(v′i). This

defines G′
i, G

′
j , G

′
k.

Case 2. G′
i is not adjacent to vL.

(Same as Case 1:) By Lemma 3(iii), G′
i has only the one vertex vi = v′i, and G′

j

and G′
k are non-empty because x(vi) is greater than x(vj) and x(vk). Then we

can apply Lemma 3(iii) with H ′ equal to G′
j (or G′

k) restricted to the vertices
with the x-coordinate smaller than x(v′i), and we are done.

Case 3. There is an edge from G′
i to vL.

Apply Lemma 3(ii) with H = G′
i. This completes the proof of the theorem. ��

4 Monotone Crossing Numbers

Our Hanani-Tutte results can be recast as results about monotone crossing num-
bers. For a leveled graph (G, �) let mon-cr(G, �) be the smallest number of cross-
ings in any leveled drawing of (G, �). Similarly, we can define mon-ocr(G, �) as
the smallest number of pairs of edges that cross oddly in any leveled drawing
of (G, �). Finally, mon-iocr(G, �) is the smallest number of pairs of non-adjacent
edges that cross oddly in any leveled drawing of (G, �). We suppress � and sim-
ply write mon-cr(G), mon-ocr(G), and mon-iocr(G). With this notation we can
restate the original result by Pach and Tóth, our Theorem 1 as saying that
mon-ocr(G) = 0 implies mon-cr(G) = 0. Similarly, our Theorem 2 can be re-
stated as mon-iocr(G) = 0 implies mon-cr(G) = 0.

From this point of view we can now ask questions that parallel analogous prob-
lems for the regular (non-monotone) crossing number variants: cr, ocr, and iocr.
For example, we know that ocr(G) = cr(G) for ocr(G) ≤ 3 [16] and iocr(G) =
cr(G) for iocr(G) ≤ 2 [17]. Pach and Tóth showed that cr(G) ≤ (

ocr(G)
2

)
[11,15].

The core step in this result is a “removing even crossings” lemma, in this particu-
lar case: if G is drawn in the plane and E0 is the set of its even edges, then G can
be redrawn so that all edges in E0 are free of crossings. It immediately implies
cr(G) ≤ (

ocr(G)
2

)
, since only non-even edges can be involved in crossings (and

every pair of non-even edges needs to cross at most once). A similar result for
monotone drawings fails dramatically. In other words: even if there are only two
edges crossing oddly and all other edges are even, then any x-monotone drawing
of G with the given leveling may require an arbitrary number of crossings. Thus
we cannot hope to establish a “removing even crossings” lemma in the context
of x-monotone drawings since it would imply a bound on mon-cr(G) in terms of
mon-ocr(G).

Theorem 3. For every n there is a graph G so that mon-cr(G) ≥ n and
mon-ocr(G) = 1.



5 Open Questions

We want to suggest some future avenues of research.

Monotone Crossing Numbers. The monotone crossing number of a leveled
graph G is the smallest number of crossings in any x-monotone drawing of
the leveled graph. This problem is known to be NP-hard (even for two levels)
and the monotone crossing number can be arbitrarily large, even for a planar
graph (consider nested >s). We get a more interesting question if we define
the monotone crossing number for unleveled graphs as the smallest crossing
number of any x-monotone drawing for any leveling of the graph. Is this
monotone crossing number bounded in the crossing number? For comparison,
rcr2(G) is at most

(
cr(G)

2

)
, where rcr2(G) allows straight-line edges with one

bend [1]. Pach and Tóth in [14] recently proved that monotone crossing
number for unleveled graphs is at most

(
cr(G)

2

)
. Then one can ask how far is

this bound from the truth ?
Bi-monotonicity. Let us define y-monotonicity like x-monotonicity after a 90-

degree rotation; not very exciting by itself, but what happens if we want
embeddings that are bi-monotone, that is, both x- and y-monotone?

– If a graph has both an x-monotone embedding and a y-monotone em-
bedding, does it always have a bi-monotone embedding?

– If there is a drawing of a graph which is bi-monotone, is there a straight-
line drawing with the same x and y ordering?

– What about bi-level-planarity?

As far as we know, bi-monotonicity and bi-level-planarity are new concepts,
however, they are quite natural: If we specify the relative locations of objects
on a map, we specify them in terms of “west/east of” and “north/south
of” which is exactly what bi-monotonicity models. Imagine specifying the
stations for a subway map: actual distance do not matter, what matters is
relative location in terms of x and y.
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14. Pach, J., Tóth, G.: Monotone crossing number. In: Graph Drawing (to appear,
2011)
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