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Dirichlet (1842) 
Simultaneous Diophantine Approximation
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Simultaneous Diophantine Approximation
with an excluded prime
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Simultaneous diophantine    -approximation
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Not always possible
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Simultaneous diophantine    -approximation
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obstacle with 2 variables
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Simultaneous diophantine    -approximation
excluding

ε
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general obstacle
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Simultaneous diophantine    -approximation
excluding

ε
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Theorem:

If there is no ε -approximation
excluding p then there exists an 
obstacle with 

3/ 2| | /ib n ε≤∑
Kronecker’s theorem ( ): 

Arbitrarily good approximation excluding    
possible IFF no obstacle.
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Simultaneous diophantine    -approximation
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Motivating example

Shrinking by stretching



Motivating example
set (

stretching by

)/A m⊆ Z Z
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Example of the motivating example

A = 11-th roots of unity mod 11177



Example of the motivating example

168

A = 11-th roots of unity mod 11177



m a prime
then
If

every small set can be shrunk

Shrinking modulo a prime



m a prime

1 ,..., da a
m m

proof:
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Shrinking modulo a prime



Shrinking modulo any number

m a prime every small set can
be shrunk

?



Shrinking modulo any number

m a prime every small set can
be shrunk

gcd( , ) 1x m =

2km = 1{1,1 2 }kA −= +

If

then the arc-length of Ax
22k−≥



1 ,..., da a
m m

proof:

; 0q q Q< ≤
1/

1
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Q
α − ≤Dirichlet

: 1Q m= − ∃
:x q=

Where does the proof break?

2km =



1 ,..., da a
m m

proof:

; 0q q Q< ≤
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1
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Q
α − ≤Dirichlet

: 1Q m= − ∃
:x q=

Where does the proof break?

2km =

approximation excluding 2
need:



Shrinking cyclotomic classes

m a prime every small set can
be shrunk

set of interest – cyclotomic class
(i.e. the set of r-th roots of unity mod m)

•locally testable codes
•diameter of Cayley graphs
•Warring problem mod p
•intersection conditions modulo pk

k



Shrinking cyclotomic classes

cyclotomic class

can be shrunk



Shrinking cyclotomic classes

cyclotomic class

can be shrunk

Show that there is no small obstacle!



Theorem:

If there is no ε -approximation
excluding p then there exists an 
obstacle with 

3/ 2| | /ib n ε≤∑



Lattice

1,...,
n

nv v ∈R
1v

2vlinearly independent



Lattice

1,...,
n

nv v ∈R

1 ... nv v+ +Z Z



Lattice

1,...,
n

nv v ∈R

1 ... nv v+ +Z Z

Dual lattice

* { |( ) }TL u v L v u= ∀ ∈ ∈Z



Banasczyk’s technique (1992)

2|| ||( ) x

x A
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gaussian weight of a set

( ) ( ) / ( )L x L x Lφ ρ ρ= +
mass displacement function of lattice



Banasczyk’s technique (1992)

( ) ( ) / ( )L x L x Lφ ρ ρ= +
mass displacement function of lattice

0 ( ) 1L xφ≤ ≤

dist( , ) ( ) 1/ 4Lx L n xφ≥ ⇒ ≤

properties:



Banasczyk’s technique (1992)

( ) ( ) / ( )L A L A Lσ ρ ρ= ∩
discrete measure
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relationship between the discrete measure and 
the mass displacement function of the dual



Banasczyk’s technique (1992)

( ) ( ) / ( )L A L A Lσ ρ ρ= ∩
discrete measure defined by the lattice

*( ) ( )L L
x xσ φ=

21( ) exp( || || ) exp(2 )
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Banasczyk’s technique (1992)

1

2

3

1 0 0
0 1 0

/
0 0 1
0 0 0

n

α
α

ε
α
ν

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3, ,α α α

there is no short vector
with coefficient of the
last column 

w L∈

≡ 0(mod )p



Banasczyk’s technique (1992)
there is no short vector
with coefficient of the
last column 

w L∈

≡ 0(mod )p

( ) 1/ 2L uσ ≥ 1: nu e
p n
ε
ν +=

* ( ) 1/ 2
L

uφ ≥
*dist( , )u L n≤

obstacle
QED



Lovász (1982) 
Simultaneous Diophantine Approximation

1 2, ,..., ,n Qα α α

1,...,  0<np p q Q≤

Given rationals

integers
2

1/

2n

i i nq p
Q

α − ≤ for all i

can find in polynomial time

Factoring polynomials with rational coefficients.



Simultaneous diophantine    -approximation
excluding

ε
p - algorithmic

1 2, ,..., nα α α ,prime pGiven rationals

can find in polynomial time

12 nC pε+ -approximation excluding p

where ε is smallest such that there
exists ε -approximation excluding p

/ 24 2n
nC n=





Exluding prime and bounding denominator

If there is no ε -approximation
excluding p
then there exists an 

approximate obstacle with 
3/ 2| | /ib n ε≤∑

with q Q≤

1 1 2 2 ... 1/n nb b b p tα α α κ+ + + = + +
| | /n Qκ ≤



Exluding prime and bounding denominator

necessary to prevent ε -approximation
excluding p with q Q≤

the obstacle

sufficient to prevent
3/ 2/(2 )n pε -approximation

excluding p with /(2q Q p )n≤



Exluding several primes

If there is no ε -approximation
excluding 1,..., kp p
then there exists 

obstacle with 
1/ 2| | (max( , )) /ib n n k ε≤∑

1 [ ]

1/
n

i i j
i j A k

b p tα
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= +∑ ∑



Show that there is no small obstacle!

m=7
k

m
*

primitive 3-rd root of unity

1
0 1 7 , gcd( ,7) 1kc c t tω −+ = =

obstacle

know
21 0 (mod 7 )kω ω+ + ≡



Show that there is no small obstacle!

1
0 1 7 , gcd( ,7) 1kc c t tω −+ = =

21 0 (mod 7 )kω ω+ + ≡

2
0 1Res(1 , )x x c c x+ + +

0≠
divisible by 17k−

2 2
0 12( )c c≤ +

( 1) / 2

4
7 kε −=

There is g with all
3-rd roots

1/ 2 1/ 2[ (4 7) , (4 7) ]m m−



Dual lattice

1 2 3

1 0 0 0
0 1 0 0

/0 0 1 0
1

nε

α α α
ν ν ν ν
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −⎜ ⎟
⎝ ⎠



Algebraic integers?

possible that a small integer 
combination with small coefficients 
is doubly exponentially close to 1/p
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