Adaptive annealing: a near-optimal connection between sampling and counting

Daniel Štefankovič (University of Rochester)

Santosh Vempala Eric Vigoda (Georgia Tech)

Counting

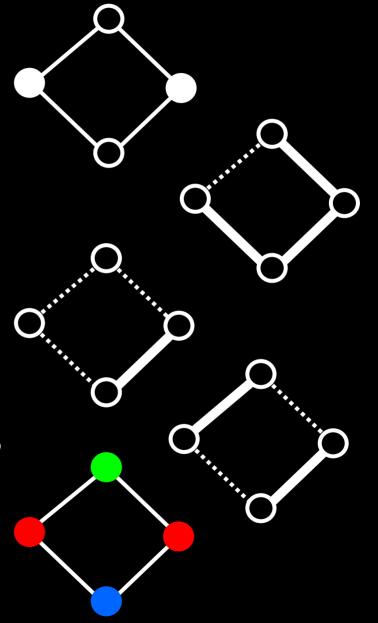
independent sets

spanning trees

matchings

perfect matchings

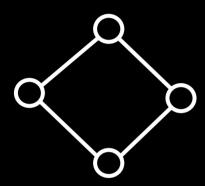
k-colorings



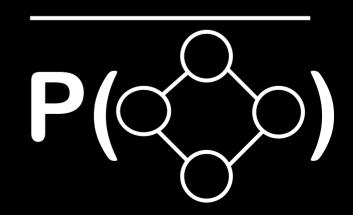
(approx) counting \Leftrightarrow sampling Valleau, Card'72 (physical chemistry), Babai'79 (for matchings and colorings), Jerrum, Valiant, V. Vazirani'86, the outcome of the JVV reduction: random variables: $X_1 X_2 \dots X_t$ such that 1) $E[X_1 X_2 ... X_t] = "WANTED"$ 2) the X_i are easy to estimate $\frac{V[X_{i}]}{E[X_{i}]^{2}} = O(1)$ squared coefficient of variation (SCV)

(approx) counting \Leftrightarrow sampling 1) $E[X_1 X_2 ... X_t] = "WANTED"$ 2) the X_i are easy to estimate $\frac{V[X_i]}{E[X_i]^2} = O(1)$ **Theorem (Dyer-Frieze'91)** $O(t^2/\epsilon^2)$ samples (O(t/ ϵ^2) from each X_i) give **1** $\pm\epsilon$ estimator of "WANTED" with prob>3/4 JVV for independent sets

GOAL: given a graph G, estimate the number of independent sets of G



independent sets =



$P(A \cap B) = P(A)P(B|A)$ JVV for independent sets $P(\mathcal{D})P(\mathcal{O})$ \bigcirc ?

$X_i \in [0,1] \text{ and } E[X_i] \ge \frac{1}{2} \implies \frac{V[X_i]}{E[X_i]^2} = O(1)$

$\begin{array}{c} \text{JVV: If we have a sampler oracle:} \\ \text{graph G} \longrightarrow \begin{array}{c} \text{SAMPLER} \\ \text{ORACLE} \end{array} \begin{array}{c} \text{random} \\ \text{independent} \\ \text{set of G} \end{array} \end{array}$

then FPRAS using $O(n^2)$ samples.

JVV: If we have a sampler oracle:

- then FPRAS using O(n²) samples.

$\begin{array}{c} \overset{\bullet}{\mathsf{SVV}: \text{ If we have a sampler oracle:}} \\ \beta, \text{graph } G \xrightarrow{} & \overset{\bullet}{\mathsf{SAMPLER}} & \overset{\bullet}{\mathsf{ORACLE}} & \overset{\bullet}{\mathsf{set from}} \\ gas-model \\ \text{Gibbs at } \beta \end{array}$

Application – independent sets

O*(|V|) samples suffice for counting

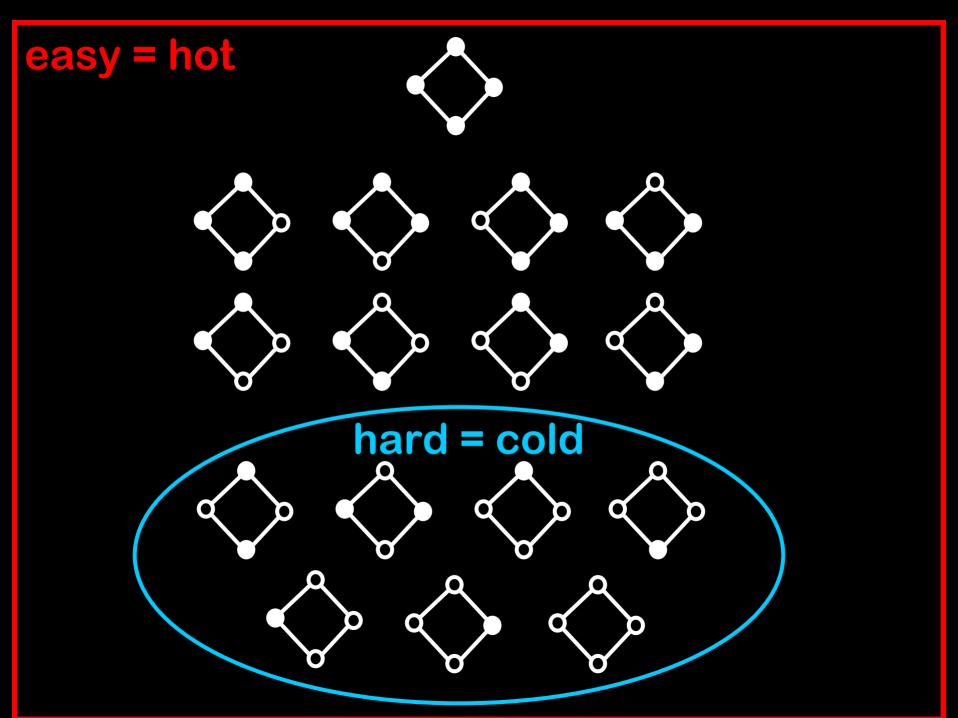
Cost per sample (Vigoda'01,Dyer-Greenhill'01) time = $O^*(|V|)$ for graphs of degree ≤ 4 .

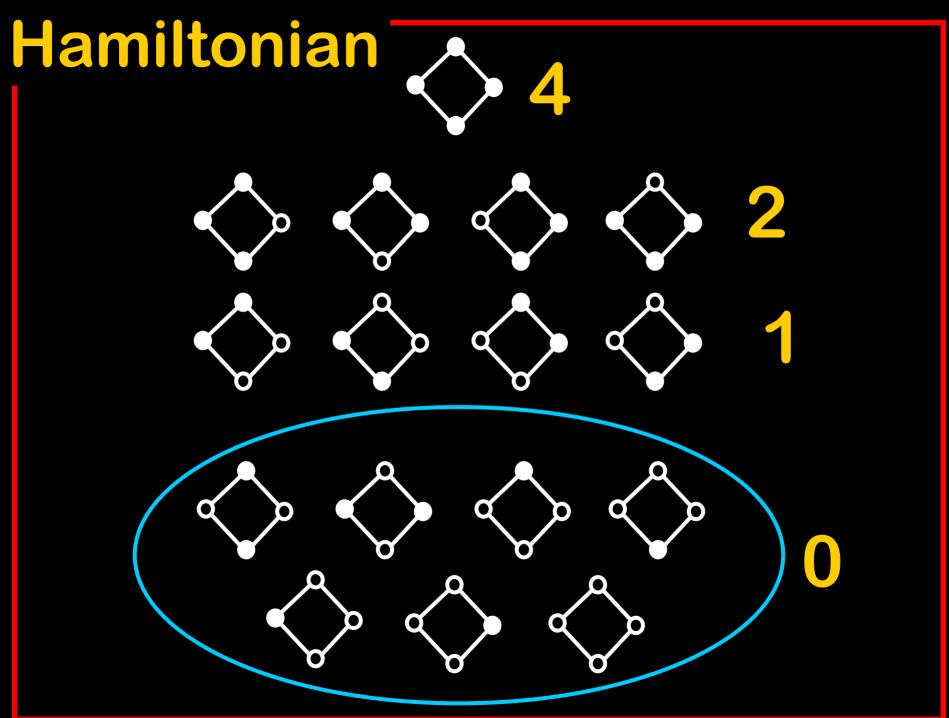
 $\frac{\text{Total running time:}}{O^* (|V|^2)}.$

Other applications matchings O^{*}(n²m) (using Jerrum, Sinclair'89)

spin systems:lsing model $O^*(n^2)$ for $\beta < \beta_c$ (using Marinelli, Olivieri'95)k-colorings $O^*(n^2)$ for k>2 Δ (using Jerrum'95)

total running time





Big set = Ω

Hamiltonian H: $\Omega \rightarrow \{0,...,n\}$

Goal: estimate |H⁻¹(0)|

$|H^{-1}(0)| = E[X_1] \dots E[X_t]$

Distributions between hot and cold

β = inverse temperature

 $\beta = \mathbf{0} \implies \text{hot} \Rightarrow \text{uniform on } \Omega$ $\beta = \infty \implies \text{cold} \Rightarrow \text{uniform on } H^{-1}(\mathbf{0})$

μ_{β} (x) \propto exp(-H(x) β)

(Gibbs distributions)

Distributions between hot and cold

Normalizing factor = partition function

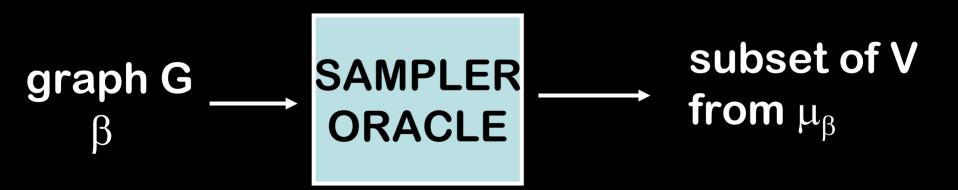
$Z(\beta) = \sum_{\mathbf{x} \in \Omega} exp(-H(\mathbf{x})\beta)$

Partition function

$Z(\beta) = \sum exp(-H(x)\beta)$ $\mathbf{X} \in \Omega$

have: $Z(0) = |\Omega|$ want: $Z(\infty) = |H^{-1}(0)|$

Assumption: we have a sampler oracle for μ_{β} $\mu_{\beta} (\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$



Assumption: we have a sampler oracle for μ_{β} $\mu_{\beta} (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$

 $W \sim \mu_{\beta}$

Assumption: we have a sampler oracle for μ_B $\mu_{\beta}(\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$ $W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$

Assumption: we have a sampler oracle for μ_{β} $\mu_{\beta} (\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$ $W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$ can obtain the following ratio: $E[X] = \sum_{\mathbf{s} \in \Omega} \mu_{\beta}(\mathbf{s}) X(\mathbf{s}) = \frac{Z(\alpha)}{Z(\beta)}$

Our goal restated

Partition function

$Z(\beta) = \sum_{\mathbf{x} \in \Omega} exp(-H(\mathbf{x})\beta)$

Goal: estimate $Z(\infty) = |H^{-1}(0)|$

 $\overline{Z(\infty)} = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \dots \frac{Z(\beta_t)}{Z(\beta_{t-1})} Z(0)$

 $\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$

Our goal restated $Z(\infty) = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \dots \frac{Z(\beta_t)}{Z(\beta_{t-1})} Z(0)$

Cooling schedule:

$$\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$$

How to choose the cooling schedule?

minimize length, while satisfying

$$\frac{V[X_i]}{E[X_i]^2} = O(1) \qquad E[X_i] = \frac{Z(\beta_i)}{Z(\beta_{i-1})}$$

Parameters: A and N $Z(\beta) = \sum exp(-H(x)\beta)$ $\mathbf{X} \in \Omega$ Z(0) = A $\mathsf{H}:\Omega\to\{\mathbf{0},\ldots,\mathbf{n}\}$

 $Z(\beta) = \sum_{k=0}^{n} a_k e^{-\beta k}$

Parameters

$\mathsf{Z}(0) = \mathsf{A} \qquad \mathsf{H}:\Omega \to \{\mathsf{0},\ldots,\mathsf{n}\}$

	A	n
independent sets	2 ^v	Ε
matchings	≈V!	V
perfect matchings	V!	V
k-colorings	kV	E

Previous cooling schedules

 $Z(0) = A \qquad H:\Omega \rightarrow \{0,...,n\}$ $\beta_0 = 0 < \beta_1 < \beta_2 < ... < \beta_t = \infty$

"Safe steps"

 $\beta \rightarrow \beta + 1/n$ $\beta \rightarrow \beta (1 + 1/ln A)$ $\ln A \rightarrow \infty$

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06)

Cooling schedules of length O(n ln A)

O((In n) (In A))

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06)

No better fixed schedule possible $Z(0) = A \qquad H: \Omega \to \{0, ..., n\}$

A schedule that works for <u>all</u>

$$Z_{a}(\beta) = \frac{A}{1+a} (1 + a e^{-\beta n})$$

(with $a \in [0, A-1]$)

has $LENGTH \ge \Omega((\ln n)(\ln A))$

Parameters

Z(0) = A $H:\Omega \rightarrow \{0,...,n\}$ Our main result:

can get <u>adaptive</u> schedule of length O* ((In A)^{1/2})

Previously: <u>non-adaptive</u> schedules of length $\Omega^*(\ln A)$

Existential part

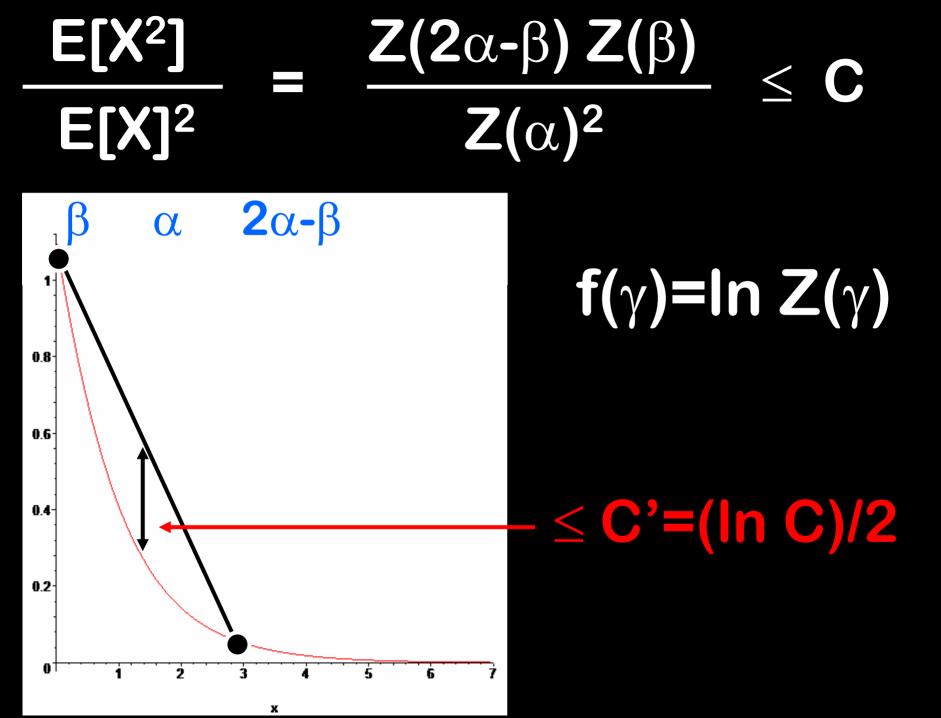
Lemma:

for every partition function there exists a cooling schedule of length $O^*((\ln A)^{1/2})$

Express SCV using partition function (going from β to α) $E[X] = \frac{Z(\alpha)}{Z(\beta)}$

$W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$

$\frac{\mathbf{E}[X^2]}{\mathbf{E}[X]^2} = \frac{\mathbf{Z}(2\alpha - \beta) \mathbf{Z}(\beta)}{\mathbf{Z}(\alpha)^2} \leq \mathbf{C}$

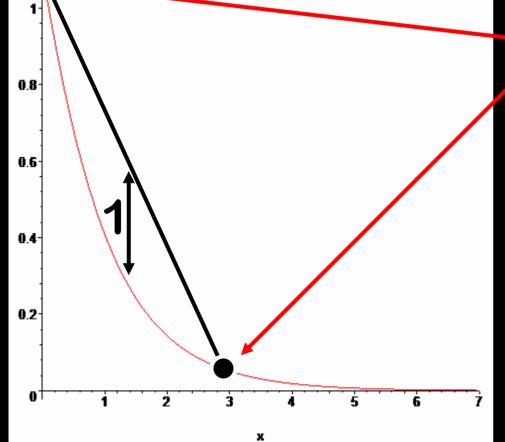


 $f(\gamma) = \ln Z(\gamma)$

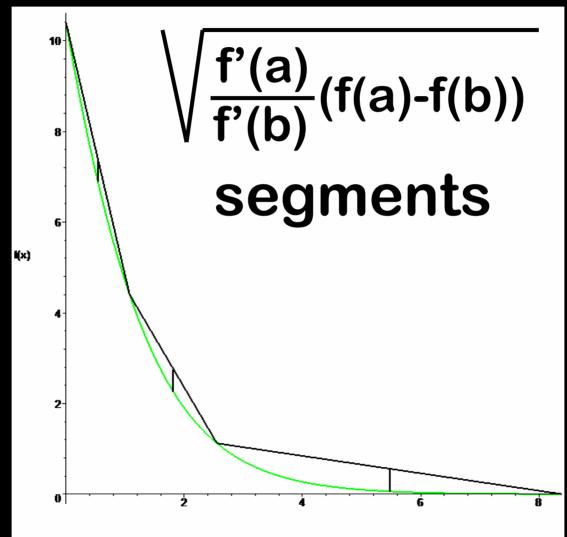
f is decreasing f is convex f'(0) \ge -n f(0) \le ln A

either f or f' changes a lot

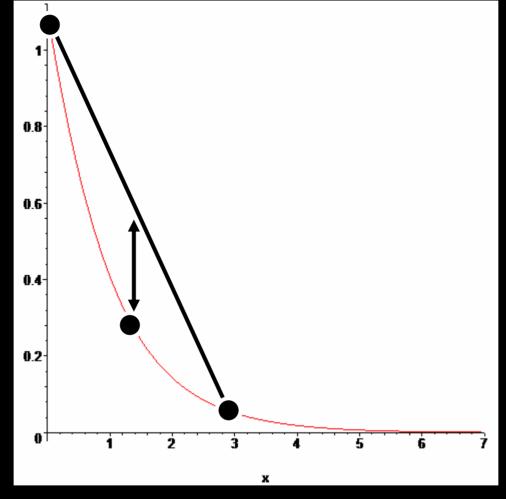
Let K:= Δf $\Delta(\ln |f'|) \ge \frac{1}{K}$



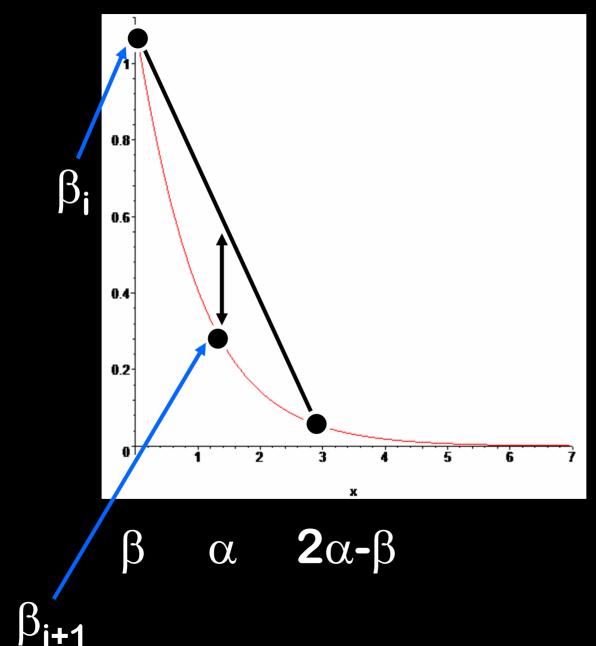
f:[a,b] \rightarrow R, convex, decreasing can be "approximated" using

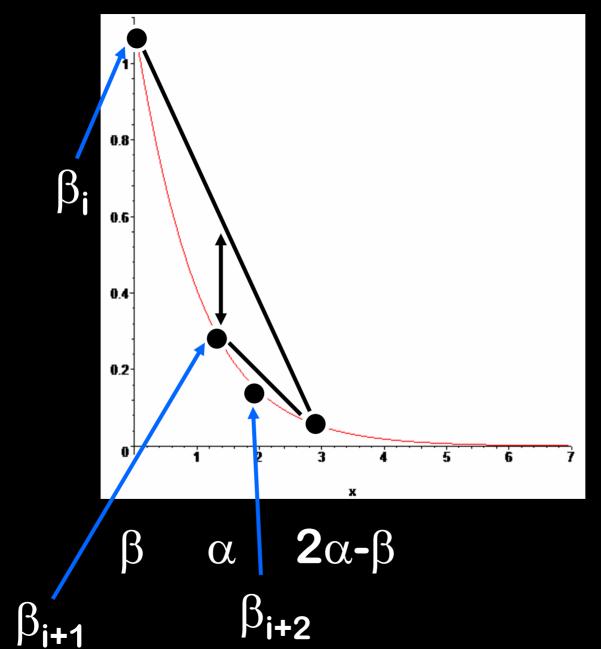


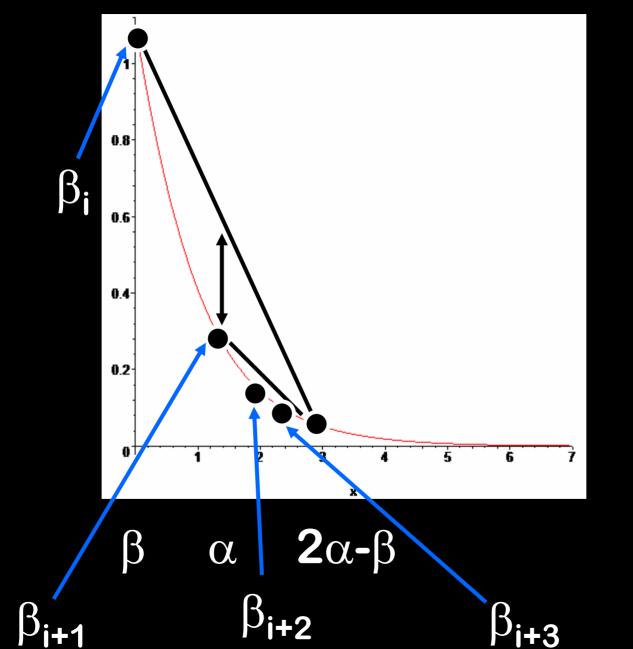
inverse temperature



β α **2**α-β







extra steps

In In A

$\textbf{Existential} \rightarrow \textbf{Algorithmic}$

can get <u>adaptive</u> schedule of length O* ((In A)^{1/2})

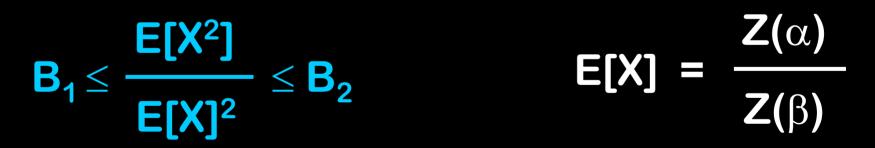
can get <u>adaptive</u> schedule of length O* ((In A)^{1/2})

Algorithmic construction Our main result: using a sampler oracle for μ_{β} $\mu_{\beta} (\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$ we can construct a cooling schedule of length $\leq 38 (\ln A)^{1/2} (\ln \ln A) (\ln n)$

Total number of oracle calls $\leq 10^7$ (ln A) (ln ln A+ln n)⁷ ln (1/ δ)

current inverse temperature β

ideally move to $\boldsymbol{\alpha}$ such that



current inverse temperature β

ideally move to $\boldsymbol{\alpha}$ such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$ X is "easy to estimate"

current inverse temperature β

ideally move to $\boldsymbol{\alpha}$ such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$

we make progress (assuming $B_1 > 1$)

current inverse temperature β

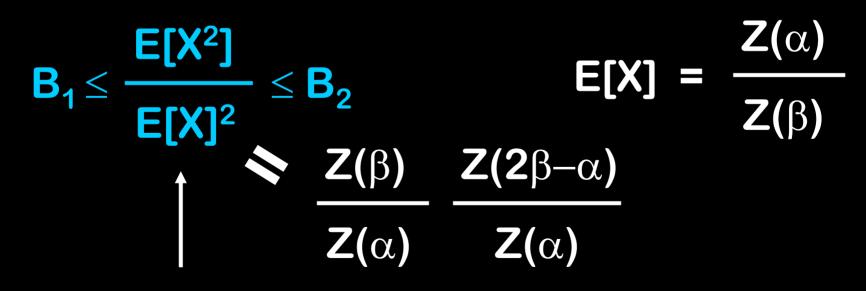
ideally move to $\boldsymbol{\alpha}$ such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$

need to construct a "feeler" for this

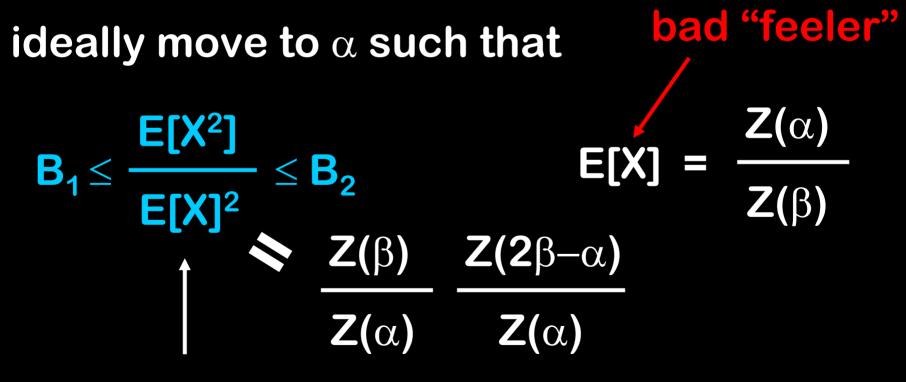
current inverse temperature β

ideally move to α such that



need to construct a "feeler" for this

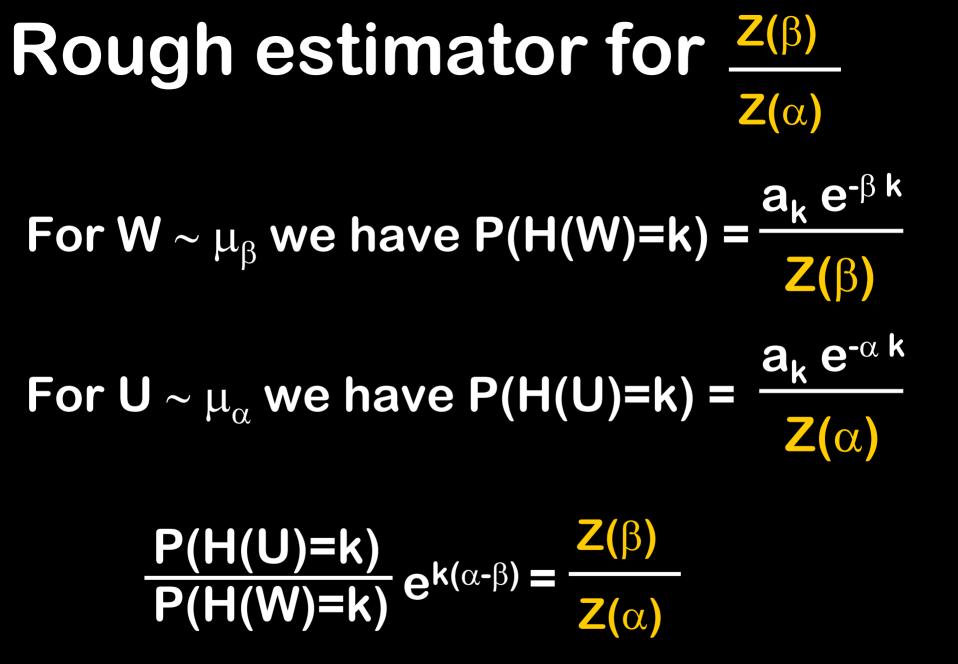
current inverse temperature β



need to construct a "feeler" for this

Rough estimator for $\frac{Z(\beta)}{\beta}$ **Ζ(**α) $Z(\beta) = \sum a_k e^{-\beta k}$ k=0 For $W \sim \mu_{\beta}$ we have $P(H(W)=k) = \frac{a_k e^{-\beta k}}{Z(\beta)}$

Rough estimator for <u>Z(B)</u> **Ζ(**α**)** If H(X)=k likely at both α , $\beta \Rightarrow$ rough estimator $Z(\beta) = \sum a_k e^{-\beta k}$ k=0 For $W \sim \mu_{\beta}$ we have $P(H(W)=k) = \frac{a_k e^{-\beta k}}{Z(\beta)}$ For U ~ μ_{α} we have P(H(U)=k) = $\frac{a_{k} e^{-\alpha k}}{Z(\alpha)}$



Rough estimator for <u>Z(β)</u> **Ζ(**α**)** $Z(\beta) = \sum a_k e^{-\beta k}$ **k=0** $P(H(W) \in [c,d]) = \sum_{k=c}^{d} a_k e^{-\beta k}$ For W ~ μ_{β} we have

Rough estimator for $\frac{Z(\beta)}{\beta}$ **Ζ(**α) If $|\alpha - \beta| \cdot |\mathbf{d} - \mathbf{c}| \leq 1$ then $\frac{1}{e} \frac{Z(\beta)}{Z(\alpha)} \leq \frac{P(H(U) \in [c,d])}{P(H(W) \in [c,d])} e^{c(\alpha - \beta)} \leq e^{\frac{Z(\beta)}{Z(\alpha)}}$ **Ζ(**α)

We also need $P(H(U) \in [c,d])$ $P(H(W) \in [c,d])$ to be large.

Split {0,1,...,n} into $h \le 4(\ln n) \sqrt{\ln A}$ intervals [0],[1],[2],...,[c,c(1+1/ $\sqrt{\ln A}$)],...

for any inverse temperature β there exists a interval with P(H(W) \in I) \geq 1/8h We say that I is HEAVY for β

Algorithm repeat

find an interval I which is heavy for the current inverse temperature β

see how far I is heavy (until some β^*) use the interval I for the feeler $\frac{Z(\beta)}{Z(\alpha)} = \frac{Z(2\beta-\alpha)}{Z(\alpha)}$

either

- * make progress, or
- * eliminate the interval I

Algorithm repeat

find an interval I which is heavy for the current inverse temperature β

see how far I is heavy (until some β^*) use the interval I for the feeler $\frac{Z(\beta)}{Z(\alpha)} = \frac{Z(2\beta - \alpha)}{Z(\alpha)}$

either

- * make progress, or
- * eliminate the interval I
- * or make a "long move"

if we have sampler oracles for μ_β then we can get adaptive schedule of length t=O* ((ln A)^{1/2})

independent sets O^{*}(n²) (using Vigoda'01, Dyer-Greenhill'01)

matchings O^{*}(n²m) (using Jerrum, Sinclair'89)

spin systems:Ising model $O^*(n^2)$ for $\beta < \beta_C$
(using Marinelli, Olivieri'95)k-colorings $O^*(n^2)$ for k>2 Δ
(using Jerrum'95)

input : A black-box sampler for $X \sim \mu_{\beta}$ for any $\beta \geq 0$, starting inverse temperature β_0 . output: A cooling schedule for Z. Bad $\leftarrow \emptyset$ print β_0 if $\beta_0 < \ln A$ then $I \leftarrow \text{FIND-HEAVY}(\beta_0, \text{Bad})$ $w \leftarrow$ the width of I $L \leftarrow \min\{\beta_0 + 1/w, \ln A\};$ (where $1/0 = \infty$) $\beta^* \leftarrow \text{binary search on } \beta^* \in [\beta_0, L] \text{ with precision } 1/(2n), \text{ using predicate}$ IS-HEAVY(β^*, I) $\beta \leftarrow$ binary search on $\beta \in [\beta_0, (\beta^* + \beta_0)/2]$ with precision 1/(4n), using predicate $\operatorname{Est}(I, \beta_0, \beta) \cdot \operatorname{Est}(I, 2\beta - \beta_0, \beta) < 2000$ if $\beta < (\beta^* + \beta_0)/2$ then PRINT-COOLING-SCHEDULE(β) (optimal move) else if $\beta = L$ then PRINT-COOLING-SCHEDULE(β) (long move) else $\gamma \leftarrow (\beta^* - \beta_0)/2$ print $\beta_0 + \gamma, \beta_0 + (3/2)\gamma, \beta_0 + (7/4)\gamma, \dots, \beta_0 + (2 - 2^{-\lceil \ln \ln A \rceil})\gamma$ $Bad \leftarrow Bad \cup I$ PRINT-COOLING-SCHEDULE(β^*) (interval move) end end else print ∞ end