
An FPTAS for #Knapsack and p
Related Counting Problems

Parikshit Gopalan
Adam Klivans
Raghu MekaRaghu Meka

Daniel Štefankovič
Santosh Vempala

Eric VigodaEric Vigoda

An FPTAS for #Knapsack and p
Related Counting Problems

Parikshit Gopalan, Adam Klivans, Raghu Meka
Daniel Štefankovič, Santosh Vempala, Eric Vigoda

What can be counted?

exactly? very little

(in polynomial-time)

exactly? very little...

number of spanning trees (using determinant),
Ki h ff’1847Kirchoff’1847.

perfect matchings in planar graphs perfect matchings in planar graphs
(using Pfaffians), Kasteleyn’1960.

(rest: usually #P-hard)

What can be counted?

approximately? a little more

(in polynomial-time)

approximately? a little more...
perfect matchings in bipartite graphs (permanent of
non negative matrices) Jerrum Sinclair Vigoda’2001non-negative matrices), Jerrum, Sinclair, Vigoda 2001.

Ferromagnetic Ising model, Jerrum, Sinclair’1989.

Independent sets (Δ ≤ 5), Weitz’2004.

k-colorings (k ≥ (11/6)Δ), Vigoda’1999.

....
(approximate counting ≈ random sampling,

Jerrum, Valiant, Vazirani’1986)

Approximate counting
(in polynomial-time)

deterministic:deterministic:

INPUT OUT

OUT
Q

≤ 1+ε1−ε ≤
INPUT

ε OUT

randomized:
INPUTINPUT

ε OUT

OUTP()≥1 δOUT
Q

≤ 1+ε1−ε ≤P()≥1-δ

not too many examples: independent sets in degree y p p g
≤5 graphs (Weitz’2004), matchings in bounded degree
graphs (Bayati, Gamarnik, Katz, Nair, Tetali’2007),
satisfying assignments of DNF formulas with terms ofsatisfying assignments of DNF formulas with terms of
size ≤ C (Ajtai, Wigderson’1985)

more examples; Monte Carlo, usuallymore examples; Monte Carlo, usually
using a Markov chain (dependence 1/ε2)

1) is randomness necessary ?) y

Is P = BPP ?Is P BPP ?

Primes ∈ P (Agarwal, Kayal, Saxena 2001)

2) d d ?2) dependence on ε ?

Monte Carlo Θ(1/ε2)

Knapsack (optimization)
INPUT:

(w v) (w v) L

weights

(i t)(w1,v1),...(wn,vn), L

values

(integers)

OUTPUT:
S⊆ [n] max ∑ vi

values

i ∈ S
∑ i

∑
i ∈ S
∑ wi ≤ L

i ∈ S

Dynamic program #1
(L is small)(L is small)

T[i,M][,]
(optimal solution with
items 1 i and limit M)items 1,...,i and limit M)

T[i,M] = max{T[i-1,M]{
T[i-1,M-wi] + vi

Dynamic program #2
(vi’s are small)(vi s are small)

T[i,V][,]
(smallest weight of
a subset of 1 ia subset of 1,...,i,
with value ≥ V)

T[i,V] = min{ T[i-1,V]{
T[i-1,V-vi] + wi

approximation algorithm

Counting knapsack
INPUT:

w w Lw1,...,wn, L

OUTPUT: S⊆ [n]How many

ith

∑ wi ≤ L

with

i ∈ S
∑ wi ≤ L

are there?

#P-hard

are there?

Counting knapsack
D F i K K P k i Dyer, Frieze, Kannan, Kapoor, Perkovic,
Vazirani’1993 exp(O*(n1/2)) / ε2

d i d i ti l ithrandomized approximation algorithm

M i Si l i ’1999 Morris, Sinclair’1999 O(nc / ε2)

randomized approximation algorithm
(MCMC i l th)(MCMC, canonical paths)

D ’2003 Dyer’2003 O(n2.5 + n2/ε2)

randomized approximation algorithm
(d i i)(dynamic programming)

OURS: O*(n3/ε)

Dyer’2003:

T[i,M]
(number of solutions
with items 1 i and with items 1,...,i and
limit M)

T[i,M] = T[i-1,M] + T[i-1,M-wi]

+ rejection sampling approximate counter

+ rejection sampling

approximate counter
2

wi’ =
n2 wi

L
L’ = n2

wi’’ = ⎣ wi’ ⎦
rounding:

i ⎣ i ⎦
1) get more solutions, Ω’’ ⊇ Ω’
2) not too many more |Ω’’|≤ (n+1)|Ω’|2) not too many more, |Ω |≤ (n+1)|Ω |

Proof:
S’’∈ Ω’’ - Ω’, X heaviest in S’’, then S’’ - {X}∈Ω’

Our dynamic program
deterministic approximation algorithm

τ(i A) =
smallest M such that knapsack

τ(i,A) = with w1,...,wi,M has ≥ A solutions

{ τ(i-1,α A)
τ(i,A) = min max

α∈[0,1]
{ (,)

τ(i-1,(1-α) A)+wiτ(i 1,(1 α) A) wi

Q = 1+ ε/(n+1)
s = ⎡ n log 2⎤s = ⎡ n logQ 2⎤

T[0..n,0..s]

T(i 1 ⎣j+ln ⎦)
T(i,j)=min max

α [0 1]
{

T(i-1,⎣j+lnQ α⎦)

T(i 1 ⎣j+ln (1)⎦)+wα∈[0,1]
{

T(i-1,⎣j+lnQ(1-α)⎦)+wi

Lemma 1: τ(i,Qj-i) ≤ T[i,j] ≤ τ(i,Qj)

T(i,j)=min max{T(i-1,⎣j+lnQ α⎦)
T(i,j) min max

α∈[0,1]
{

T(i-1,⎣j+lnQ(1-α)⎦)+wi

Lemma 2: can compute recursion efficiently

only few values of α matter
Q-j,....,Q0, 1-Q0, , 1-Qj

can use binary searchcan use binary search

TOTAL RUN TIME = O(log(n/))n3
TOTAL RUN TIME = O(log(n/ε))n

ε

How to deal with
more constraints ?more constraints ?
(e.g., contingency tables,
multi-dimensional knapsack, ...)

S⊆ [n]How many

multi-dimensional knapsack:

S⊆ [n]

∑ wj i ≤ Lj

How many
with

j∈{1,...,k}

i ∈ S
∑ wj,i ≤ Lj

are there?

j { , , }

are there?

O((n/ε)O(k2) log W) algorithm

Read once branching programs
• Layered directed • Layered directed

graph
• vertices per layerp y
• Edges between

consecutive layers
Ed l b l d n layers • Edges labeled

• Input:
• Output: Label of final • Output: Label of final

vertex reached

Counting the number of accepting paths ?
dynamic programming time = O(nS)dynamic programming, time = O(nS)

ROBP for knapsack

n layers

Problem: width too large

S l ti d idth b i tiSolution: reduce width by approximating

Monotone ROBPs
accepting paths from u

u ≤ v ⇔ A(u) ⊆ A(v)monotone:

d i i i ?

given implicitly
u

• ordering: given u,v, is u ≤ v ?

id i t i t t

v

• midpoint: given u,v, get w s.t.
|{x;u≤x≤w}| = |{x;w≤x≤v}| ± 1

• transitions: given u, get the
t i hb f outneighbors of u

group the vertices in the
layers according to the
rough number of accepting
paths processing right-left

already already
“shrunk”

More constraints?

can be generalized to distributions
given by small space sources.

small space sources =
ROBP + probability distributions on outgoing edges

p1

ROBP probability distributions on outgoing edges

n layers

More constraints?

n
layers

n
layers

can be combined to get (S2 n) ROBP forcan be combined to get (S2,n)-ROBP for
intersection

additive approximation preserved

1) uniform distribution given by Ω’’ can be given
b ll by small space source

2) additive approximation ⇒2) additive approximation ⇒
multiplicative approximation

Other problems:

contingency tables
with constant with constant
number of rows

Wh t th bl l blWhat other problems are solvable
using the technique?

Thanks!

