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What can be counted?

exactly? very little

(in polynomial-time)

exactly? very little...

number of  spanning trees (using determinant),
Ki h ff’1847Kirchoff’1847.

perfect matchings in planar graphs perfect matchings in planar graphs 
(using Pfaffians), Kasteleyn’1960.

(rest: usually #P-hard)



What can be counted?

approximately? a little more

(in polynomial-time)

approximately? a little more...
perfect matchings in bipartite graphs  (permanent of  
non negative matrices)  Jerrum  Sinclair  Vigoda’2001non-negative matrices), Jerrum, Sinclair, Vigoda 2001.

Ferromagnetic Ising model, Jerrum, Sinclair’1989. 

Independent sets (Δ ≤ 5), Weitz’2004.

k-colorings (k ≥ (11/6)Δ), Vigoda’1999.

....
(approximate counting ≈ random sampling, 

Jerrum, Valiant, Vazirani’1986)



Approximate counting
(in polynomial-time)

deterministic:deterministic:

INPUT OUT

OUT
Q

≤ 1+ε1−ε ≤
INPUT

ε OUT

randomized:
INPUTINPUT

ε OUT

OUTP(            )≥1 δOUT
Q

≤ 1+ε1−ε ≤P(            )≥1-δ



not too many examples: independent sets in degree y p p g
≤5 graphs (Weitz’2004), matchings in bounded degree 
graphs (Bayati, Gamarnik, Katz, Nair, Tetali’2007),
satisfying assignments of  DNF formulas with terms ofsatisfying assignments of  DNF formulas with terms of
size ≤ C (Ajtai, Wigderson’1985)

more examples; Monte Carlo, usuallymore examples; Monte Carlo, usually
using a Markov chain (dependence 1/ε2) 



1) is randomness necessary ?) y

Is P = BPP ?Is P  BPP ?

Primes ∈ P  (Agarwal, Kayal, Saxena 2001)

2) d d   ?2) dependence on ε ?

Monte Carlo  Θ(1/ε2)



Knapsack (optimization)
INPUT:

(w v ) (w v )  L

weights

(i t )(w1,v1),...(wn,vn), L

values

(integers)

OUTPUT:   
S⊆ [n] max  ∑ vi

values

i ∈ S
∑ i

∑
i ∈ S
∑ wi ≤ L

i ∈ S



Dynamic program #1
(L is small)(L is small)

T[i,M][ , ]
(optimal solution with
items 1 i and limit M)items 1,...,i and limit M)

T[i,M] = max{T[i-1,M]{
T[i-1,M-wi] + vi



Dynamic program #2
(vi’s are small)(vi s are small)

T[i,V][ , ]
(smallest weight of
a subset of  1 ia subset of  1,...,i,
with value ≥ V)

T[i,V] = min{ T[i-1,V]{
T[i-1,V-vi] + wi

approximation algorithm



Counting knapsack
INPUT:

w w  Lw1,...,wn, L

OUTPUT:   S⊆ [n]How many 

ith 

∑ wi ≤ L

with 

i ∈ S
∑ wi ≤ L

are there?

#P-hard

are there?



Counting knapsack
D  F i  K  K  P k i  Dyer, Frieze, Kannan, Kapoor, Perkovic, 
Vazirani’1993                                    exp(O*(n1/2)) / ε2

d i d i ti  l ithrandomized approximation algorithm

M i  Si l i ’1999                               Morris, Sinclair’1999                               O( nc / ε2 ) 

randomized approximation algorithm
(MCMC  i l th )(MCMC, canonical paths)

D ’2003                                             Dyer’2003                                             O(n2.5 + n2/ε2)

randomized approximation algorithm
(d i  i )(dynamic programming)

OURS: O*(n3/ε)



Dyer’2003:

T[i,M]
(number of  solutions 
with items 1 i and with items 1,...,i and 
limit M)

T[i,M] = T[i-1,M] + T[i-1,M-wi]

+ rejection sampling approximate counter



+ rejection sampling 

approximate counter
2

wi’ =
n2 wi

L
L’ = n2

wi’’ = ⎣ wi’ ⎦
rounding:

i ⎣ i ⎦
1) get more solutions, Ω’’ ⊇ Ω’
2) not too many more  |Ω’’|≤ (n+1)|Ω’|2) not too many more, |Ω |≤ (n+1)|Ω |

Proof:
S’’∈ Ω’’ - Ω’, X heaviest in S’’, then S’’ - {X}∈Ω’ 



Our dynamic program
deterministic approximation algorithm

τ(i A) = 
smallest M such that knapsack

τ(i,A) = with w1,...,wi,M has ≥ A solutions

{ τ(i-1,α A)
τ(i,A) = min  max

α∈[0,1]
{ ( , )

τ(i-1,(1-α) A)+wiτ(i 1,(1 α) A) wi



Q = 1+ ε/(n+1)
s = ⎡ n log 2⎤s = ⎡ n logQ 2⎤

T[0..n,0..s]

T(i 1 ⎣j+ln ⎦)
T(i,j)=min max

α [0 1]
{

T(i-1,⎣j+lnQ α⎦)

T(i 1 ⎣j+ln (1 )⎦)+wα∈[0,1]
{

T(i-1,⎣j+lnQ(1-α)⎦)+wi

Lemma 1: τ(i,Qj-i) ≤ T[i,j] ≤ τ(i,Qj)



T(i,j)=min max{T(i-1,⎣j+lnQ α⎦)
T(i,j) min max

α∈[0,1]
{

T(i-1,⎣j+lnQ(1-α)⎦)+wi

Lemma 2: can compute recursion efficiently

only few values of  α matter
Q-j,....,Q0, 1-Q0, .... , 1-Qj

can use binary searchcan use binary search

TOTAL RUN TIME = O(     log(n/ ))n3
TOTAL RUN TIME = O(     log(n/ε))n

ε



How to deal with 
more constraints ?more constraints ?
(e.g., contingency tables,
multi-dimensional knapsack, ...)

S⊆ [n]How many 

multi-dimensional knapsack:

S⊆ [n]

∑ wj i ≤ Lj

How many 
with 

j∈{1,...,k}

i ∈ S
∑ wj,i ≤ Lj

are there?

j { , , }

are there?

O( (n/ε)O(k2) log W) algorithm



Read once branching programs
• Layered directed • Layered directed 

graph
• vertices per layerp y
• Edges between 

consecutive layers
Ed  l b l d n layers • Edges labeled 

• Input: 
• Output: Label of  final • Output: Label of  final 

vertex reached

Counting the number of  accepting paths ?
dynamic programming  time = O(nS)dynamic programming, time = O(nS)



ROBP for knapsack

n layers

Problem: width too large

S l ti d  idth b  i tiSolution: reduce width by approximating



Monotone ROBPs
accepting paths from u

u ≤ v       ⇔ A(u) ⊆ A(v)monotone:

d i  i   i    ?

given implicitly
u

• ordering: given u,v, is u ≤ v ?

id i t  i   t  t

v

• midpoint: given u,v, get w s.t.
|{x;u≤x≤w}| = |{x;w≤x≤v}| ± 1

• transitions: given u, get the 
t i hb f  outneighbors of  u



group the vertices in the 
layers according to the 
rough number of  accepting 
paths processing right-left

already already 
“shrunk” 



More constraints?

can be generalized to distributions 
given by small space sources.

small space sources = 
ROBP + probability distributions on outgoing edges

p1

ROBP  probability distributions on outgoing edges

n layers



More constraints?

n 
layers

n 
layers

can be combined to get (S2 n) ROBP forcan be combined to get (S2,n)-ROBP for
intersection

additive approximation preserved



1) uniform distribution given by Ω’’ can be given 
b  ll  by small space source

2) additive approximation ⇒2) additive approximation ⇒
multiplicative approximation 





Other problems:

contingency tables
with constant with constant 
number of  rows

Wh t th  bl   l blWhat other problems are solvable
using the technique?

Thanks!


