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Rectilinear crossing number

rcr(G) = minimum number of crossings
in a planar straight-line 
drawing of G

cr(G) ≤ rcr(G)



cr(G)=0 ⇔ rcr(G)=0

Every planar graph has a 
straight-line planar drawing.

Steinitz, Rademacher 1934 
Wagner 1936
Fary 1948
Stein 1951

THEOREM [SR34,W36,F48,S51]:



cr(G)=0 ⇔ rcr(G)=0

cr(G)=rcr(G)
?

cr(G)=1 ⇔ rcr(G)=1
cr(G)=2 ⇔ rcr(G)=2
cr(G)=3 ⇔ rcr(G)=3

Are they equal?



cr(G) ≠ rcr(G)

cr(K8) =18
rcr(K8)=19
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cr(G) ≠ rcr(G)

cr(K8) =18
rcr(K8)=19

THEOREM [Guy’ 69]:

THEOREM [Bienstock,Dean ‘93]:

(∀k)(∃G)

cr(G) =4
rcr(G)=k



cr(G) = minimum number of crossings
in a planar drawing of G

rcr(G) = minimum number of crossings
in a planar straight-line 
drawing of G

Crossing numbers

(∃G) cr(G) ≠ rcr(G)

cr(G) ≤ rcr(G)
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Proof (Tutte’70): ocr(K5)=1

How many pairs of non-adjacent
edges intersect (mod 2) ?

INVARIANT:
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Proof: ocr(K5)=1

How many pairs of non-adjacent
idges intersect (mod 2) ?

QED



Hanani’34,Tutte’70:

ocr(G)=0 ⇔ cr(G)=0

If G has drawing in which all pairs of
edges cross even # times
⇒ graph is planar!



ocr(G)=0 ⇔ cr(G)=0

ocr(G)=cr(G)
?

Are they equal?

QUESTION [Pach-Tóth’00]:



ocr(G)=0 ⇔ cr(G)=0

ocr(G)=cr(G)
?

Are they equal?

Pach-Tóth’00:

cr(G) ≤ 2ocr(G)2



THEOREM [Pelsmajer,Schaefer,Š ’05]

ocr(G) ≠ cr(G)

Main result
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3. Prove cr(G)>ocr(G).

How to prove it?



THEOREM [Pelsmajer,Schaefer,Š ’05]

ocr(G) ≠ cr(G)

Obstacle: cr(G)>x is co-NP-hard!

1. Find G.
2. Draw G to witness small ocr(G).
3. Prove cr(G)>ocr(G).

How to prove it?
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Ways to connect



-1 0 +1

Ways to connect

number of “Dehn twists”



Ways to connect

How to compute # intersections ?



0 1 2

Ways to connect

How to compute # intersections ?
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xi∈Z

the number of twists of arc i

do arcs i,j intersect in the 
initial drawing?
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Crossing number

min ∑i<j|xi-xj+(πi>πj)|

xi∈Z

the number of twists of arc i

do arcs i,j intersect in the 
initial drawing?

ij



Crossing number

min ∑i<j|xi-xj+(πi>πj)|

xi∈Z

xi∈R

OPT

OPT*



Crossing number

min ∑i<j|xi-xj+(πi>πj)|

xi∈Z

xi∈R

Lemma:
OPT* = OPT.

OPT

OPT*
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Crossing number

min ∑i<j|xi-xj+(πi>πj)|

Obstacle: cr(G)>x is co-NP-hard!

yij≥ xi-xj+(πi>πj)
yij≥ –xi+xj-(πi>πj)



Crossing number

min ∑i<j yij

Obstacle: cr(G)>x is co-NP-hard!

yij≥ xi-xj+(πi>πj)
yij≥ –xi+xj-(πi>πj)



Crossing number

max ∑i<j Qij(πi>πj)

QT=-Q
Q1=0
-1 ≤ Qij ≤ 1

Dual linear program

Q is an n×n matrix



EXAMPLE:
a

c b

d



Odd crossing number ?
a

c b

d



Odd crossing number
a

d

ocr ≤ ad+bc

c b



Crossing number ?

max ∑i<j Qij(πi>πj)

a

c

d
a ≤ b ≤ c ≤ d

a+c ≥ d 

b

π=(2,1,4,3)

cr ≥ ac+bd
0       ac     b(d-a)    * 

-ac      0      ab a(c-b)
b(a-d)  -ab 0         bd

*    a(b-c)  -bd 0

QT=-Q
Q1=0
-1 ≤ Qij ≤ 1



Putting it together a

d

c b

ocr ≤ ad+bc

cr ≥ ac+bd

a ≤ b ≤ c ≤ d
a+c ≥ d 

b=c=1, a=(√3-1)/2~0.37, d=a+c

ocr/cr=√3/2~0.87



Crossing number a

d

c b
ocr/cr=√3/2~0.87



Crossing number a

d

c b
ocr/cr=√3/2~0.87

for graphs?



Crossing number a

d

c b
ocr/cr=√3/2~0.87

cr=?



Crossing number a

d

c b
ocr/cr=√3/2~0.86

cr=?



Crossing number for graphs

ocr/cr ≤ √3/2+ε.

Theorem:

(∀ ε>0) (∃ graph) with



Is cr=O(ocr)?



Is cr=O(ocr)?

Is cr = O(ocr) on annulus? 



Is cr=O(ocr)?

Is cr = O(ocr) on annulus? 

Theorem: 

On annulus cr ≤ 3ocr



BAD triple GOOD triple

Theorem: 

On annulus cr ≤ 3ocr



BAD triple

n.CR ≤ 3#BAD
p

Pay: #of bad
triples {p,i,j}

Average over p.



BAD triple

#BAD ≤ n.OCR

random i,j,k
X=#odd pairs

E[X]#BAD
bin(n,3)

3OCR
bin(n,2)

≤ ≤



BAD triple
n.CR ≤ 3#BAD
#BAD ≤ n.OCR

CR ≤ 3OCR

(on annulus)



Crossing number for graphs

ocr/cr ≤ √3/2+ε.
There exists graph with

On annulus
ocr/cr ≥1/3

Experimental evidence:
ocr/cr ≥ √3/2  on annulus and pair of pants

Bold (wrong) conjecture:
For any graph

ocr/cr ≥ √3/2



Questions
crossing number of maps
with d vertices in poly-time?
(true for d ≤ 2)

(map = graph + rotation system)

Bold (wrong) conjecture:
For any graph

ocr/cr ≥ √3/2



Open questions - classic

Zarankiewicz’s conjecture:

cr(Km,n)

Guy’s conjecture:
cr(Kn)

Better approx algorithm for cr.



Crossing number for graphs

pair crossing number (pcr)
# number of pairs of crossing edges

algebraic crossing number (acr)
∑ algebraic crossing number of edges

+1
-1



Crossing numbers

ocr(G)
acr(G)

pcr(G)
cr(G) rcr(G)


