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Features

Recurring n-gram features

In a Nutshell

e We explored a wide range of features:

Experimental setup & Results

o We submitted five system results for each of the three tasks.

1. rc. word ng.
2. rc. OCPOS ng.

recurring word-based n-grams
recurring n-grams, where open class words are
replaced by POS tags

rec. word-based dependencies (MATE): a head and all
its immediate dependents, ordered as in the sentence

— from surface (e.g., n-grams) e The ensembles are meta-classifiers created based on the

— to deep linguistic features (e.g., dependency) probability distributions of the base classifiers.

3. rc. word dep.

e We created ensemble classifiers by combining multiple single- e All systems consisted of classifier ensembles, except system 2.

feature classifiers, significantly increasing performance.

Ex: My own experience confirms this fact. = (my, own,

. . experience); (experience, confirms, fact); (this, fact) Single feature results
o Our best accuracy of 83.5% is the second best score in the overall 4. rc. func. dep. rec. function-based dependencies: each dependent is Feature type systems on T11 deo set
ranking of the NLI Shared 'lask (Tetreault et al., 2013). replaced by its grammatical function 1] 2| 3] 4| 5 | closed | openl | open2
: OD,NMOD, ' ; (SBJ, contirms, OBJ); _ _
— Closed task: 82.2% (rank 5, difference to best result 83.6% EM(S[? ffctl;m D,experience); (SBJ, confirms, OBJ) 1. rc. word ng. X | X X 81.3 | 42.0 | 80.3
not Statistically Significant) ’ 2. rc. OCPOS ng. X - X X - 67.6 26.6 64.8
— Open-2 task: 83.5% (rank 1) Complexity Features 3. rc. word dep. X | — | X | X | - 67.7 30.9 69.4
— Open—] task: 38.5% (rank 2) 5. complexity e text complexity features of Vajjala & Meurers (2012): 4. rc. func. .dep. X _ X X ' 62.4 28.2 61.3
lexical richness, syntactic complexity, . .. 5. complexity X | - x| x| X 37.6 19.7 36.5
e morphological and POS features from CELEX 6. stemsuffix, bin. || x | - | X | X | X 50.3 21.4 48.8
7. stemsuftix, cnt. X - X - X 48.2 19.3 471
B k d Sublexical Morphological Features Q ffix . bi _ 20.4 91 17.5
adC groun _ . . sulfix, bin. X X | X X : : :
6. stemsuffix, bin. | presence/absence of stem+suffix. 9. suffix, cnt. < | - | x | - X 19.0 13.0 17.7
o fEarly Woiik on NLI Itlas exE.lored (czliifferent kinds of features ranging g stef?sugfix, cnt. | number (;f item+suﬁ;ix olc.fiu]grer;c.:e}sl. " 10. type dep. Im. < | - 1 x 1 - 1 x 67 3 W 67 5
rom word n-grams to spelling and grammar errors. . suffix, bin. resence/absence of valid English suffixes. ,
(e.g., Jarvis et%ﬂ 2004; Igo egl; et al g2005) 9. suffix, cnt 1;umber of suffix occurrences : 11 type dep. POS AN R AT M - 16.0 275 270
L= s S0 ROPP ” T ' 12. local trees x | - | x| - | x || 491 ] 262 | 257
e Wong & Dras (2009) used features based on Contrastive Analysis. Constituency Parser-based Features 13. dep. num. X | - | x| x| - 39.7 19.6 41.8
e More recently, complex syntactic constructs were used as features. 10. type dep. Im. lemma-typed Stanford dependencies 14. dep. var. X | - | X | X - 41.5 18.6 40.1
(e.g., Wong & Dras, 2011; Swanson & Charniak, 2012) =poss(experience, my); amod(experience, own) etc., 15. dep. PQS X | - | X | x| - 47.8 21.5 47.4
e Brooke & Hirst (2011) studied the effect of training data size on 11. type dep. POS | POS-typed S;)E}?Iiorf:l depsndenaes 16. Im. realiz. X | - | X | X - 70.3 30.3 66.9
lassifier performance = poss(NN, 5); amod(NN, JJ) etc.,
¢ P ' 12. local trees all syntactic trees of depth one Task Overall system results
o Tetreault et al. (2012). u§ed ensemble m.0.de15 that comblon.e multiple parse: ( ROOT.( S (NP (PRP$ My) (J] own) (NN experience)) Closedso .. 822179 6181.0/815] 747
feature groups by building a meta-classifier of base classifiers. (VP (VBZ confirms) (NP (DT this) (NN fact))) (. .))) =
. . local trees: (S NP VP .), (NP PRP), (NP PRP$ J] NN), ... Closedgey 85.4/81.3|183.5|84.9|76.3
e Bykh & Meurers (2012) explored a data driven approach using 10foldCV
. . L Closed, .= . 82.4|78.9(80.7|81.7| 74.1
recurring n-grams with words and POS tag combinations. Ratio Features rawn._dev
. : Openliest 36.4|38.5|33.2(37.8|21.2
— We started with these features and extended our feature set to 13. dep. num. number of dependents (MATE) realized by a verb »
include more linguistically motivated features for this task. lemma normalized by this lemma’s count Openlics: 37.0138.5|35.4|37.8| 29.9
Ex: take=10 = f1: take:2-dependents=3/10 Open2iest 83.5(81.0(79.3|82.5| 64.8
= 12: take:3-dependents=7/10 Open2ies:* 84.5(81.0(83.382.9|79.8
14. dep. var. number of possible dependent-POS combinations for a
COI‘pO ra used verb lemma, normalized by this lemma’s count The starred Open task results finished computing after submission.
Ex: take:2-deps=3/10 = t1: take:[[-NN=3/10
TOEFL11 (Blanchard et al., 2013) take:3-deps=7/10 = £2: take:]]-NN-VB=2/10
| = 3: take:NN-NN-VB=5/10 _ _
e Main corpus of the shared task 15. dep. POS POS-based dependent frequency for a verb lemma DISCUSSIOI‘I

e 1100 essays of English learners with 11 L1 backgrounds.

NON-TOEFL11

e 5843 essays for 11 L1s for the open-1 and open-2 tasks
e unevenly distributed across 11 L1s, created from 5 corpora:

— ICLE corpus (Granger et al., 2009)

— FCE corpus (Yannakoudakis et al., 2011)

— BALC Arabic Learner Corpus (Randall & Groom, 2009)
— ICNALE corpus (Ishikawa, 2011)

— TUTEL-NLI: Tiibingen Telugu NLI Corpus

Ex: f1, 2, f3 from 14. = take:JJ=(1/2+1/3)/10
= take:NN=(1/2+1/3+2/3)/10
= take:VB=(1/3+1/3)/10

16. Im. realiz.

¢ lemma counts of a specific POS normalized by the
total count of this POS
Ex: A document with 30 verbs and 50 nouns includes
the lemma can 2 times as a verb and 5 times as a noun.
= f1: can:VB=2/30, £2: can:NN=5/50

e Type-Lemma ratio: lemmas of same category
normalized by total lemma count

e Type-Token ratio: tokens of same category
normalized by total token count

e L emma-Token Ratio: lemmas of same category
normalized by tokens of same category

e Best single feature group: surface-based recurring n-grams

e Ensemble models combining a range of linguistically motivated

features clearly outperform individual feature models.

— Even individually weak features significantly contribute.

Future Work

o Qualitatively analyze feature types in depth and study the
correlations between them

e Explore more linguistic features like syntactic alternations as

proposed in Krivanek (2012)




