

Reconsideration of the Idea

- Observation
 - Roman words have different spelling system rule 1: Roman words end with a vowel or n rule 2: A consonant is followed by a vowel

• The problem is spelling errors

the two rules would perfectly recognize
Roman words if there were no spelling errors
rules + clustering

Word to Feature Vector • Word to trigrams - e.g., SUSHI ^^S ^SU SUS USH SHI HI\$ I\$\$ ^: beginning of word \$: end of word • Trigram to vector - attribute: trigram - value: occurrence of trigram

Evaluation

- Target essays
 - Writer: Jr. high
 - 117270 words
 - Number of different Roman words: 727
- Compared to
 - K-means clustering, Rule-based, SVMs
- English word list (20,000 words)
 - BNC (+10回/M words) & Ispell dictionary
- Performance measure: Recall, Precision

Training Data for SVM

Roman instaces

- From a Japanese dictionary
- Pronunciation entry to Roman words (using a transliteration tool KAKASHI)
- Number of instances: 160000
- English instances
 - From the English word list
 - Number of instances: 20000

Analyzing False Negatives and Positives

- False negatives
 - words consisting of English syllable or word
 - e.g., omiyage (souvenir) → om, age English word: omnipotent, age
- False positive
 - misspelled words (94% of false positives)
 - Foreign words that follow spelling rules of Roman words
 - e.g., pizza

Conclusions

- A method for recognizing Roman words – step 1: obtain initial centroids by some rules
 - step 2: k-means clustering
- Advantages of proposed method
 - robust against spelling errors
 - requires only an English word list
- A tool based on the proposed method: http://www.ai.info.mie-u.ac.jp/~nagata/tools/