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Introduction

This has been a momentous year for the BEA Workshop. In its 12th year, the BEA workshop is, for the
first time, being held in conjunction with EMNLP. In addition, the workshop is being sponsored by the
newly formed Special Interest Group: SIG EDU.!

Since the first workshop in 1997, BEA has become the leading venue for sharing and publishing
innovative work that uses NLP to develop educational applications. The consistent interest and growth of
the workshop has clear ties to challenges in education. The research presented at the workshop highlights
advances in the technology and the maturity of the field of NLP in education. The capabilities serve as
a response to educational challenges and are poised to support the needs of a variety of stakeholders,
including educators, learners, parents, and administrators.

NLP capabilities now support an array of learning domains, including writing, speaking, reading,
and mathematics. In the writing and speech domains, automated writing evaluation (AWE) and
speech assessment applications, respectively, are commercially deployed in high-stakes assessment
and instructional settings, including Massive Open Online Courses (MOOCs). We also see widely-
used commercial applications for plagiarism detection and peer review and explosive growth of mobile
applications for game-based applications for instruction and assessment. The current educational and
assessment landscape continues to foster a strong interest and high demand that pushes the state of the
art in AWE capabilities to expand the analysis of written responses to writing genres other than those
traditionally found in standardized assessments, especially writing tasks requiring use of sources and
argumentative discourse.

Steady growth in the development of NLP-based applications for education has prompted an increased
number of workshops that typically focus on a single subfield. In BEA, we make an effort to have
papers from many subfields, for example, tools for automated scoring, automated test-item generation,
curriculum development, evaluation of text, dialogue, evaluation of genres beyond essays, feedback
studies, and grammatical error correction.

This year we received a record 62 submissions, and accepted 9 papers as oral presentations and 25 as
poster presentation and/or demos, for an overall acceptance rate of 55 percent. Each paper was reviewed
by three members of the Program Committee who were believed to be most appropriate for each paper.
We continue to have a very strong policy to deal with conflicts of interest. First, we made a concerted
effort to not assign papers to reviewers to evaluate if the paper had an author from their institution.
Second, with respect to the organizing committee, authors of papers for which there was a conflict of
interest recused themselves from the discussions.

While the field is growing, we do recognize that there is a core group of institutions and researchers who
work in this area. With a higher acceptance rate, we were able to include papers from a wider variety of
topics and institutions. The papers accepted were selected on the basis of several factors, including the
relevance to a core educational problem space, the novelty of the approach or domain, and the strength
of the research. The accepted papers were highly diverse — an indicator of the growing variety of foci in
this field. We continue to believe that the workshop framework designed to introduce work in progress
and new ideas needs to be revived, and we hope that we have achieved this with the breadth and variety
of research accepted for this workshop, a brief description of which is presented below.

The BEA12 workshop has presentations on Automated Writing Evaluation (AWE), item generation,

"https://www.aclweb.org/adminwiki/index.php?title=2017Q3_Reports:_SIGEDU
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readability, dialogue and annotation/database schemas, among others:

AWE Written Assessments: Whereas much work in scoring at BEA focuses on learner language, Horbach
et al. score essays written by proficient native German speakers in a complex writing task. Madnani et
al. look at scoring for content in science, math, language arts and social studies. Rei looks at detecting
off-topic essay responses to visual prompts. Riordan et al. examine neural architectures for scoring
responses to short answer questions. Finally, looking at the bigger picture, Burstein et al. explore the
relations between AWE and broader educational outcomes.

Domain-Specific AWE: Three papers look at assessments in specific subject domains. For language
learning, Tolmachev and Kurohashi extract exemplar sentences to accompany flash cards. Tack et al.
investigate the feasibility of automated learner English assessment in the CEFR (European) framework.
In the science domain, Nadeem and Ostendorf look at language-based mapping of science assessment
items to skills.

Error Detection and Correction: Rei and Yannakoudakis use a neural sequence labeling approach
to grammatical error detection. Napoles and Callison-Burch adapt Machine Translation (MT) to
grammatical error correction. In another use for machine translation, Rei et al. use MT to generate
artificial errors for training machine learning systems. Chollampatt and Ng augment an MT approach
with neural network models. Farag et al. develop an error-oriented word embedding approach that
exploits errors in learner productions. Caines et al. collect crowd-sourced fluency corrections for
transcripts of spoken learner English. Finally, Sakaguchi et al. present a position paper on error
correction that discusses issues that need to be addressed and provide recommendations.

Item generation: Jiang and Lee develop distractors for fill-in-the-gap items in Chinese. Satria and
Tokunaga evaluate automatically generated pronoun reference questions. Chinkina and Meurers generate
questions for evaluating language learning. Finally, Stasaski and Hearst generate multiple choice
questions using an ontology.

Estimating Item Difficulty: A last topic in the test domain is Pado’s paper on estimating question difficulty
in the domain of automatic grading.

Readability: Gonzalez-Gardufio and Sggaard measure gaze to predict readability while Stajner et al.
measure viewing time per word in autistic and neurotypical readers. Yaneva et al. also explore readability
assessment for people with cognitive disabilities. Beigman Klebanov et al. study the challenges
of varying text complexity in a read-aloud intervention program. Ostling and Grigonyte use deep
convolutional neural networks to measure text quality. Sheng et al. introduce the pedagogical roles
of documents to study pedagogical values. Gordon et al. generate reading lists of technical text. Finally,
Wolska and Clausen simplify metaphorical language for young readers.

Dialogue: There are two papers on dialogue, but with very different topics. In the first, Lugini and Litman
predict specificity in classroom discussions. In the second, Jin et al. develop a system for interpreting
questions in a virtual patient dialogue system.

Annotation/Databases: Loughnane et al. create a database that links learning content, linguistic
annotation and open-source resources. Laarmann-Quante et al. develop a novel German learner corpus.

Finally there are two papers with content so original that they don’t fit into any of the categories above:
Kochmar and Shutova investigate how semantic knowledge is acquired in English as a second language
and evaluate the pace of development across a number of dimensions. Chen and Lee predict an audience’s



laughter during an oral presentation.

This year, the workshop is hosting a Shared Task on Native Language Identification? (NLI). NLI is the
process of automatically identifying the native language (L1) of a non-native speaker based solely on
language that he or she produces in another language. Two previous shared tasks on NLI have been
organized in which the task was to identify the native language of non-native speakers of English based
on essays and spoken responses to a standardized assessment of academic English proficiency. The first
shared task® was based on the essays only and was also held with the BEA workshop in 2013. Three
years later, Computational Paralinguistics Challenge* at Interspeech 2016 hosted a sub-challenge on
identifying the native language based solely on the spoken responses. This year’s shared task combines
the inputs from the two previous tasks. There are three tracks: NLI on the essay only, NLI on the speech
response only, and NLI using both responses from a test taker. 19 teams competed in the NLI shared
task, with 17 presenting their systems during the poster session. A summary report of the shared task
(Malmasi et al.) will be presented orally.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
is attending this workshop. We would especially like to thank our sponsors: at the Gold Level, Turnitin
| LightSide, Grammarly and Duolingo; at the Silver level, Educational Testing Service (ETS), Pacific
Metrics, National Board of Medical Examiners (NBME), and iLexIR; at the Bronze level, Cognii. Their
contributions help fund workshop extras, such as the dinner which is a great social and networking event,
especially for students.

Joel Tetreault, Grammarly

Jill Burstein, Educational Testing Services
Ekaterina Kochmar, University of Cambridge
Claudia Leacock, Grammarly

Helen Yannakoudakis, University of Cambridge

“https://sites.google.com/site/nlisharedtask/home
3https://sites.google.com/site/nlisharedtask2013/home
*http://emotion-research.net/sigs/speech-sig/is 1 6-compare
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Abstract

Question difficulty estimates guide test cre-
ation, but are too costly for small-scale test-
ing. We empirically verify that Bloom’s
Taxonomy, a standard tool for difficulty es-
timation during question creation, reliably
predicts question difficulty observed after
testing in a short-answer corpus. We also
find that difficulty can be approximated by
the amount of variation in student answers,
which can be computed before grading.

We show that question difficulty and its
approximations are useful for automated
grading, allowing us to identify the optimal
feature set for grading each question even
in an unseen-question setting.

1 Introduction

Testing is a core component of teaching, and many
tasks in NLP for education are concerned with cre-
ating good questions and correctly grading the an-
swers. We look at how to estimate question diffi-
culty from question wording as a link between the
two tasks.

From a test creation point of view, knowing ques-
tion difficulty levels is imperative: Too many easy
questions, and the test will be unable to distinguish
between the more able test-takers, who all achieve
equally good results. Too many hard questions,
and only the most able test-takers will be clearly
distinguishable from the (low-performing) rest.

In large-scale testing, question difficulty and
other measures of question quality are established
through prior norming (Downey, 2010), where the
questions are answered by a pool of test-takers in
a dry run before definitive use with a similar de-
mographic. Difficulty is then determined on the
basis of the observed results using probabilistic test
theory (PTT). Norming is usually not available in

automated question creation or in ad-hoc testing
in small classrooms, while the need for correctly
determining question difficulty of course remains.

In this situation, teachers often use Bloom’s Tax-
onomy (Bloom, 1956), a classification of the knowl-
edge dimensions and cognitive processes involved
in the completion of a test task, to formulate ques-
tions of appropriate difficulty. In the literature, the
difficulty of multiple-choice questions has been
successfully aligned with the cognitive process di-
mension of the Bloom hierarchy (Tiemeier et al.
(2011); Kim et al. (2012), but see also Kibble and
Johnson (2011)). In this paper, we empirically
evaluate the predictive power of both Bloom di-
mensions for estimating the empirically observed
difficulty of short-answer questions, which require
the test-taker to freely formulate one to three sen-
tence answers. We find that the Taxonomy allows
a useful approximation of question difficulty at the
time of question creation. We find clear empirical
evidence that the instructional context, that is the
teaching materials presented in instruction, has to
be taken into account when determining difficulty
using the Taxonomy.

Once test-taker answers are available, but be-
fore grading makes PTT analysis possible, another
predictor for question difficulty becomes available:
Answer variation, the average amount of variation
within the student answers for each question, is
computed based only on the answer strings.

We also look at question difficulty from the point
of view of improving automated short-answer grad-
ing (SAG). To date, the focus of research has been
on finding informative features, ranging from deep
processing (Zesch et al., 2013; Hahn and Meurers,
2012) through text-based similarity (Sultan et al.,
2016) to shallow, string-based approaches (Okoye
et al., 2013; Jimenez et al., 2013). Pad6 (2016) has
proposed to perform pre-grading model selection
by tailoring feature sets to the characteristics of
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different short-answer corpora. We refine this idea
and show that within the same corpus, questions
with different difficulty levels also profit from dif-
ferent feature sets, and that the Bloom Taxonomy
levels and student answer variation can be used
as stand-ins for feature set prediction if difficulty
estimates are not available. These results point to a
new avenue of research in SAG.

The paper is structured as follows: We begin
by providing some theoretical background on PTT
and Bloom’s Taxonomy in Section 2. Our first
set of analyses tests the reliability of the Bloom’s
Taxonomy question difficulty predictions for our
data set (Section 3). The second analysis in Sec-
tion 4 focuses on the relationship between answer
variation and question difficulty. Our final set of ex-
periments investigates the use of question difficulty
for question-level model selection in short-answer
grading (Section 5). We end with a discussion and
conclusions in Section 6.

2 Theoretical Background

Our analyses require defining ground truth question
difficulty. We use the Rasch model from probabilis-
tic test theory for this estimate. This Section also
introduces Bloom’s Taxonomy, a tool from the field
of education intended for analysing the cognitive
requirements for answering a question, and thereby
its difficulty.

2.1 PTT Difficulty Estimation with the Rasch
Model

Test theory is concerned with determining test-
taker ability and analysing question quality and
difficulty. Probabilistic test theory formulates la-
tent trait models for these tasks. Latent trait models
assume that a student’s ability and a question’s dif-
ficulty are not directly observable, but depend prob-
abilistically on the observed scores. The two best-
known proponents are the Rasch model (Rasch,
1960) and the related Item Response Theory mod-
els' (van der Linden, 2010).

The Rasch model fits a joint model of question
difficulty and student ability on the basis of the
manual grades awarded to student answers (i.e.,
after testing). The goal is to establish question dif-
ficulty independently of concrete test-takers and
vice versa. Concretely, the Rasch model estimates
question difficulty and student ability given the fol-

'The most fundamental one-parameter IRT model is math-
ematically equivalent to the Rasch model.

lowing relation (where B,, is the ability of student
n and D; is the difficulty of question ):
e(Bn*Di)

Success (x = 1) of a student n on a question ¢
is linked to the difference between the student’s
ability and the question’s difficulty. If the ability
is greater than the difficulty, the student is likely
to succeed, or if the inverse is true, the student is
more likely to fail. Estimates of B and D are made
iteratively from the test results.

The resulting measures are returned in logits and
question difficulty is centered at 0, so that easy
items have low or negative difficulty estimates and
hard items have high difficulty estimates.

2.2 Bloom’s Taxonomy

Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), is a well-known tool
for creating and interpreting teaching objectives as
well as writing test questions and estimating their
difficulty. The Taxonomy has two independent di-
mensions: the Cognitive Process (CP) dimension
and the Knowledge dimension (KD). The Cogni-
tive Process dimension describes which type of
cognitive activity is necessary to complete a task,
in our case to answer a question. The least demand-
ing process is Remember, followed by Understand
(e.g., explain, compare, classify), Apply, Analyze
and, the most demanding, Create.

The second dimension of the revised Taxonomy
looks at the type of knowledge needed to com-
plete the task. The simplest knowledge type is
Factual (facts and terminology), followed by Con-
ceptual (categories, principles and models), Pro-
cedural (algorithms, techniques and criteria) and
Metacognitive (including strategic knowledge and
self-knowledge).

Anderson et al. explicitly recommend that Tax-
onomy users infer the dimension levels from the
question wording: Verbs like “compare” or “gener-
alize” indicate the Understand level, while “iden-
tify” or most simply “name” belong to the Remem-
ber level. To assess the Knowledge dimension level
needed to solve a task, Anderson et al. advise teach-
ers to look at the direct object of the verb describing
the required Cognitive Process. This explicit oper-
ationalization of level identification as analysis of
the question formulation indicates the possibility
of automating the process. Making these infer-
ences however is complex for questions which set



Question

Warum hat jede Klasse die Methode public String toString()?

Why does every class contain the method public String toString()?

Reference Answer

Die Methode wird von der Klasse Ob ject an alle Klassen in Java vererbt.

The method is inherited by all Java classes from class Ob ject.

Bloom’s CP
Bloom’s CP text&question

Understand
Remember

Bloom’s KD
Rasch Difficulty

Conceptual
0.89

Table 1: Example question with Bloom categories (original and re-assigned, see Section 3.3) and Rasch

difficulty (centered at O, larger means harder)

concrete tasks. For example, for the question “Cal-
culate the voltage given I and R.”, we need to infer
that Ohm’s law, a generalization, will be applied to
a concrete problem to arrive at the Apply cognitive
process on the Conceptual level.

3 Bloom’s Taxonomy and Difficulty

We now empirically evaluate how accurately
Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), predicts question
difficulty as estimated from student performance in
a manually graded short-answer corpus. We check
whether questions on the different levels of the Tax-
onomy show different ground-truth difficulty, as
provided by a Rasch model.

3.1 Data

We use the Computer Science Short Answers in
German corpus (CSSAG, Padé and Kiefer (2015)).
This corpus contains 31 content-assessment ques-
tions with reference answers as well as student
answers by highly-proficient speakers of German
(native or near-native). Anonymized student IDs
are available to track answers by the same person,
and there is sufficient person overlap between the
questions to allow consistent PTT analysis.

We exclude question 6 from our data set. Rasch
modelling uncovered an extreme mismatch of ex-
pected and actual difficulty, and further inspection
of the answers shows that the question was often
misunderstood and therefore skipped or answered
incorrectly. Uncovering questions like this is one
of the standard uses of PTT, so we feel justified in
excluding the question after careful analysis.

3.2 Method

For the empirical evaluation of Bloom’s Taxonomy
levels, we annotated the CSSAG questions with
the corresponding Cognitive Process and Knowl-
edge dimension. The author’s annotations were
verified by comparison to the level annotations of

two colleagues familiar with the Taxonomy and the
CSSAG subject matter, A and B.

The Cognitive Process annotations show sub-
stantial annotator agreement (UP-A: k = 73.7;
UP-B: k = 82.6; A-B: k = 67.5). Literature re-
sults, which mostly consider multiple choice ques-
tions, are often not this robust (Kibble and Johnson
(2011): k = 33.3, Cunnington et al. (1996): at
most x = 48 for a binary decision).?

The Knowledge dimension is much less consis-
tent (UP-A: x = 11.8; UP-B: k = 24.9; A-B:
rk = 32.8). Analysis showed that the annotators
entertained substantially different interpretations of
the levels, making adjudication impossible. Classi-
fying the Knowledge levels involves the annotators’
private conceptualisations of the question topic do-
main (What comprises procedural knowledge in
Computer Science?), which leads to much greater
inconsistency than classifying the process verb for
the CP levels.

We use the author’s level annotations, with the
caveat that the Knowledge level annotations are
noisy. We found questions on the Remember (n =
10) , Understand (n = 17) and Apply (n = 3)
levels of the CP dimension and in the Factual (n =
10), Conceptual (n = 18) and Procedural (n = 2)
levels of the Knowledge dimension.

We also estimated question difficulties on the
basis of the student performance in the corpus.
Table 1 shows a question from CSSAG with its
reference answer and Bloom levels as well as its
estimated difficulty.

Since we are doing data analysis and not build-
ing predictive models, we used the whole corpus
without holding out test data.

For our analyses, we use the 1m function in R
to induce linear models for question difficulty, us-

ZKim et al. (2012) argue that level assignment is harder
for multiple choice questions because the answer choices may
provide clues to the students, effectively reducing higher-level

questions to Remember.
Swww . r-project.org



Estimate Std. Error  Sig.
CP Remember -0.388 0.205 ns
CP Understand 0.632 0.247 *
CP Apply -0.780 0.473 ns

Table 2: Difficulty and the Cognitive Process lev-
els, re-assigned using instructional context: Linear
model coefficients. *: p < 0.05, ns: not significant.

ing the Bloom dimensions as factors. Since the
difficulty estimates are centered on 0, we force the
intercept to 0 in the models.

3.3 Analysis I: Bloom’s Cognitive Processes
and Difficulty

We begin by analysing the relationship between
Bloom’s CP dimension and ground-truth difficulty.
We train a linear model of difficulty, using the
three CP levels present in the data as factors. How-
ever, the linear model is not significant, and nei-
ther are the coefficients. From this first analysis, it
seems that Bloom’s Cognitive Process dimension
cannot predict observed question difficulties.

A closer look at the Taxonomy description re-
veals a problem. The Cognitive Process dimension
was first annotated taking only the question into ac-
count. However, Anderson and Krathwohl (2014)
(p.71) state that “If the assessment task is identical
to a task or example used during instruction, we
are probably assessing remembering, despite our
efforts to the contrary.” It is quite intuitive that,
beyond the specific wording of the question, in-
structional context influences question difficulty.
Therefore, we analysed the teaching materials (lec-
ture slides) used for instruction before the CSSAG
questions were answered in a test. The categories
were then re-assigned with the teaching materials
in mind: If for an Understand question, there was
text presented on a single slide (or on several slides
for a multi-component question) that would have
been graded as a correct answer given the reference
answer, the question was classified as Remember
instead, since no active knowledge transfer was re-
quired by the student in this case. We re-classified
six of originally 17 Understand questions as Re-
member (among them the example question in Ta-
ble 1). The new classification based on this closer
reading of Anderson et al. is called Bloom’s CP
text&question below.

Table 2 shows the results of another linear
model of ground-truth difficulty using the three

CP text&question levels as factors. The model is
significant on the p < 0.05 level, so the use of
instructional context yields a quantifiable relation-
ship between the Bloom levels and ground-truth
difficulty. This relationship is carried by the Un-
derstand level - this model coefficient is signifi-
cant and positive, meaning that Understand ques-
tions are predicted to have higher than average dif-
ficulty. The non-significant negative coefficient for
Remember indicates a tendency for these questions
to be less difficult than average. The estimate for
the Apply level is based on only three data points,
so the strong tendency for easier-than-average diffi-
culty must be taken with a grain of salt. Unlike the
findings for Remember and Understand, this last
observation is not in line with the predictions of the
Bloom Taxonomy. We return to this in Section 3.5.

In sum, the categories do show a significant dif-
ference in difficulty, but only if the explicit presen-
tation of material during instruction is considered.

The Bloom CP text&question categories are by
design strongly correlated with the existence of
the answer in the teaching materials: Questions
in category Remember always refer to explicitly
presented material, while questions in category Un-
derstand never do.* Therefore, the predictive per-
formance of the CP question&text levels could in
principle be due just to the existence of the answer
in the teaching materials. We therefore trained a
linear model of difficulty using answer presented
(1 if the answer was shown on the lecture slides,
as defined for the category re-assignment above, 0
otherwise) as a factor. This model did not reach sig-
nificance. We conclude that the predictive power
of the Bloom dimensions (when assigned with the
teaching materials in mind) is in fact at the core of
our findings.

3.4 Analysis II: Bloom’s Knowledge
Dimension and Difficulty

We now turn to the Knowledge dimension of
Bloom’s Taxonomy. In the data, we find 10 ques-
tions on the Factual level, 18 on the Conceptual
level and two on the Procedural level. The KD lev-
els are not related to the answer presented measure:
While answering a question may require knowl-
edge that has been explicitly presented, the correct

“In category Apply, explicitly presented or inferrable facts
have to be applied to a new situation, so there is no a pri-
ori relationship between the category and the answer having
been presented. In our data, all Apply questions referred to
presented material.



Estimate Std. Error  Sig.
KD Factual -0.785 0.263 woE
KD Conceptual 0.316 0.196 ns
KD Procedural  0.280 0.588 ns
Table 3: Difficulty and the Knowledge levels:

Linear model coefficients. **: p < 0.01, ns: not
significant.

answer need not have been.

Table 3 shows the coefficients of another linear
model of difficulty, now using the Knowledge di-
mension levels and again fixing the intercept at O.
The model predictions are significantly correlated
with difficulty (p < 0.05). The significant coef-
ficient is Factual knowledge, which results in the
prediction of easier-than-average difficulty. This,
of course, agrees with the Bloom Taxonomy.

Despite the large disagreement between the three
annotators on this dimension, the annotated Knowl-
edge levels still hold relevant information with re-
gard to question difficulty, and that information is
in line with the predictions of the Bloom Taxon-
omy.

3.5 Analysis III: Both Bloom Dimensions and
Difficulty

Next, we analyse the relationship between the two
dimensions of Bloom’s Taxonomy, which are con-
ceptually independent. A linear model of difficulty
using the levels of both dimensions as factors is sig-
nificant. Factors CP Understand and KD Factual
remain significant as in the individual models, but
there are no significant interactions, probably due
to sparse data. The raw data still show interesting
patterns, though, which we will analyse next.

Table 4 shows the category difficulty means
across both Bloom dimensions. Where the table
cells are appropriately filled, the mean difficulties
reflect the assumptions of the Taxonomy:

CP Remember questions are a lot easier than CP
Understand questions (recall the coefficient esti-
mates in Table 2). Within the Remember dimension
(the only one to use all three Knowledge levels),
mean difficulty rises monotonically in accord with
the Knowledge dimension definition.

We now see that the reason for Apply questions
overall appearing twice as easy as Remember ques-
tions may be the lack of Apply questions using
Conceptual and Procedural knowledge. This seems
more likely than an effect of noise, since all three

Apply questions are at most of difficulty —0.5, with
an average of —0.78, which is clearly on the easy
side of the spectrum.

It is also striking that there is an effect of
CP level beyond Knowledge dimension for Con-
ceptual, but not Factual questions: The Apply-
Factual questions are as difficult on average
as the Remember-Factual questions, while the
Understand-Conceptual questions are much harder
than the Remember-Conceptual questions. Fur-
ther investigation with a larger data base and more
closely standardized Knowledge level annotation
would certainly be interesting given this pattern.

In the Knowledge Dimension grand averages,
the Taxonomy is clearly mirrored: Questions us-
ing Factual knowledge are easier than questions
using Conceptual knowledge (this corresponds to
the model coefficients shown in Table 3 above).
Questions for Procedural knowledge (with an n of
just 2) appear overall a little too easy. Keep in mind,
though, that the level annotations for the Knowl-
edge dimension must be assumed to be noisy given
the low inter-annotator x values.

In sum, both dimensions of Bloom’s Taxonomy
taken together categorize the CSSAG questions
into four categories of monotonously increasing
difficulty in the raw data (ignoring for the moment
the Apply-Factual category): Remember-Factual,
Remember-Conceptual, Remember-Procedural and
Understand-Conceptual. The data confirm that
Bloom categories are predictive of question dif-
ficulty before testing, allowing teachers and test
creators to balance their tests before or even with-
out norming. Vitally, however, the instructional
context of the question has to be taken into account
for categorization.

4 Answer Variation

Our analyses so far have looked at predicting ques-
tion difficulty solely from properties of the question
(and instructional context), prior to testing. Once
the question has been answered, but before grad-
ing, another potentially informative predictor of
question difficulty becomes available: Answer vari-
ation, measured either as the average similarity of
student answers among themselves or their average
similarity with the reference answer.

We hypothesize a link between answer variation
and question difficulty based on the assumption
that easy questions (e.g. on the Bloom Remember-
Factual levels) have clear-cut answers that many



Factual Conceptual Procedural | Grand Avg
Remember —0.79 (n=7) —-0.18(n=7) 0.28(n=2) | —0.39
Understand - 0.63 (n = 11) - 0.63
Apply —0.78 (n = 3) - - —0.78
Grand Avg —0.79 0.37 0.28

Table 4: Cognitive Process text&question and Knowledge dimensions, Rasch difficulty averages (number

of questions).

Model
KD + CP text & question
Avg. SAV

SAV + KD + CP text & question

Adjusted R> Model Sig.
0.290 *
0.246 *
0.312 *

Table 5: Difficulty predicted by the Bloom Knowledge dimension (KD) and Cognitive Process (CP)
levels and SAV (student answer variation): Linear model R? values and significances. *: p < 0.05.

students know. This should lead to many highly
similar student answers (mirroring the reference an-
swer). Difficult questions that require understand-
ing of conceptual knowledge should show higher
variation in the phrasing of the correct answer as
well as more incorrect answers, leading to higher
answer variation both among student answers and
with regard to the reference answer.

If such a link indeed exists, then discrepancies
between a question’s intended difficulty and its ob-
served answer variation would help identify prob-
lematic questions even before grading.

We model average student answer variance
through the Greedy String Tiling (GST) similar-
ity measure (Wise, 1996), which ranges between
0 and 1 (where O indicates no overlap between
the strings — high variation, and 1 indicates per-
fect overlap — low variation). Comparing the (non-
empty) student answers and the reference answer is
straightforward. For the average similarity within
all non-empty student answers, we use each student
answer in turn as the point of comparison since
GST is non-symmetric. We use the same corpus as
before (see Section 3.1).

Rasch question difficulty (the assumed ground
truth) is indeed correlated with the average vari-
ation between student and reference answers at
Spearman’s p = —0.372,p < 0.05 and with the
average variation of student answers among them-
selves at Spearman’s p = —0.668, p < 0.001. For
both measures, difficulty is low when answer sim-
ilarity is high (and therefore, answer variation is
low). Perhaps surprisingly, the variation of answers
among themselves is a much stronger predictor

than variation with regard to the reference answer.
This may be because the similarity measure does
not account for valid paraphrases (e.g., by technical
terms in the reference answer). Relying just on the
student answers is more elegant in any case, as no
assumptions are made about the quality (or even
existence) of the reference answer.

Next, we train a linear model predicting diffi-
culty, just as before, but using student answer varia-
tion (SAV) as a factor. Table 5 compares the results
for SAV to a model using the Bloom KD and CP
text&question levels. We also combine SAV and
both Bloom dimensions. We find that all three
models significantly predict difficulty. At n = 30,
there were no significant differences between the
models in an ANOVA. We do see some indication
of differences between the models in the R? values,
however, which reflect how much of the variance in
the variable difficulty the model accounts for. For
the combination of the Bloom dimensions, R? is
somewhat higher than for SAV alone, but combin-
ing all factors yields another small increase.

We conclude that the Bloom levels, if known, are
the best predictors of question difficulty. However,
it can be difficult to assign the levels for existing
questions if instructional materials are not available.
In this case, the amount of within-answer variation
for each question can be used to estimate ques-
tion difficulty before grades and PTT estimates are
available, or if the PTT assumptions are not met.

Results from Duefias et al. (2015) suggest that
flat features such as word and length information
from the question and reference answer are also
useful in predicting difficulty; for them, simplified



taxonomy categories worked better than Bloom
categories. Note that they had no information on
the instructional materials used and so could not
adjust the CP categories (see Section 3.3).

S Automated Grading: Features and
Difficulty

Having looked at difficulty and its predictability
from the point of view of test creation in the pre-
vious section, we now turn to an analysis of the
usefulness of question difficulty information for
automated grading.

In Pad6 (2016), we found that on the corpus
level, there are optimal feature combinations for dif-
ferent data sets. Learner corpora of text comprehen-
sion questions (lower on the Bloom hierarchy) can
be graded well with shallow features close to the
string level, while corpora for content assessment
of native speakers (containing questions higher on
the Bloom hierarchy) require features derived from
syntactic and semantic analysis. Following this
lead, we investigate the link between question dif-
ficulty and optimal feature sets for grading on the
question level. We show that question difficulty
can indeed be used for question-level model selec-
tion (of the optimal feature set). Since question
difficulty is often not known at grading time, we
also look at Bloom’s Taxonomy levels and SAV as
predictors for model selection.

5.1 Automated Grading Model and Features

For reasons of comparability, we use the automated
binary grading model from Padé (2016). It consists
of a decision tree algorithm that considers features
from five feature groups. Table 6 lists them in order
of increasing complexity of the linguistic analysis
necessary to compute them. We will refer to the
NGram as well as the Similarity features (consist-
ing of the Greedy String Tiling, Cosine, and Leven-
shtein Edit Distance similarity algorithms) as shal-
low features, because only the character strings of
the answers and possibly lemmatization are needed.
The deep features are the overlap between student
and reference answer in terms of Dependency re-
lations or Lexical Resource Semantics (LRS) com-
ponents (Richter and Sailer, 2004), as well as the
output of the Excitement Open Platform Textual
Entailment system (Magnini et al., 2014).

5.2 Method

We train the grading model in the leave-one-
question-out setting on the CSSAG corpus (Sec-
tion 3.1). This means the test questions and an-
swers are completely unseen during training. We
do five training and test runs for each question:
First with only the NGram features, then adding
the Similarity features and so on, until the full fea-
ture set is used. We then determine for each ques-
tion which feature sets yield the best performance.
We report per-question prediction accuracy, which
ranges between 50 and 88.9%.

5.3 Feature Sets and Model Selection

We find that for 12 out of the 30 available questions,
the best performance is only reached using deep
features in addition to the shallow features. For the
remaining 18 questions, the best performance is
already reached using just the NGram or NGram
and Similarity features. In seven of these 18 cases,
model performance even declines when the deep
features are added, for the remaining 11 cases, ei-
ther feature set yields optimal performance. These
results show that there is room for question-level
feature optimization.

The short-answer grading model with the full
feature set (the best choice for the corpus accord-
ing to Pad6 (2016)) reaches an overall accuracy
of 73.11%. If we choose the best-performing fea-
ture set for each question instead of the full model,
overall accuracy increases to 74.35%.

These results indicate that automatic grading can
be improved by choosing the best-performing grad-
ing model for each question instead of relying on
a per-corpus choice. We expect greater improve-
ments with fine-tuned features, because the feature
implementations from Pad6 (2016) were left in-
tentionally vanilla so the results would generalize
more easily over the range of corpora used there.

5.4 Model Selection by Difficulty

We continue our analyses with the 19 questions
with optimal behaviour for just one feature set. For
the other 11 questions, either feature set works well,
so they carry limited information for us. To ver-
ify that difficulty is indeed related to the optimal
feature set for grading, we train a linear model of
difficulty using the feature set (deep or shallow)
that shows optimal performance for each question.
The resulting model significantly (p < 0.01) pre-
dicts difficulty.



Feature Group | Features

NGram Unigram, Bigram, Trigram overlap of student and reference answer
Similarity Greedy String Tiling, Cosine, Levenshtein measures

Dependency Dependency triple overlap of student and reference answer
Semantics LRS component overlap of student and reference answer

TE Textual Entailment of reference answer by student answer

Table 6: Overview of the feature set for automated grading

Accuracy
Frequency Baseline 63.2
Difficulty 78.9

Table 7: Model Selection: Accuracy of predicting
the best-performing feature set

We now change tasks and evaluate the useful-
ness of difficulty for model selection. We evaluate
how well the best-performing feature set (shallow
or deep) for each question can be predicted by a
logistic regression model (R cv.glm) using dif-
ficulty as its only feature.” We use leave-one-out
cross-validation.

Table 7 shows the classification accuracy of pre-
dicting when the shallow feature set will outper-
form the deep feature set. Using only ground-truth
difficulty, the prediction is correct for roughly 80%
of the 19 questions. This clearly outperforms the
frequency baseline (always predict the deep feature
set). Difficulty therefore is very informative with
regard to the most useful features for SAG.

5.5 Model Selection: Bloom Levels and SAV

If difficulty estimates are not available, Bloom
levels or SAV may still be obtainable. We have
shown above that both can be used to predict dif-
ficulty. In the case of Bloom levels, we also see
a promising pattern in the raw data: There is a
clear tendency for questions low on the Bloom
hierarchy to be optimally gradable with shallow
features, while questions higher on the Bloom hier-
archy require deep features. For three out of four
Remember-Factual questions (out of the 19 ques-
tions with one optimal feature set), optimal grad-
ing performance is reached with shallow features.
For the five Remember-Conceptual questions, two
show optimal performance with shallow and three
with deep features. Six out of seven Understand-

3Note that our result is strictly speaking an upper bound,
since difficulty was originally inferred using all questions.

Conceptual questions require deep features, and
there is one Remember-Procedural question, also
optimally graded with deep features. (The two
Apply-Factual questions are split between deep and
shallow features, in keeping with their estimated
difficulty, see Section 3.5).

We therefore use the Bloom levels to train a
logistic regression models to predict the optimal
feature set, just as above. A second model uses SAV.
The left-hand side of Table 8 shows that for our
small data set, these factors perform practically at
chance level, much below the frequency baseline.

This pessimistic result is not the whole picture.
We also evaluate three simple, conservative heuris-
tics based on the Taxonomy, SAV and difficulty,
respectively, that do not require training. The re-
sults are on the right-hand side of Table 8.

The Bloom heuristic predicts the shallow feature
set for all Remember-Factual questions, and the
deep feature set otherwise. Its accuracy of 74%
clearly outperforms the frequency baseline.

The SAV heuristic predicts the shallow feature
set for the 20% of questions with the lowest stu-
dent answer variation (i.e., highest within-answer
similarity). We chose 20% for the boundary based
on the observation that there are five Bloom di-
mension combinations present in the data and the
Bloom heuristic assigns the shallow feature set for
only one of them. The SAV heuristic performs at
the level of the frequency baseline.

The difficulty heuristic predicts the shallow fea-
ture set for the easiest 20% of questions. At 84%
accuracy, this prediction model even outperforms
the linear difficulty model from Section 5.4.

The results underscore the usefulness of diffi-
culty for model selection. In parallel to Sections 3
and 4 above, we find that difficulty can be approxi-
mated well by the levels of the Bloom Taxonomy,

8For the Bloom Taxonomy evaluation, one dimension level
was represented only once, so the corresponding data point
was unpredictable and was excluded, yielding n = 18 and a
frequency baseline of 61.1.



Accuracy Accuracy
Frequency Baseline 63.2 Frequency Baseline 63.2
Difficulty 78.9 Difficulty heuristic 84.2
Bloom KD & CP 55.6 Bloom KD + CP heuristic 73.7
SAV 52.6 SAV heuristic 63.2

Table 8: Model Selection: Accuracy of predicting the best-performing feature set. Left: Logistic model,

right: Heuristic

and to a degree by the variation within student an-
swers, if the levels are not available. While for
small data sets such as ours, learning a selection
model may not be possible, difficulty and its stand-
in measures contain sufficient information to for-
mulate an informative, yet simple heuristic model.

6 Discussion and Conclusions

Question difficulty is important in test creation and
question analysis (as our discovery and exclusion
of an unsuitable question in Section 3.1 demon-
strates). We have shown that is also an informative
factor in optimizing automated grading: Question
difficulty quite accurately predicts which feature set
allows best grading performance. This insight al-
lows us to use question difficulty to tailor models to
specific questions and optimize SAG performance.

Difficulty, however, can only be estimated af-
ter grading, making it impractical to use in many
SAG settings. We have shown that difficulty can be
approximated by the question’s levels on Bloom’s
Taxonomy, a standard tool in education, or, to a
somewhat lesser extent, by SAV, the amount of
variation present in student answers, measured in
string similarity. These approximations are avail-
able before testing (Bloom) and grading (SAV).

In this context, we can refine the hypothesis put
forward in Pad6 (2016) that the grading perfor-
mance variation of different feature sets over dif-
ferent corpora is primarily due to differences in
answer variation. Pad6 (2016) attributes these dif-
ferences to different student populations (language
learners have less ability to paraphrase than native
or near-native speakers), which co-varied with elic-
itation tasks (learner reading understanding versus
native content assessment). Our results here zoom
in on native-level speakers in content assessment.
We found a strong relationship between preferred
grading features and question difficulty, while diffi-
culty is partially expressed in answer variation.

The link between Bloom hierarchy levels and dif-
ficulty that we found provides more insight: Ques-

tions low on the Bloom hierarchy tend to be eas-
ier and are optimally graded with shallow features
(close to the text level). Questions higher on the
Bloom hierarchy require deep features (more exten-
sive syntactic and semantic analysis). This matches
the corpus-level results from Pad6 (2016) (on top
of the effect of language ability): The corpora best
graded with shallow features were learner corpora
of text comprehension questions. Most of these
questions are low on the Bloom hierarchy, since
they ask the reader to repeat knowledge explicitly
presented in the text.” On the other hand, content
assessment corpora (such as CSSAG) contain more
and higher Bloom levels and therefore more ques-
tions that require deep processing for grading.

An avenue for future work is the automatic in-
ference of Bloom Taxonomy levels. In addition to
facilitating SAG, knowing question difficulty lev-
els without norming would increase the quality of
manually created ad-hoc tests as well as automati-
cally generated question sets. The guidelines from
Anderson and Krathwohl (2014) suggest that the
levels can be inferred from the question wording
by Textual Entailment methods. Given the nec-
essary inference steps and the patterns of human
annotation consistency for the two dimensions, the
Cognitive Process dimension lends itself more to
automated assignment than the Knowledge dimen-
sion. Finally, we have shown that it is vital to
identify cases of recall of instructional materials in
level prediction.
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Abstract

For medical students, virtual patient di-
alogue systems can provide useful train-
ing opportunities without the cost of em-
ploying actors to portray standardized pa-
tients.  This work utilizes word- and
character-based convolutional neural net-
works (CNNs) for question identification
in a virtual patient dialogue system, out-
performing a strong word- and character-
based logistic regression baseline. While
the CNNs perform well given sufficient
training data, the best system perfor-
mance is ultimately achieved by com-
bining CNNs with a hand-crafted pattern
matching system that is robust to label
sparsity, providing a 10% boost in system
accuracy and an error reduction of 47% as
compared to the pattern-matching system
alone.

1 Introduction

Standardized Patients (SPs) are actors who play
the part of a patient with a specific medical his-
tory and pathology. Medical students interact with
SPs to train skills like taking a patient history and
developing a differential diagnosis. However, SPs
are expensive and can behave inconsistently from
student to student. A virtual patient dialogue sys-
tem aims to overcome these issues as well as pro-
vide a means of automated evaluation of the med-
ical student’s interaction with the patient (see Fig-
ure 1).

Previous work with a hand-crafted pattern-
matching system called ChatScript (Danforth
et al., 2009, 2013) used a 3D avatar and al-
lowed for students to input questions using text
or speech. ChatScript matches input text using
hand-written patterns and outputs a scripted re-

jaffe}@ling.osu.edu

doug.danforth@osumc.edu
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| was hoping you could help me with my back

Figure 1: Virtual Patient avatar used to train med-
ical students

sponse for each input question identified by the
system. While pattern matching with ChatScript
can achieve relatively high accuracy with suffi-
cient pattern-writing skill and effort, it is unable to
take advantage of large amounts of training data,
somewhat brittle regarding misspellings, and diffi-
cult to maintain as new questions and patterns are
added.

With an apparent plateau in system perfor-
mance, this work explores new data-driven meth-
ods. In particular, we use convolutional neural
networks with both words and characters as in-
put, demonstrating a significant improvement in
overall question identification accuracy relative to
a strong multiclass logistic regression baseline.
Furthermore, inspired by the different error pat-
terns between the ChatScript and CNNs, we de-
velop a simple system combination using a bi-
nary classifier that results in the highest overall
performance, achieving a remarkable 47% reduc-
tion in error in comparison to the ChatScript sys-

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 11-21
Copenhagen, Denmark, September 8, 2017. (©2017 Association for Computational Linguistics



tem alone. Frequency quantile analysis shows that
the hybrid system is able to leverage the relatively
higher performance of ChatScript on the infre-
quent label items, while also taking advantage of
the CNN system’s superior accuracy where more
data is available for training.

2 Related Work

Question identification has been formulated as at
least two distinct tasks. Multi-class logistic regres-
sion is a standard approach that can take advan-
tage of class-specific features but requires a good
amount of training data for each class. A pairwise
setup involves a more general binary classification
decision which is then made for each label, choos-
ing the highest confidence match.

Early work (Ravichandran et al., 2003) found
that treating a question answering task as a max-
imum entropy re-ranking problem outperformed
using the same system as a classifier. DeVault
et al. (2011) observed maximum entropy systems
performed well with simple n-gram features. Jaffe
et al. (2015) explored a log-linear pairwise rank-
ing model for question identification and found it
to outperform a multiclass baseline along the lines
of DeVault et al. However, Jaffe et al. (2015) used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, multiclass lo-
gistic regression outperforms a pairwise ranking
model. With no pairwise comparisons, a multi-
class classifier is also much faster, lending itself to
real-time use.

It is probable that multiclass vs. pairwise ap-
proaches’ overall effectiveness depends on the
amount of training data; pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016)
where data is sparse or non-existent. In the closely
related task of short-answer scoring, Sakaguchi
et al. (2015a) found that pairwise methods could
be effectively combined with regression-based ap-
proaches to improve performance in sparse-data
cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann et al. (2009)
acquired 500,000 dialogues with over 2 million ut-
terances, observin that statistical systems outper-
form rule-based ones as the amount of data in-
creases. Crowdsourcing for collecting additional
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dialogues (Ramanarayanan et al., 2017) could al-
leviate data sparsity problems for rare categories
by providing additional training examples, but this
technique is limited to more general domains that
do not require special training/skills. In the cur-
rent medical domain, workers on common crowd-
sourcing platforms are unlikely to have the exper-
tise required to take a patient’s medical history in a
natural way, so any data collected with this method
would likely suffer quality issues and fail to gen-
eralize to real medical student dialogues. Rossen
and Lok (2012) have developed an approach for
collecting dialogue data for virtual patient sys-
tems, but their approach does not directly address
the issue that even as the number of dialogues col-
lected increases, there can remain a long tail of
relevant but infrequently asked questions.

CNNs have been used to great effect for image
identification (Krizhevsky et al., 2012) and are be-
coming common for natural language processing.
In general, CNNs are used for convolution over in-
put language sequences, where the input is often a
matrix representing a sequence word embeddings
(Kim, 2014). Intuitively, word embedding kernels
are convolving n-grams, ultimately generating fea-
tures that represent n-grams over word vectors of
length equal to the kernel width. CNNs are very
popular in systems for tasks like paraphrase detec-
tion (Yin and Schiitze, 2015; Yin et al., 2016; He
et al., 2015), community question answering (Das
et al., 2016; Barbosa et al., 2016) and even ma-
chine translation (Gehring et al., 2017). Character-
based models that embed individual characters as
input units are also possible, and have been used
for language modeling (Kim et al., 2016) to good
effect. It is worth noting that character sequences
are more robust to spelling errors and potentially
have the same expressive capability as word se-
quences given long enough character sequences.

3 Dataset

The dataset consists of 94 dialogues of medical
students interacting with the ChatScript system.
The ChatScript system has been deployed in a
medical school to assess student’s ability to in-
teract with patients through a text-based interface
and the questions typed by the students and the re-
sponses given by ChatScript, which then are hand-
corrected by annotators, form this dataset. There
are 4330 total user turns, with a mean of 46.1 turns
per dialogue. Each turn consists of the question
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Figure 2: Label frequency distribution is ex-
tremely long-tailed, with few frequent labels and
many infrequent labels. Values are shown above
quintile boundaries.

the student asked, ChatScript’s automatic label
(with hand-correction) and the scripted response
associated with the label. An example turn could
be represented with the tuple, ( ‘hello mr. wilkins,
how are you doing today?’, ‘how are you’, ‘well i
would be doing pretty well if my back weren’t hurt-
ing so badly.’). The task is to predict the label of
the asked question.

There are 359 unique labels, with a mean of 12
instances per label, median of 4, and large stan-
dard deviation of 20. Of note, the distribution of
labels is extremely long-tailed (Figure 2), with 8
of the most common labels accounting for nearly
20% of the data, while the bottom 20% includes
265 infrequent labels. The most frequent label oc-
curs 156 times.

4 The CNN model

We now turn to the structure of our model. The
main model used in this work follows Kim (2014).
There are four layers in the model: an embedding
layer, a convolution layer, a max-pooling layer and
a linear layer. Let x; € R* a k-dimensional em-
bedding for the i-th element of the sequence, i.e.
the i-th word or character. The representation of a
sentence, S; € RI%i1>* ig the concatenation of all
the embeddings of the elements in the sentence s;.
The multichannel setup, shown in Kim (2014) as
marginally effective, is not used in this work. The
following equations will all work on sentence S,
thus j is dropped for clarity.

A convolutional kernel is defined as a filter w €
R" which slides across the sentence matrix S to
produce a feature map. Because the kernel is as
wide as the embeddings, it will only produce one
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value for each window.

ey

In Eq. 1, bis a scalar and o is a non-linearity. The
feature map ¢ € RISI="*+1 for this kernel is the
concatenation of all the feature values from the
convolution. In order to maintain fixed dimension
for the output, max-over-time pooling (Collobert
et al., 2011) is applied to the feature map and the
maximum value ¢ is extracted from c.

Because there are many kernels for each kernel
height h, the output from a group of kernels with
the same height is o, = [¢1,¢2, ..., ¢y, ], where
nyp, 1s the number of kernels for the kernel width h.

We concatenate all the outputs from all the ker-
nels into a single vector o € RY where N =
> nnn, and apply a linear transformation with
the softmax non-linearity to it as the final fully-
connected neural network layer for the CNN.

¢; = 0(W - Xii1h1+0b)

y = softmax(W;o + by) 2)
where W, € RV>™ is the weight matrix of the
final layer, b; € R™ is the bias term for the final
layer, and m is the number of classes that we are
trying to predict.

4.1 Regularization

We follow Kim (2014) for regularization strate-
gies. Dropout (Srivastava et al., 2014) prevents the
final layer from overfitting to training data by ran-
domly setting some input values to zero according
to a Bernoulli distribution with parameter p. We
adopt this strategy and put a dropout layer between
the max-pooling layer and the final linear layer.
Kim (2014) also applies a max norm constraint
to the weight matrix of the final linear layer
instead of using [2-regularization over all the
parameters. In Kim (2014), a row in the weight
matrix W; is renormalized to the max-norm s if
the 2-norm of the row exceeds s after a parameter
update. However, in a recent reimplementation of
Kim (2014)!, the renormalization is always ap-
plied to the rows of W, regardless of whether the
2-norm exceeds s or not. This change shows up as
a 1% difference in accuracy on the development
datasets. Therefore, we use this renormalization
strategy instead of max-norm in the original paper

'nttps://github.com/harvardnlp/
sent-conv-torch



and refer to it as max-renorm in this work.

5 Ensemble methods

In order to reduce variance of performance when
training on different splits of data, models trained
with different training datasets and models with
different architecture are combined together. Pre-
vious research has shown that ensembling models
improves performance (Sakaguchi et al., 2015b;
Ju et al., 2017; He et al., 2017). We train dif-
ferent models with different splits of training and
develop data, and ensemble them together. We
use two methods to combine the submodels to-
gether: majority voting and stacking. The indi-
vidual CNNs, or the submodels, first are ensem-
bled together according to their input features into
two ensembled models, and then the two ensem-
bles are stacked together to form the final stacked
model.

Majority voting

The majority voting strategy is adopted by the sub-
models to reduce variance and also to provide bet-
ter generalizability. Each submodel gives one vote
to the best class given some input according to
their parameters, and whichever class has the most
votes wins. Let ¥4 be the output of d-th submodel
in the ensemble, and the final output of the ensem-
ble y. is

Ve = Zhardmax(yd) ?3)
d

where hardmax is the function that converts the ar-
gument of the function into a one-hot vector where
the original maximum value of the argument is re-
placed by 1 and the rest by 0. In the case of ties, we
pick the class that appears first in the vector. For
the ensemble, the predicted class is argmax(ye).
However, y. is also an unnormalized distribution
used by the stacked model.

Stacking

We use stacking (Wolpert, 1992) to combine re-
sults from the ensembles. Stacking is essentially
weighted linear interpolation of the ensemble re-
sults. Let y. , be the output of the r-th ensemble,
thus the final output of stacking y,:

Vi = softmax(z Yer) 4)

r
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where «, is the coefficient of the r-th ensemble.
The coefficients need to be trained.

6 Model setup and training

We now explain preprocessing steps, the hyperpa-
rameters we used for training, model initialization
as well as the training process.

6.1 Preprocessing

We represent a sentence with both a sequence of
words and a sequence of characters. Using word
sequences as input allows us to take advantage
of pre-trained word embeddings so that even if a
word never appears in the training set due to data
sparsity, its embedding may still provide enough
information for the models to classify correctly.
Using character sequences allows the models to be
robust to spelling variations. This helps the word-
based models, which are susceptible to misspelled
words. Therefore we train separate word- and
character-based CNN models. We then ensem-
ble the word CNN submodels into a word CNN
ensemble, and also ensemble the character CNN
submodels into a character CNN ensemble, us-
ing majority voting in both cases. The two en-
sembles are then combined together with stacking
to form the stacked CNN model. All submodels
are trained separately and remain fixed when the
stacked model is being trained.

6.2 Hyperparameters

The hyperparameters for both the word CNN
and the character CNN submodels are mostly the
same. In the following paragraph, if not other-
wise mentioned, all hyperparameters are shared.
All hyperparameters are tuned on the development
dataset of each fold. We set the number of sub-
models d to 5. We set the number of kernels of
the character CNN to be 400, and the word CNN
300. We use kernels of widths 2 to 5 for the char-
acter CNN, and 3 to 5 for the word CNN. All non-
linearities in the models are rectified linear units
(Nair and Hinton, 2010). We use Adadelta (Zeiler,
2012) as the optimizer for the submodels, and use
the recommended values for its hyperparameters
(p = 0.9,¢ = 1 x 1075, learning_rate = 1.0).
We set the max-renorm to be 3.0 and the dropout
rate for the linear layer to be 0.5. We use negative
log-likelihood as our training objective to mini-
mize.



6.3 Initialization

For the word CNNs, we follow Kim (2014) to
initialize the parameters. We use pre-trained
word2vec word embeddings (Mikolov et al., 2013)
for words that are in the whole dataset, and ini-
tialize embeddings of the other out-of-vocabulary
words with Unif(—0.25,0.25). This keeps the
variance of each randomly initialized embedding
close to the word2vec embeddings. We also tried
the GloVe embeddings Pennington et al. (2014)
and found it to be slight worse in performance than
word2vec embeddings. We initialize the convolu-
tional kernels with Unif (—0.01,0.01) and the lin-
ear layer N (0, le —4). We initialize all bias terms
to 0.

For the character CNNs, we initialize all
weights to follow Unif (—1A/Min, 1A/Min) (Glo-
rot and Bengio, 2010) where n;, is the length of
the input vector. For the convolutional kernels,
the length of the input vector is hk. Additionally,
we randomly initialize the embedding matrix with
N(0,1).

6.4 Training

We use 10-fold cross validation for training and
evaluation. Shuffling the original dataset reduces
performance variance on the development sets,
improving generalizability. For each fold, we split
the whole dataset into training and testing sets
with 90/10 ratio, and further split the training set
into training and development sets with 90/10 ra-
tio. For training the submodels, we split the train-
ing set into training and development sets at dif-
ferent places to create different training data for
each submodel, and add all the labels as training
instances to the training set. We use minibatch up-
dates with batch size 50 and train each submodel
for 40 epochs, shuffling the training set for each
epoch. We evaluate the performance of the sub-
models after each epoch of training, using early
stopping on development data to select the best-
performing set of parameters.

Majority voting does not need training, but
stacking does. We train the stacked model also for
40 epochs with the training/development split that
is done for the first submodel. The optimizer is
also Adadelta with recommended hyperparameter
values.
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Simple | Ensembled
ChatScript | 79.8 n/a
Baseline 77.2 n/a
CharCNN | 76.16 78.20
WordCNN | 76.92 77.67
Stacked n/a 79.02

Table 1: Mean 10-fold Accuracy by System Type.
Numbers reported are on the test set.

00 Average accuracy of different systems in groups of label frequency quintiles

804
8
g
g 704
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<
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50 -
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Figure 3: System Accuracy by Label Frequency,
in Quintiles. Note the high performance in the
least frequent labels for ChatScript, the hand-
crafted pattern matching system. With more data,
the CNNs perform better.

6.5 Baseline

We also create a simple baseline system for com-
parison. The baseline system is a logistic regres-
sion classifier that takes in one-hot representa-
tions of 1,2, 3-grams of words, word stems, and
1,2,3,4,5, 6-grams of characters from a sentence
as features and predict what class this sentence be-
longs to. The baseline system also follows the 10-
fold cross validation training setup.

7 CNN Results

System performance is measured by correct ques-
tion identification for each of the 4330 user turns.
Accuracies reported are the average 10-fold cross-
validation accuracies. Apart from performance re-
sults from the baseline logistic classifier and the
stacked model, we also include results from the
rule-based ChatScript system.

Table 1 shows the test accuracies of different
systems averaged over the 10 folds. For machine
learning systems, the stacked CNN model per-
forms the best overall. For single models, the



baseline system works the best. It is widely be-
lieved that deep learning models are generally
data-hungry, and the training sets are small com-
pared to popular training sets for deep learning
models. In terms of single model performance, the
simple logistic regression is better than the deep
learning models and it is reasonable to believe that
data sparsity is at issue. However, through ensem-
bling and stacking, the final stacked model per-
forms the best, and the performance gap between
a machine learning system and a carefully created
and actively maintained rule-based system on this
task becomes very small. The 2-point difference
between the baseline system and the stacked CNN
model is highly significant (p = 8.19 x 1076, Mc-
Nemar’s test).

System accuracies by label frequency show a
striking difference between ChatScript and all
other systems for the most infrequent labels. Fig. 3
shows a clear advantage for ChatScript in the quin-
tile with the least frequent labels. ChatScript is
not trained, so data sparsity does not affect per-
formance of this system as much as the machine
learning systems. Also, most of the time, the train-
ing instances for a rare label are very close to
the label itself. Therefore by pattern matching,
ChatScript performs best among all models for
items with rare labels. The stacked CNN model
performs slightly better than the baseline model
in this quintile, but still is very low compared to
ChatScript.

However, ChatScript does relatively worse to
the other systems as label frequency increases.
This is expected because when training instances
increase in a dataset, it means that probabilistically
variants of the label that differ substantially will
also increase. Therefore more non-conflicting pat-
terns need to be added and existing patterns need
to be updated, which may be difficult or even im-
possible to do. Machine learning based systems
are good at frequent labels. There are more train-
ing instances, and constraint of non-conflicting
rules does not apply to such models. We can see
in Figure 3 that the stacked CNN model outper-
forms the baseline in all quintiles, and outperforms
ChatScript in the last three quintiles where training
data is ample. The clear difference of model be-
havior of ChatScript and the stacked CNN shows
that they may be combined together and perform
even better in all quintiles.
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The effectiveness of ensembling

Figure 4 shows accuracy numbers on the test set
of each fold for the best individual submodels
and ensembles. The best individual submodels
are chosen based on performance on the develop-
ment set. For the character CNN submodels and
the ensemble, it is clear that the ensembled model
always performs better than the best individual
model. For all 10 folds, the ensembled character
CNN model always outperforms the best model in
the ensemble and the average performance gain
is about 1.04%. For the word CNN submodels
and the ensemble, the relation is less obvious. Al-
though in 9 out of 10 folds, the ensemble outper-
forms the best individual model, the difference be-
tween performances of the two systems is smaller
compared to the difference between best character
CNN submodel and the character CNN ensemble,
and the average performance gain is about 0.75%.
A Student’s t test on the accuracy numbers con-
firms this observation. The improvement gained
from ensembling the character CNN submodels is
significant (p = 0.0045), but the improvement
gained from ensembling the word submodels is
not (p = 0.43).

The result for the ensembles and the stacked
model can also be seen in Figure 4. Except for
fold 1, where the stacked model is outperformed
by the character CNN ensemble, the stacked
model outperforms all the ensembles in all the
other folds. The performance gained from stack-
ing the character CNN ensemble on top of the
word CNN ensemble is significant (p = 0.049),
but insignificant the other way around (p = 0.11).
This could mean that the character CNN ensem-
ble has all the information it can extract from text
for prediction that the word CNN ensemble is not
providing new information for it to do better.

Comparing the stacked model with the individ-
ual best model, stacking always provides signif-
icant performance gain (p = 0.033 for the best
word CNN submodel and p = 9 x 10~ for the
best character CNN submodel).

Error analysis

One of the hypotheses of why the stacked CNN
model works better is because it has access to
word embeddings, and word embeddings are good
at modeling words that are superficially different
but synonymous. Table 2 shows a few examples
where the baseline classifier makes the wrong pre-



Question

Baseline predicted label

Stacked CNN predicted label

constipation

does anything aggravate your back pain

are you employed

have you taken any tylenol or done anything
to help your back pain this time

do you use any contraception
what makes the pain better
are you happy

what makes the pain better

do you have any bowel problems
what makes the pain worse

what do you do for a living

are you taking any medication
for the pain

have you ever had any psychotherapy treatment
have you injured your back previously
can you stand up

e | N e 4
o

have you tried any treatment
have you had back injury
are you able to stand

do you have a history of depression
when was your last period
what do you do for a living

Table 2: Prediction examples. The stacked CNN model predicts the correct label for the first 4 cases and
the wrong label for the last 3 cases. The baseline predicts the last 3 cases correctly.

Accuracy of different folds for submodels and ensembles

BestCharCNN

CharCNNEns
mmm BestWordCNN
mmm WordCNNENs
mmm Stacked

82

80 H

78 A

Accuracy %

74 A

72 1

70 -
fold 0 fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9

Figure 4: System Accuracy of the Submodels and
Ensembles by Fold

diction but the stacked CNN model makes the cor-
rect prediction. These examples show how the
stacked CNN model is able to use semantic in-
formation provided by the word embeddings to
make the correct prediction whereas the baseline
classifier can not. Example 1 requires the mod-
els to know ‘constipation’ is related to ‘bowel’.
The baseline classifier is confused by the spelling
similarities between ‘constipation’ and ‘contra-
ception’, but the stacked model is able to make the
right prediction. Example 2 requires the models to
know that ‘aggravate’ means ‘get worse’, not ‘get
better’, and the stacked model makes the correct
decision. Similarly, ‘employed’ and ‘tylenol’ in
examples 3 and 4 all show that the stacked CNN
can tap into the semantic information provided by
the word embeddings and use them in prediction.

However, it appears that the semantic informa-
tion in word vectors can sometimes backfire as
well. In examples 5 and 6, the words that are sim-
ilar in meaning are making unhelpful connections.
The stacked CNN links ‘psychotherapy treatment’
to ‘depression’ in example 5, but the question as
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Combined System Accuracy

CNN confidence full

95.0%
90.0%
85.0%

80.0%

- I I

70.0%
chatscript CNN oracle

Figure 5: Accuracy of model trained to combine
ChatScript and CNN predictions

a whole is about treatment, so the prediction from
the stacked model is wrong. Similarly, the stacked
model predicts example 6 to be in the class ‘when
was your last period’ maybe because ‘last’ and
‘previously’ are similar, apparently missing the
‘injury’ part of the question. The stacked CNN
missed example 7 because of data sparsity. There
are only two instances of the class ‘are you able to
stand’ in the whole dataset, therefore the stacked
CNN has low confidence in the gold class and in-
stead chooses a class which has much more train-
ing examples.

8 Combining ChatScript with the CNN

While the fully ensembled and stacked CNN per-
forms at 79% accuracy, which is slightly below
that of ChatScript, its error pattern is distinct from
ChatScript, as seen in Fig. 3. ChatScript, because
it only uses pattern matching to do classification,
is less affected by the imbalance of training in-
stances belonging to target classes in the training
data. The CNN, however, is affected by such im-
balance and generally performs worse when train-
ing instances for one class is scarce. Meanwhile,
despite the use of automatic spelling correction in
ChatScript, a substantial portion (11.1%) of the



Chatscript errors were on questions with typos
or other spelling errors in them; on these items,
the CNN managed to make the correct prediction
74.1% of the time. This indicates that the character
CNNs are more robust to spelling errors, as there
is no need to make a possibly erroneous guess as to
the correctly spelled word. Additionally, whereas
the CNN always makes its best guess on test items,
the ChatScript patterns failed to match (yielding
no answer) on 7.4% of the questions, representing
36.5% of the ChatScript errors. On these ques-
tions, the CNN achieved 59.6% accuracy, indicat-
ing that they are considerably more difficult to rec-
ognize than the average question.

Given that our two methods make rather differ-
ent errors, we investigated whether it would make
sense to combine them, and found that an oracle
that always chose the correct system if either was
right could achieve 92.9% accuracy, much higher
than the ChatScript systems 79.8% accuracy by it-
self. As such, we experimented with training a lo-
gistic regression binary classifier for automatically
choosing between the two systems, again using
10-fold cross-validation. The binary classifier was
trained to choose the CNN prediction when it was
correct and ChatScript was wrong, otherwise to
choose the ChatScript output—including in cases
where the ChatScript patterns yielded no match,
on the assumption that a no-match response would
be preferable to an incorrect response. To make
its choices, the binary classifier used the following
features:”

Log Prob The log probability of the predicted
class in the final output of the stacked model.

Entropy The entropy of the distribution over
classes output by the stacked model.

Confidence For each submodel, the confidence
score is the unnormalized score for the pre-
dicted class. For the stacked model, the con-
fidence score is the average of all confidence
scores from the submodels.

CNN Label The label predicted by the CNN.
CS Label The label matched by ChatScript.

CS Log Prob The log probability according to
the CNN of the ChatScript prediction.
’Note that ChatScript does not output scores for its

matched patterns, so we did not pursue a stacking-based ap-
proach.
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Note that an automatic method for choosing be-
tween the two systems could in principle do worse
than simply always choosing the ChatScript sys-
tem. Nevertheless, as shown in Fig. 5, a classi-
fier trained to make the choice based on the log
prob, entropy and confidence of the CNN'’s pre-
diction achieves 85.0%, a large gain. This binary
classifier can be improved further by taking into
account how likely the logistic regression model
considers the ChatScript choice, including the spe-
cial case of no match from the ChatScript system,
along with the specific label of both system pre-
dictions. The full model, making use of these ad-
ditional features, achieves 89.3% accuracy, a huge
gain that represents more than two-thirds of the
potential gains revealed by the oracle analysis, and
a47 % reduction in error over the ChatScript sys-
tem by itself. This shows that the stacked CNN
effectively compliments the rule-based ChatScript
system on the mid-to-high frequency labels, mak-
ing the final system much stronger than either of
the component systems.

We also investigated whether it would make
sense to always choose the CNN prediction when
the ChatScript system yielded no match. By al-
lowing the binary combination classifier to choose
the ChatScript system even when it yielded no
match, the combined system reduced the number
of no match outputs from 7.4% to 2.4%, close to
the 3.0% oracle rate for cases where neither sys-
tem is correct. Always choosing the CNN pre-
diction in these cases increases the combined sys-
tem accuracy by 0.6%, but at the cost of a 1.8%
increase in erroneous responses rather than no-
match responses. As such, it appears preferable
to allow the binary combination classifier to make
the choice even in the no-match cases.

9 Discussion and Future Work

CNNs are very sensitive to their hyperparameters
and initializations. Differences in normal vs. uni-
form weight matrix initializations were observed
to impact word- and character-based CNN mod-
els differently. He et al. (2017) use orthonor-
mal initializations following Saxe et al. (2013),
while Kim (2014) suggests initializing unknown
word embeddings using parameters (e.g., vari-
ance) sampled from pre-trained word embeddings,
etc.; further exploration of hyperparameter tuning
and initialization strategies are left as future work.

Models with more complicated architecture,



such as Memory Networks (Weston et al., 2015),
Highway Networks (Srivastava et al., 2015) and
Convolutional sequence models (Gehring et al.,
2017) can also be explored and integrated as well,
although more data is needed to successfully train
these models. Other ensemble methods like Super
Learner (Ju et al., 2017) should be tried as well.

Since label sparsity is at the heart of the per-
formance difference between ChatScript and the
CNN models, a more direct way to deal with lack
of training examples (possibly obviating the need
for a hand-crafted system like ChatScript) could
be to automatically generate paraphrases to aug-
ment available data, potentially with a content au-
thor in the loop; we are currently exploring strate-
gies for doing so.

10 Conclusion

This work shows the value of combining a hand-
authored pattern matching system with CNN mod-
els to overcome label sparsity in training. The
stacked CNN model with ensembled word and
character CNN submodels significantly outper-
forms the logistic regression baseline. Within
the CNN models, ensembling is found to sig-
nificantly improve performance for the character
model, while stacking always provides significant
improvement over the best word- or character-
based submodels. The final system uses a binary
classifier over ChatScript and a stacked CNN, im-
proving overall accuracy by 10% and achieving
an impressive 47% error reduction on a question
identification task in a virtual patient dialogue sys-
tem.
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Abstract

This paper is a preliminary report on us-
ing text complexity measurement in the
service of a new educational application.
We describe a reading intervention where
a child takes turns reading a book aloud
with a virtual reading partner. Our ulti-
mate goal is to provide meaningful feed-
back to the parent or the teacher by contin-
uously tracking the child’s improvement in
reading fluency. We show that this would
not be a simple endeavor, due to an intri-
cate relationship between text complexity
from the point of view of comprehension
and reading rate.

1

According to the 2015 report from the National
Assessment of Educational Progress on reading
achievement, 31% of U.S. 4th graders read be-
low the Basic level.! Our goal is to help low-
proficiency readers such as these improve their
reading skill.

The critical transition from word-by-word
reading to fluency, or from learning how to read
to reading for learning or enjoyment, requires ex-
tended and sustained reading practice. To en-
courage such practice we propose an educational
application which combines (1) an excellent story
to achieve engagement (such as “Harry Potter and
the Sorcerer’s Stone” by J. K. Rowling), and (2) a
virtual reading companion, implemented through
an audiobook, who would take turns reading aloud
with the child — “you read a page, I read the next
one”. The turn-taking allows the child to alter-
nate between the more effortful reading and the
less effortful listening, as well as supplies a model

Introduction

"https://www.nationsreportcard.gov/reading_math_2015/
#reading/acl?grade=4
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reading of many of the words and phrases the child
will encounter during his turn.

In addition to supporting sustained reading by
children, the system will also provide the teacher
or parent with a detailed picture of the child’s de-
velopmental trajectory, by continuously tracking
the child’s reading fluency throughout his reading
turns. Oral reading fluency is not only an impor-
tant indicator of reading skill in itself (Hudson
et al., 2008; Fuchs et al., 2001), for students in
early elementary grades it is also strongly corre-
lated (r around 0.7) with reading comprehension
(Roberts et al., 2005; Good et al., 2001).

The standard measure of oral reading fluency
is words correct per minute (henceforth, WCPM)
(Wayman et al., 2007), combining aspects of speed
and accuracy of oral reading.> Several studies
(Balogh et al., 2007; Zechner et al., 2009) showed
that WCPM can be accurately computed automati-
cally using an automated speech recognizer (ASR)
and a string matching algorithm; this approach has
already been incorporated into many commercial
and research systems for automated oral fluency
assessment such as VersaReader (Balogh et al.,
2012) or Project LISTEN (Mostow, 2012) (see also
Eskenazi (2009) for a review).

Previous studies on reading fluency indicate that
WCPM may vary across different texts (Ardoin
et al., 2005; Compton et al., 2004). It seems rea-
sonable to assume that variation in text complex-
ity/readability might be one of the sources of vari-
ation in oral reading fluency across different pas-
sages: Texts that cause comprehension difficul-
ties may also elicit less fluent reading. In fact,
this assumption underlies text selection for tests of
oral reading fluency such as DIBELS (Good and
Kaminski, 2002) that rely on readability to select

In some studies, reading rate (words per minute) is used
as a separate measure while fluency is defined in terms of
expressiveness and adherence to syntax (Danne et al., 2005).
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comparable passages (Francis et al., 2008). Since
in our application the child will be reading dif-
ferent passages in the book on different days, it
is possible that the differences between passages
would confound the measurement of the child’s
progress. In this case, WCPM would need to be
adjusted to account for such differences in order
to produce interpretable feedback.

Previous work generally focused on text proper-
ties and WCPM in short texts that have already
been controlled for grade-level appropriate read-
ability. Little is known about the variability of text
complexity across a whole book and how this may
affect WCPM of a child reading the book. There-
fore, the focus of this paper is to see whether an
adjustment of WCPM to text is in fact necessary
in our context, and, if so, whether it can be done
using a state-of-the-art text complexity measure.

We address the following research questions:
(1) What is the extent of variation in passage com-
plexity in J. K. Rowling’s “Harry Potter and the
Sorcerer’s Stone” (henceforth, HP1)? (2) Does the
complexity of the text actually impact reading flu-
ency as measured by WCPM? (3) Do automatically
generated estimates of text complexity correspond
to the observed fluency patterns?

The rest of the paper is organized as fol-
lows. We first introduce previous work related to
text complexity measurement and the relationship
between text complexity and oral reading fluency.
We then present the results of two studies: In the
first study we looked at variation in text complex-
ity across passages selected from HP1. In the
second study we investigate how text complexity
estimates relate to WCPM of children reading se-
lected passages from the book. Our findings are
then discussed and implications for research on
continuous tracking of fluency are drawn.

2 Related Work

Text Complexity Estimation: While for Dale
and Chall (1949) the notion of text readability in-
volved “the extent to which they [readers] under-
stand it [the text], read it at an optimal speed, and
find it interesting”,3 most classical (Flesch, 1948;
Gunning, 1952; Kincaid et al., 1975; McLaughlin,
1969) and modern (Sheehan et al., 2014; Flor and
Beigman Klebanov, 2014; Vajjala and Meurers,
2012; Schwarm and Ostendorf, 2005) measures

of text readability/complexity focus on reading

3Quoted from DuBay (2004).
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comprehension, including special formulas and
models designed for special populations, such as
young children (Spache, 1953), learners of En-
glish as a second language (Beinborn et al., 2014;
Heilman et al., 2007), adults with mental disabili-
ties (Feng et al., 2009), among others.

While comprehension-based complexity esti-
mation of relatively short reading passages has
been the subject of extensive research for many
decades, there is little research on estimating the
complexity of long, book-level texts. In early
work on readability, Fowler (1978) estimated read-
ability of a novel using the mean of readability
estimates of fifteen randomly selected 100-word
passages from the novel. Milone (2012) gene-
rates book-level complexity estimates by com-
bining complexity estimates for the text in the
book with a measure based on the length of the
book, following the observation that longer books
tend to be more difficult, all else being equal. He
decided to base the estimate of text complexity in
the book on the analysis of the whole book, as
opposed to samples from the book, based on the
observation of extensive within-text variability in
estimates of text complexity and the concomitant
hazard of a large sampling error if only parts of the
book are taken into account during complexity es-
timation (see Appendix E in Milone (2012)). For
example, the book Black Beauty yields a grade-
level estimate of 5.4 based on the text of the whole
book; looking at 500-word slices yields estimates
anywhere from 2.2 to 9.5 per slice — a range
of 7 grade levels. This finding raises the ques-
tion of a young reader’s experience in the face of
such variability. To our knowledge, our project is
the first study to address variation in within-book
reading experiences in general, and variation in
oral reading performance specifically.

Relationship between oral reading fluency
and text complexity: In Compton et al. (2004),
248 low and average-achieving second graders
each read 15 passages of comparable readability
levels; their reading performance was recorded in
terms of accuracy (proportion of words read cor-
rectly) and fluency (WCPM). Analyzing the rela-
tionship between textual characteristics and per-
formance, researchers found that Flesch-Kincaid
measure, Spache measure, and average sentence
length did not significantly correlate with perfor-
mance. On the other hand, they found that per-
centage of high frequency words was significantly



correlated with both performance measures. Ar-
doin et al. (2005) examined a number of readabil-
ity formulas for their ability to predict WCPM and
found generally fairly low correlations (r<0.5).

In Petscher and Kim (2011), about 35,000
students in grades 1-3 read three grade-level-
appropriate passages (as measured by Spache for-
mula) during each of 4 administrations of an oral
reading fluency test throughout the year. The
authors estimated the amount of variability in
WCPM that was attributable to variation among
students vs variability across the text passages.
Their results showed that 2%-4% was attributable
to variability in passages and/or order of passages
for grade 1, with higher proportions for grades
2 (5%-6%) and 3 (3%-9%). Petscher and Kim
(2011) also observed an increase in the reading
rate from the first to the third administered pas-
sage within an assessment, consistently with other
studies (Francis et al., 2008; Jenkins et al., 2009),
pointing to the existence of practice effects in oral
reading performance of consecutively read texts.

To summarize, the related work suggests that
(1) some amount of variation in reading fluency
is attributable to variation in text passages being
read, for early elementary grade children; (2) clas-
sical readability formulas are not very effective
predictors of oral reading fluency.

We note however that passage readabil-
ity/complexity variation across texts used in pre-
vious studies tends to be limited, since texts se-
lected for assessments are typically controlled for
grade-level-appropriate readability. In contrast,
we consider a case where children are reading a
long novel that is not specifically designed to be
grade-level controlled; we therefore expect more
variation in complexity across different passages
in a book. Larger variation may show better align-
ment between reading rates and text complexity
estimates.

3 Study I: Text complexity in Harry
Potter and the Sorcerer’s Stone

3.1 Data and methodology

For this first study we considered the variation in
text complexity in J. K. Rowling’s “Harry Potter
and the Sorcerer’s Stone”. We first split the book
into a series of consecutive, non-overlapping 250
word chunks. These should take 2-3 minutes to
read for our target population and constitute the
approximate amount of text to be read by the child
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at each turn. For each chunk, after 250 words, we
either extended or reduced the chunk to the end of
a paragraph, thus ensuring that each passage had a
natural break point.

The whole book consists of 79,508 words
spread across 17 chapters. We created 318 con-
secutive passages, with a mean length of 250.0
words (SD=16.9). The shortest passage contained
177 words and the longest passage contained 309
words. Half of the passages (II and III quartiles)
fell within 242-259 words range.

We used TextEvaluator,* a state-of-the-art mea-
sure of comprehension complexity of a text
(Napolitano et al., 2015; Sheehan et al., 2014,
2013; Nelson et al., 2012), to conduct text com-
plexity analyses. TextEvaluator extracts a range
of linguistic features and uses them to compute a
complexity index on the scale of 100-2000, as well
as an overall grade equivalent score. TextEvalu-
ator computes three complexity scores based on
the models optimized for literary, informational
and mixed texts. We used the literary metric as
the final complexity score for our passages since
all texts were excerpts from a novel.®

In addition to the overall score, several di-
mension scores are provided, including: Syn-
tactic Complexity (using features related to sen-
tence complexity); Academic Vocabulary (the ex-
tent to which words in the text are characteristic
of academic texts); Word Unfamiliarity (a com-
posite measure of word frequency); Lexical Co-
hesion (measures the degree of overlap between
concepts across adjacent sentences within para-
graphs); Level of Argumentation (indexes the ease
or difficulty of inferring connections across sen-
tences when the underlying format of a text is ar-
gumentative); additional dimensions include Inter-
active/Conversational Style, Concreteness, Degree
of Narrativity.

We note that passage lengths between 177 and

“https://textevaluator.ets.org/

STextEvaluator appears in the Nelson et al. (2012) bench-
mark as SourceRater.

®A reviewer of this paper pointed out that Text Evalua-
tor includes an automatic genre classifier which is used to
determine the final complexity score (Sheehan et al., 2013),
and that it is possible that some passages in a novel could
be more on the informational side. In our study, 302 pas-
sages (95%) were classified as literary texts by TextEvalu-
ator’s genre classifier. Among the remaining 16 passages, 7
passages were classified as informational texts and 9 passages
as mixed texts. None of the selected passages (in section 4.1)
belong to these 16. Using final instead of literary scores had
a negligible effect on statistics reported in section 3.2.



309 words are within scope for TextEvaluator, al-
beit on the shorter side of the range: Sheehan et al.
(2013) report an evaluation with texts ranging in
length from 112 to more than 2,000 words.

For this analysis, we treated each chunk from
the book as an independent passage. Thus,
TextEvaluator had no access to information about
other passages. One might contend that there are
limitations to such an approach, as some aspects of
difficulty of the text may change as the reader ac-
cumulates knowledge about the world of the book.
For example, words that are initially unfamiliar,
such as names of characters, magic creatures and
artifacts, spells and curses, would become increas-
ingly familiar as the story progresses. In contrast,
other aspects of complexity, such as the syntactic
complexity of sentences, are less likely to become
more or less challenging as one reads further into
the book. In the current study, we have not at-
tempted to capture any such text continuity effects.

3.2 Results

The overall TextEvaluator complexity of passages
across the book varied from 160 to 1150 with
average complexity 613.4 (SD=163.1). In terms
of grade levels this corresponds to variation from
second to eleventh grade, with the average around
grade six.

The dimension scores also varied across the
book although the patterns were different for dif-
ferent dimensions. Figure 1 shows the distribu-
tions for different dimension scores. The scale for
all scores is 0-100. The score for Academic vo-
cabulary was consistently low across all passages
(Mean=27, SD=7.3), while the score for narra-
tivity was consistently high (Mean=83, SD=5.8).
The score for the Level of Argumentation showed
the largest spread (Mean=53 and SD=19.8). We
also note the substantial spread in Syntactic com-
plexity (Mean=46.1 and SD=11.3).

We also considered how the complexity varies
as one proceeds through the book (Figure 2). The
red line shows values for each passage, the blue
line shows a smoothed estimate calculated using
lowess (Cleveland, 1979).” The plot shows there
is a substantial fluctuation from passage to pas-
sage as well as potentially longer-range trends
that may correspond to the book’s narrative struc-
ture. Specifically, the peak around 130-140 cor-
responds to the description-heavy introduction to

Tas implemented in (Seabold and Perktold, 2010)
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Figure 1: Distributions of scores for various di-
mensions of text complexity in HP1. The dimen-
sions are ordered on the x-axis by spread (SD).

Hogwarts and Harry’s first classes; the valley
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Figure 2: Distribution of holistic text complexity
scores as one proceeds through HP1.

The answer to research question 1 is thus: The
extent of variation in text complexity across pas-
sages in the book is very substantial. If text
complexity has any systematic effect on the oral
reading performance, the extent of variation in
complexity suggests that it is likely to become a
major confounding factor in tracking the child’s
progress in fluency while reading the book.

4 Study II: Text complexity and oral
reading fluency

Our second question is: Does the complexity of
the passage that is being read significantly impact
children’s reading fluency for the passage? In or-
der to answer this question, we selected 3 pas-
sages with very large differences in text complex-



ity as estimated by TextEvaluator, and collected
oral reading fluency estimates for these passages
from a sample of 2-4 graders. The details of the
procedure and the results are described in this sec-
tion.

4.1 Passage selection

We ordered all 318 passages by estimated text
complexity, and selected passages from the middle
of the distribution and from the lowest and high-
est deciles. In addition to TextEvaluator score,
when selecting passages we also took into account
whether a passage could be reasonably read as
stand-alone text. Table 1 shows the characteris-
tics of these three passages. All passages are from
the first chapter of the book.

Passage | # words TE score Complexity
Percentile
Easy 226 260 1.9%
Medium 282 580 51.5%
Hard 246 800 90.3%

Table 1: The characteristics of the passages used
for the data collection: length in words, complex-
ity, complexity relative to the whole book.

4.2 Data collection procedure

The recordings took place in an office with several
children recorded simultaneously. The texts were
presented on screen and the audio was captured
using the head-set with a microphone.

Before reading the experimental passages, the
child first listened to the passage that begins the
first chapter of HP1 (starting with “Mr. and Mrs.
Dursley of number four, ...”) as narrated by the
professional actor Jim Dale (Rowling and Dale,
2016). Then the child read aloud the passage im-
mediately following the passage read by the nar-
rator. Since all children read this passage first,
this passage is used as a reference text to measure
baseline WCPM for each child.

The experimental passages were then presented
to children in a randomized order, to allow sepa-
ration between text and order effects in subsequent
analyses (Petscher and Kim, 2011; Francis et al.,
2008; Jenkins et al., 2009). The children were
asked to read at their natural pace.

A total of 30 children took part in this data col-
lection selected via a convenience sample. Table
2 shows the distribution by grade and gender and
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Grade | Girls Boys Mean age
2 7 3 8;3
3 3 7 9;0
4 6 4 10;2

Table 2: The demographic characteristics of par-
ticipants.

the average age in each group. All recordings were
done in April of 2017.

4.3 Computation of oral reading measures

To compute WCPM we used a professional tran-
scription agency to obtain word-by-word tran-
scriptions of each child’s reading and aligned them
to the passage text using an algorithm based on
dynamic programming. We next computed how
many words in the original passage matched those
in the transcription. This algorithm is similar to
that used to compute ASR word error rate, but fol-
lowing the standard practice in reading research
we only penalized substitutions and deletions and
did not take into account any insertions. Most chil-
dren’s reading closely followed the texts, with the
average of 93.8% of all words in each text read
correctly (SD=3.7, min=82.7%, max=99.6%).

We manually identified in each recording the
time stamps where the child started and finished
reading the text. WCPM was computed by divid-
ing the total time it took the child to read the text
by the total number of matched words in each
text. The average WCPM in the experimental texts
in our corpus was 117.1 (SD=27.3, min=57.2,
max=196.0). To get an idea where these read-
ers stand with respect to general population of
U.S. children of comparable age, we consulted the
WCPM norms in Table 1 of Hasbrouck and Tin-
dal (2006), and found that a grade-stratified sam-
ple of children from grades 2-4 during spring term
is expected to read, on average, at 106 WCPM.
The observed rate of 117 WCPM corresponds to
60% percentile — somewhat above average. We
note that this is only a rather rough estimate of
these children’s fluency relative to peers, since the
experimental texts differ in complexity substan-
tially from the grade-leveled materials used for
oral reading fluency assessments. Still, this esti-
mate accords with our observation during the data
collection that these children generally read quite
fluently and accurately for their age.



4.4 Results

To evaluate the effect of text on WCPM, we
used a mixed effects linear model.  These
models offer a more powerful way to con-
duct repeated-measures analyses than a simple
repeated-measures ANOVA, because they make
it possible to combine both continuous and cate-
gorical predictors. We used WCPM as the depen-
dent variable and speaker identity as a random fac-
tor. We included the following fixed factors: text
identity (categorical), the baseline WCPM on the
reference text (continuous), and order in which
each text was read (continuous). In addition to
the main effects, we also included the interaction
between text identity and the baseline WCPM. Ta-
ble 3 shows the standardized coefficients and sig-
nificance values for the model. We took WCPM for
the Medium text as the reference category.

Variable Coeff. P> |z|
1 | Intercept 0.522  <0.001
2 | text-easy -0.814 <0.001
3 | text-hard -1.165 <0.001
4 | base_wcpm 0.893 <0.001
5 | text-easy:base_wcpm | -0.258 0.001
6 | text-hard:base_wcpm | -0.132 0.089
7 | order 0.046 0.236

Table 3: The standardized coefficients and their
significance values for fixed effects used to pre-
dict WCPM on each text (N=90). In addition to the
fixed effects, the model also included the random
effect for speakers (not shown in the table).

First, we observe that the child’s baseline
reading fluency estimated from the reference text
is a significant factor, as expected. Second, we
note that the order in which the experimental texts
were presented does not yield a significant effect.

The identity of the passage (Easy, Medium,
Hard) has a significant effect on reading fluency.
Thus, the Hard text is read 1.2 standard deviations
less fluently than the Medium text (row 3); this re-
sult accords with expectations. The result in row
2 is surprising: There is a highly significant and
large difference in WCPM between the Easy text
and the Medium text, but it is in the opposite direc-
tion — the Medium text is read 0.8 standard devia-
tions more fluently than the Easy text. Thus, while
the results clearly attest to a substantial effect of
the text on WCPM, the estimates of text complex-
ity are in a rather dramatic mis-alignment with the
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Figure 3: Average WCPM for the three texts in our
study. To illustrate the interaction between fluency
and text we divided all speakers into three equal
bins based on ‘base_wcpm’.

pattern of the oral reading.

Row 5 in Table 3 shows a significant interaction
effect between text and base wWCPM, for Medium
vs Easy texts: The higher the base reading fluency
of the child (base_wcpm), the bigger the difference
in WCPM between Easy and Medium text. This ef-
fect is consistent with the tendency shown in row
6, though it does not reach significance: the more
fluent readers also tended to differentiate more
between the Medium and Hard texts. This find-
ing suggests that more fluent readers seem to have
a tendency to differentiate their oral reading pat-
tern depending on the text they read to a larger ex-
tent than the less fluent readers. Indeed, there is a
significant, medium-strength correlation between
a child’s average wWCPM for the three texts and his
or her variance in WCPM across these texts: r =
0.47, p < 0.01.

Figure 3 shows the average of WCPM across the
three texts in our study. To illustrate the interac-
tion between text and fluency we divided all chil-
dren into three equal groups based on their base
WCPM on the reference text.

In order to check whether the impact of the text
is mostly about the accuracy aspect of the flu-
ency measure (words read correctly per minute)
or about the reading rate itself (words or syllables
per minute), we repeated the analyses above using
either words per minute or syllables per minute as
the dependent variable instead of WCPM. The re-
sults are very similar to those reported in Table 3:
Base reading rate has a significant effect; text iden-



tity has a significant effect, with one of the com-
parisons going in the opposite direction from that
predicted; the interaction effect for base reading
rate and text for Easy vs Medium is significant;
order and the second interaction effects are not
significant. This finding suggests that, at least for
these readers, the basic speed of reading is system-
atically affected by the identity of the text.

5 Discussion

The main finding in our study is that while differ-
ent passages consistently elicit different reading
rates, text complexity as estimated by a state-of-
the-art measure does not predict the differences
correctly — a passage that is rated as 3.2 grade lev-
els more difficult than another is in fact read sig-
nificantly faster, consistently across readers. We
consider several possible reasons for this effect:

e TextEvaluator’s complexity estimates may
not be accurate when applied to passages
from a novel.

Oral reading is not only a kind of reading, but
also a kind of speaking. Reading rate might
thus be affected by properties of speech, in a
direction that differs, or even contradicts, the
impact of text complexity.

Reading a story aloud, or narration, is not
only a kind of oral reading, but also a kind
of performance for an audience. While chil-
dren are not explicitly asked to narrate, the
nature of the text might drive them to do so,
as well as the model reading provided by the
narrator of the audiobook (recall that the chil-
dren listened to a passage narrated by the ac-
tor Jim Dale before reading aloud their own
passages). Variation in WCPM across texts
could be effected by demands of expressive
narration that are unrelated, or at least not di-
rectly related, to comprehension complexity
of the text.

5.1 Estimation of text complexity in book
excerpts

One possible hypothesis for explaining the find-
ing is that TextEvaluator scores may not provide
an adequate estimate of complexity for book ex-
cerpts, since the engine, like many other complex-
ity/readability measures, has been developed and
validated for estimating reading comprehension
difficulty of standalone passages meant for use in
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assessments. In particular, the guidelines for using
TextEvaluator specifically exclude drama, yet the
Easy text includes an informal conversation with
punctuation used to indicate emotions of the in-
terlocutors. The Easy text contains the following
excerpts:

(1) “Well, I just thought ... maybe ...
it was something to do with ... you
know ... her crowd.”

(2) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls ... shooting stars ...
and there were a lot of funny-looking
people in town today ...

w9

TextEvaluator treats
sentence-final periods, as in:

as if they were

(3) “Well, I just thought. Maybe. It was
something to do with. You know. Her
crowd.”

(4) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls. Shooting stars.
And there were a lot of funny-looking
people in town today.”

This creates multiple very short sentences
which in turns lowers the complexity score since
average sentence length is one of the indicators of
text complexity. However, an alternative interpre-
tation where utterance-internal “...” are more akin
to commas is also possible, as in:

(5) “Well, I just thought, maybe, it was
something to do with, you know, her
crowd.”

(6) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls, shooting stars,
and there were a lot of funny-looking
people in town today.”

After substituting (5) and (6) instead of (1) and
(2), respectively, the estimation of the complexity
of the text increased from 260 to 300, due to the
increase in average sentence length. It is possible
that there are other ambiguities that could be re-
solved in ways with differing levels of complexity,
as well as other indicators of complexity that are
not picked up or interpreted as such by TextEva-
luator. We note that the particular issue pointed
out above would not be specific to TextEvaluator,
as many complexity indices include average sen-
tence length as a component. Generally, it is pos-
sible that measures developed predominantly for



analyzing passages for assessments would not ac-
count correctly for stylistic devices used in nov-
els. Indeed, Nelson et al. (2012) observed that
various measures of text complexity, including
TextEvaluator, generally had better correlations
with grade level for informational texts than for
narrative texts.

5.2 Text complexity vs general properties of
speech prosody

Average sentence length is a text complexity in-
dicator used in both classical (such as Flesh-
Kincaid) and modern text complexity measures —
longer sentences tend to be more difficult from the
point of view of comprehension. From the point
of view of speech prosody, however, it is not clear
that a long sentence would be uttered slower than
a few shorter sentences covering, in total, the same
number of words (or syllables). Studies of speech
prosody have consistently demonstrated that the
duration of segments increases at certain impor-
tant locations within utterances, sentence bound-
aries being one such location (see White (2014)
for a detailed review of this topic). As a result, the
overall time it would take to read a text with many
short sentences might in fact be longer than a text
with the same number of words split into longer
sentences.

We observe that the actor who is narrating the
audiobook is unlikely to be influenced by text
complexity to the same extent as young readers
who are still learning to read. It is hard to imagine
that any of the passages in HP1 are genuinely dif-
ficult for the narrator, as a reader who is not only
proficient but highly skilled,® and also very famil-
iar with the text he is narrating. Thus, if we ob-
serve substantial variation in reading rates across
the three texts for the narrator, it is likely that the
reason for the changes is something other than
text complexity, as quantified by comprehension-
related measures.

To test this hypothesis we compute the reading
rate for the narrator following the same approach
as described above. We found that the patterns of
the reading rate of the narrator closely followed
those we observed for children in our study: The
Easy text was read slower than the Medium text
which in turn was read faster than the Hard text.
Figure 4 shows the WCPM for the narrator relative
to the children in our study.

8The narrator, Jim Dale, has won Grammy awards for his
recordings of two of the seven Harry Potter books.
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Figure 4: Average WCPM for children in our cor-
pus and the audiobook narrator (purple).

It appears that readers with different levels of
reading fluency (young learners and a perform-
ing professional), are affected by some aspect of
the text in a similar way, which makes it less
likely that this aspect is directly related to compre-
hension complexity, since complexity should pose
much less of a challenge for a performing profes-
sional than for a second grader. General patterns
of speech are one potential reason (as also men-
tioned in section 5.2); another possibility is that
in the context of narrating a story, reading rate is
affected by “directives” in the text that govern ex-
pressive oral reading performance of each passage
(cf. Theune et al. (2006)). Such directives could
include markers of hesitation, emphasis, surprise,
stuttering, etc.; some of these might have a sys-
tematic effect on reading rate.

5.3 Interaction between base fluency and
impact of text identity

Finally, we also observed an interaction effect
between the reader’s baseline fluency and the ex-
tent to which text identity impacts that reader’s
fluency. Specifically, for one of the pairs of
texts, more fluent readers tend to have significantly
larger differences in reading rates between the two
texts. This finding is in agreement with the lit-
erature — Petscher and Kim (2011) found that the
proportion of reading rate variance attributable to
variation in passages tends to increase with grade,
for grades 1 to 3. This could be due to more profi-
cient readers reading more expressively by attend-
ing more closely to the rhetorical and prosodic
clues that impact the reading rate. Lower profi-



ciency readers are likely to be focused more on
reading words, while better readers also attend to
other structures in the text. Indeed, Schwanen-
flugel et al. (2015) found that more fluent readers
communicate linguistic focus while reading aloud
by prosodically marking direct quotes, exclama-
tions, and contrastive words. This direction re-
quires further exploration; if the finding is repli-
cated with a larger sample of readers with more
variation in reading proficiencies, it would suggest
that the extent of adjustment for text effects needs
to be moderated by the reader’s baseline reading
rate.

6 Conclusion

In this paper we discussed the challenges of
continuous fluency tracking within an assisted-
reading intervention where a child reads a long
novel rather than a set of grade-controlled pas-
sages. We showed that there is substantial vari-
ation in passage difficulty across a single book
as estimated by a state-of-the-art measure of text
complexity for comprehension and a consistent
variation in reading rates between passages. Con-
tinuous fluency tracking needs to account for this
variability. The results of our small preliminary
study suggest not only that a state-of-the-art mea-
sure of comprehension complexity does not pre-
dict reading rates well, but in fact substantial vari-
ation in reading rates may be unrelated to com-
prehension complexity of the text. Additional re-
search needs to be done to further explore these
relationships.
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Abstract

We investigate the utility of different aux-
iliary objectives and training strategies
within a neural sequence labeling ap-
proach to error detection in learner writ-
ing. Auxiliary costs provide the model
with additional linguistic information, al-
lowing it to learn general-purpose com-
positional features that can then be ex-
ploited for other objectives. Our experi-
ments show that a joint learning approach
trained with parallel labels on in-domain
data improves performance over the pre-
vious best error detection system. While
the resulting model has the same number
of parameters, the additional objectives al-
low it to be optimised more efficiently and
achieve better performance.

1 Introduction

Automatic error detection systems for learner
writing need to identify various types of error
in text, ranging from incorrect uses of function
words, such articles and prepositions, to seman-
tic anomalies in content words, such as adjective—
noun combinations. To tackle the scarcity of error-
annotated training data, previous work has inves-
tigated the utility of automatically generated un-
grammatical data (Foster and Andersen, 2009; Fe-
lice and Yuan, 2014), as well as explored learning
from native well-formed data (Rozovskaya and
Roth, 2016; Gamon, 2010).

In this work, we investigate the utility of sup-
plementing error detection frameworks with addi-
tional linguistic information that can be extracted
from the available error-annotated learner data.
We construct a neural sequence labeling system
for error detection that allows us to learn better
representations of language composition and de-
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tect errors in context more accurately. In addition
to predicting the binary error labels, we experi-
ment with also predicting additional information
for each token, including token frequency and the
specific error type, which can be extracted from
the existing data, as well as part-of-speech (POS)
tags and dependency relations, which can be gen-
erated automatically using readily available toolk-
its.

These auxiliary objectives provide the sequence
labeling model with additional linguistic informa-
tion, allowing it to learn useful compositional fea-
tures that can then be exploited for error detec-
tion. This can be seen as a type of multi-task
learning, where the model learns better composi-
tional features via shared representations with re-
lated tasks. While common approaches to multi-
task learning require randomly switching between
different tasks and datasets, we demonstrate that a
joint learning approach trained on in-domain data
with parallel labels substantially improves error
detection performance on two different datasets.
In addition, the auxiliary labels are only required
during the training process, resulting in a better
model with the same number of parameters.

In the following sections, we describe our ap-
proach to the task, systematically compare the in-
formativeness of various auxiliary loss functions,
investigate alternative training strategies, and ex-
amine the effect of additional training data.

2 Error Detection Model

In addition to the scarcity of errors in the train-
ing data (i.e., the majority of tokens are correct),
recent research has highlighted the variability in
manual correction of writing errors: re-annotation
of the CoNLL 2014 shared task test set by 10
annotators demonstrated that even humans have
great difficulty in agreeing how to correct writ-
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ing errors (Bryant and Ng, 2015). Given the chal-
lenges of the all-errors correction task, previous
research has demonstrated that detection models
can detect more errors than systems focusing on
correction (Rei and Yannakoudakis, 2016), and
therefore provide more extensive feedback to the
learner.

Following Rei and Yannakoudakis (2016), we
treat error detection as a sequence labeling task —
each token in the input sentence is assigned a label,
indicating whether it is correct or incorrect given
the current context — and construct a bidirectional
recurrent neural network for detecting writing er-
rors. The model is given a sequence of tokens as
input, which are then mapped to a sequence of dis-
tributed word embeddings [z1, ..., x7]. These em-
beddings are then given as input to a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) mov-
ing through the sentence in both directions. At
each step, the LSTM calculates a new hidden rep-
resentation based on the current token embedding
and the hidden state from the previous step.

h?) = LST™(zy, b)) (1)

W = LSTM(a, b)) )

Next, the network includes a tanh-activated
feedforward layer, using the hidden states from
both LSTMs as input, allowing the model to learn
more complex higher-level features. By combin-
ing the hidden states from both directions, we are
able to have a vector that represents a specific to-
ken but also takes into account context on both
sides:

dy = tanh(W,h") + Wn) 3)
where Wy and W}, are fully-connected weight ma-
trices.

The final layer calculates label predictions
based on the layer d;. The softmax activation func-
tion is used to output a normalised probability dis-
tribution over all the possible labels for each to-
ken:

yy = softmax(W,d;) 4)

where W), is a weight matrix and y; is a vector
with a position for each possible label. In order
to find the predicted label, we return the element
with the highest predicted value.
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The model is optimised using cross entropy,
which is equivalent to optimising the negative log-
likelihood of the correct labels:

E==Y" Hnrlog(yr)
t k

where y; 1. is the predicted probability of token ¢
having label %, and y ;. has the value 1 if the cor-
rect label for token ¢ is k, and the value O other-
wise.

We also make use of the character-level exten-
sion described by Rei et al. (2016). Each token is
separated into individual characters and mapped
to character embeddings. Using a bidirectional
LSTM and a hidden feedforward component, the
character vectors are composed into a character-
based token representation. Finally, a dynamic
gating function is used to combine this represen-
tation with a regular token embedding, taking ad-
vantage of both approaches. This component al-
lows the model to capture useful morphological
and character-based patterns, in addition to learn-
ing individual token-level vectors of common to-
kens.

&)

3 Auxiliary Loss Functions

The model in Section 2 learns to assign error labels
to tokens based on the manual annotation available
in the training data. However, there are nearly lim-
itless ways of making writing errors and learning
them all explicitly from hand-annotated examples
is not feasible. In addition, writing errors can be
very sparse, leaving the system with very little use-
ful training data for learning error patterns. In or-
der to train models that generalise well with lim-
ited training examples, we would want to encour-
age them to learn more generic patterns of lan-
guage, grammar, syntax and composition, which
can then be exploited for error detection.
Multi-task learning allows models to learn from
multiple objectives via shared representations, us-
ing information from related tasks to boost per-
formance on tasks for which there is limited tar-
get data. For example, Plank et al. (2016) ex-
plored the option of using word frequency as an
auxiliary loss function for part-of-speech (POS)
tagging. Rei (2017) describe a semi-supervised
framework for multi-task learning, integrating lan-
guage modeling as an additional objective. Fol-
lowing this work, we adapt auxiliary objectives
for the task of error detection, and further experi-



words My husband was following a course all the week in Berne
target c c c i c c c i c c c c
freq 5 3 8 4 8 5 7 9 5 8 0 10
lang fr fr fr fr fr fr fr fr fr fr fr fr
error c c c RV c c c UD c c c c
POS APP$ NN1 VBDZ VVG AT1  NNI1 DB AT NNTI1 1T NP1
GR det ncsubj aux null det dobj ncmod det ncmod ncmod  dobj  null

Table 1: Alternative labels for an example sentence from the FCE training data.

ment with a larger set of possible objectives. In-
stead of only predicting the correctness of each
token in context, we extend the system to predict
additional information and labels for every token.
The information from these auxiliary objectives
is propagated into the weights of the model dur-
ing training, without requiring the extra labels at
testing time. While common neural approaches to
multi-task learning switch randomly between dif-
ferent tasks and datasets, we use a joint learning
approach trained on in-domain data only.

The lower parts of the model function similarly
to the system described in Section 2. Token repre-
sentations are first passed through a bidirectional
LSTM in order to build context-specific represen-
tations. After that, each separate objective is as-
signed an individual hidden layer:

" = win + win{® ©6)
where W}") and Wb(n) are weight matrices spe-
cific to the n-th task. While the recurrent compo-
nents are shared between all objectives, the hid-
den layers allow parts of the model to be cus-
tomised for a specific task, learning higher-level
features and controlling how the information from
forward- and backward-moving LSTMs is com-
bined.

Next, a task-specific output distribution is cal-
culated based on dgn):

y™

where Wy(n) is a weight matrix and ygn) has the di-

mensionality of the total number of labels for the
n-th task. Figure 1 presents a diagram of the net-
work with n = 2, although the number of possible
auxiliary tasks can also be larger.

The whole model is optimised by minimising
the cross-entropy for every task and every token:

= softmax( Wén)dgm) (7)

E=-Y"3Y"Y a3 logl)  ®
t n k
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Figure 1: The bidirectional recurrent architecture
for one time-step, using one main objective and
one auxiliary objective.

(n)

where y, ;- is the predicted probability of the ¢-th

token having label k for the n-th task; ﬂg? has

value 1 only if that label is correct, and O oth-
erwise; «,, is the weight for task n. Since our
main goal is to develop more accurate error de-
tection models, «,, allows us to control how much
the model depends on the n-th auxiliary task. For
example, setting the value of o, to 0.1 means any
updates for the n-th task will have 10 times less
importance. We tune a specific weight for each
task by trying values [0.05,0.1,0.2,0.5,1.0] and
choosing the ones that achieved the highest result
on the development data.

The main goal of our system is to classify to-
kens as being correct or incorrect, and this objec-
tive is included in all configurations. In addition,
we experiment with a number of auxiliary loss ob-
jectives that are only required during training:

e frequency: Plank et al. (2016) propose us-
ing word frequency as an additional objec-
tive for POS tagging, since words with cer-
tain POS tags can be more likely to belong to
specific frequency groups. The frequency of
a token w in the training corpus is discretized
as int(log(freqy,,;,(w)) and used as an auxil-
iary label.

error type: While the task is defined as bi-
nary classification, available learner data also



FCE DEV FCE TEST

predicted correct P R Fys | predicted correct P R  Fys
R&Y (2016) ‘ - - 545 282 46.0 3898 1798 46.1 285 4l1.1
Main system 1837 1140 623 246 47.6 2653 1468 557 233 434
+ frequency 1870 1111 59.7 239 458 2702 1461 544 232 427
+ language 1929 1150 604 24.8 46.6 2690 1458 549 23.1 428
+ errors 1905 1206 63.3 26.0 49.2 2778 1584 57.0 25.1 455
+ POS 2199 1334 60.7 28.8 49.7 3322 1803 543 28.6 46.0
+ GR 1952 1207  62.1 26.0 484 2887 1654 579 262 464
+ err POS GR 2087 1320 63.2 28.4 50.8 3090 1781.0 57.7 283 47.7

Table 2: Error detection results on the FCE dataset using different auxiliary loss functions.

contains more fine-grained labels per error.
For example, the FCE (Yannakoudakis et al.,
2011) training set has 75 different labels for
individual error types, such as missing deter-
miners or incorrect verb forms. By giving the
model access to these labels, the system can
learn more fine-grained error patterns that are
based on the individual error types.

first language: Previous work has experi-
mentally demonstrated that the distribution of
writing errors depends on the first language
(L1) of the learner (Rozovskaya and Roth,
2011; Chollampatt et al., 2016). We inves-
tigate the usefulness of L1 as an auxiliary ob-
jective during training.

part-of-speech: POS tagging is a well-
established sequence labeling task, requiring
the model to disambiguate the word types
based on their contexts. We use the RASP
(Briscoe et al., 2006) parser to automatically
generate POS labels for the training data, and
include them as additional objectives.

grammatical relations: We include as an
auxiliary objective the type of the Grammat-
ical Relation (GR) in which the current to-
ken is a dependent, in order to incentivise the
model to learn more about semantic composi-
tion. Again we use the RASP parser, which is
unlexicalised and therefore more suitable for
learner data where spelling and grammatical
errors are common.

Table 1 presents the labels for each of the auxil-
iary tasks for an example sentence from the FCE
training data.

The auxiliary objectives introduce additional
parameters into the model, in order to construct the

36

hidden and output layers. However, these compo-
nents are required only during the training process;
at testing time, these can be removed and the re-
sulting model has the same architecture and num-
ber of parameters as the baseline, with the only
difference being in how the parameters were opti-
mised.

4 Evaluation setup and datasets

Rei and Yannakoudakis (2016) investigate a num-
ber of compositional architectures for error detec-
tion, and present state-of-the-art results using a
bidirectional LSTM. We follow their experimen-
tal setup and investigate the impact of auxiliary
loss functions on the same datasets: the First Cer-
tificate in English (FCE) dataset (Yannakoudakis
et al., 2011) and the CoNLL-14 shared task test
set (Ng et al., 2014b).

FCE contains texts written by non-native learn-
ers of English in response to exam prompts elic-
iting free-text answers. The texts have been
manually annotated with error types and error
spans by professional examiners, which Rei and
Yannakoudakis (2016) convert to a binary cor-
rect/incorrect token-level labeling for error detec-
tion. For missing-word errors, the error label is
assigned to the next word in the sequence. The re-
leased version contains 28,731 sentences for train-
ing, 2,222 sentences for development and 2,720
sentences for testing. The development set was
randomly sampled from the training data, and the
test set contains texts from a different examination
year.

The CoNLL-14 test set contains 50 texts an-
notated by two experts. Compared to FCE, the
texts are more technical and are written by higher-
proficiency learners. In order to make our results
comparable to Rei and Yannakoudakis (2016), we



CoNLL-14 TEST1 CoNLL-14 TEST2

predicted | correct P R Fys correct P R Fys
R&Y (2016) 4449 683 154 228 164 1052 23.6 251 239
Main system 3222 452 14.1 151 143 750 233 179 219
+ frequency 3428 484 14.1 16.2 145 790 23.1 18.8  22.0
+ language 3633 502 13.8 168 142 828 228 197 220
+ errors 3582 557 156 186 16.1 890 250 212 240
+ POS 3938 657 16.7 220 175 1045 26.5 249 26.2
+ GR 3945 593 150 198 157 912 232 217 228
+ err POS GR 3722 621 16.7 20.8 174 979 263 233 256

Table 3: Error detection results on the CoNLL-14 test set using different auxiliary loss functions.

also evaluate our models on the two CoNLL-
14 test annotations and train our models only
on the public FCE dataset. This corresponds to
their FCE-public model that treats the CoNLL-14
dataset as an out-of-domain test set corpus.

Following the CoNLL-14 shared task, we also
report Fp 5 as the main evaluation metric. How-
ever, while the shared task focused on correction
and calculated Fy 5 over error spans using multi-
ple annotations, we evaluate token-level error de-
tection performance. Following recommendations
by Chodorow et al. (2012), we also report the raw
counts for predicted and correct tokens.

For pre-processing, all the texts are lowercased
and digits are replaced with zeros for the token-
level representations, although the character-based
component has access to the original version of
each token. Tokens that occur only once are
mapped to a single OOV token, which is then used
to represent previously unseen tokens during test-
ing. The word embeddings have size 300 and
are initialised with publicly available word2vec
(Mikolov et al., 2013) embeddings trained on
Google News. The LSTM hidden layers have
size 200 and the task-specific hidden layers have
size 50 with tanh activation. The model is opti-
mised using Adadelta (Zeiler, 2012) and training
is stopped based on the error detection F{ 5 score
on the development set. We implement the pro-
posed framework using Theano and make the code
publicly available online.'

5 Results

Table 2 presents the results for different sys-
tem configurations trained and tested on the FCE
dataset. The first row contains results from the
current state-of-the-art system by Rei and Yan-

'http://www.marekrei.com/projects/seqlabaux

nakoudakis (2016), trained on the same FCE
data. The main system in our experiments is the
bi-directional LSTM error detection model with
character-based representations, as described in
Section 2. We then use this model and test the ef-
fect on performance when adding each of the aux-
iliary loss functions described in Section 3 to the
training objective.

The auxiliary frequency loss improves perfor-
mance for POS tagging (Plank et al., 2016); how-
ever in error detection the same objective does not
help. While certain POS tags are more likely to be-
long to specific frequency classes, there is less rea-
son to believe that word frequency provides a use-
ful cue for error detection. A similar drop in per-
formance is observed for the auxiliary loss involv-
ing the first language of the learner. It is likely that
the system learns specific types of features for the
L1 identification auxiliary task (such as the pres-
ence of certain words or phrases), and these are
not directly useful for error detection. Investigat-
ing different architectures for incorporating the L1
as an auxiliary task is an avenue for future work.

The integration of fine-grained error types
through an auxiliary loss function gives an abso-
lute improvement of 2.1% on the FCE test set.
While the baseline only differentiates between
correct and incorrect tokens, the auxiliary loss al-
lows the system to learn feature detectors that are
specialised for individual error types, thereby also
making these features available to the binary error
detection component.

The inclusion of POS tags and GRs gives con-
sistent improvements over the basic configura-
tion. Both of these tasks require the system to
understand how each token behaves in the sen-
tence, thereby encouraging it to learn higher-
quality compositional representations. If the ar-
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FCE CoNLL-14 CoNLL-14
Aux dataset  TEST TEST1 TEST2
None 434 14.3 21.9
CoNLL-00 42.5 154 223
CoNLL-03 394 12.5 20.0
PTB-POS 44.4 14.1 20.7

Table 4: Results on error detection when the
model is pre-trained on different tasks.

chitecture is able to predict the POS tags or GR
type based on context, then it can use the same
features to identify irregular sequences for error
detection. The added advantage of these loss func-
tions over the L1 and the fine-grained error types
is that they can be automatically generated and re-
quire no additional manual annotation. As far as
we know, this is the first time automatically gen-
erated GR labels have been explored as objectives
in a multi-task sequence labeling setting.

Finally, we evaluate a combination system, inte-
grating the auxiliary loss functions that performed
the best on the development set. The combina-
tion architecture includes four different loss func-
tions: the main binary incorrect/correct label, the
fine-grained error type, the POS tag and the GR
type. We left out frequency and L1, as these low-
ered performance on the development set. The
resulting system achieves 47.7% Fy.5, which is
a 4.3% absolute improvement over the baseline
without auxiliary loss functions, and a 6.6% abso-
lute improvement over the current state-of-the-art
error detection system by Rei and Yannakoudakis
(2016), trained on the same FCE dataset.

Table 3 contains the same set of evaluations on
the two CoNLL-14 shared task annotations. Word
frequency and L1 have nearly no effect, whereas
the fine-grained error labels lead to roughly 2%
absolute improvement over the basic system. The
inclusion of POS tags in the auxiliary objective
consistently leads to the highest Fj 5. While GRs
also improve performance over the main system,
their overall contribution is less compared to the
FCE test set, which can be explained by the differ-
ent writing style in the CoNLL data.

6 Alternative Training Strategies

In contrast to our approach, most previous work on
multi-task learning has focused on optimising the
same system on multiple datasets, each annotated
with one specific type of labels. To evaluate the
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FCE CoNLL-14 CoNLL-14
Aux dataset  TEST TEST1 TEST2
None 434 14.3 21.9
CoNLL-00 30.3 13.0 17.6
CoNLL-03 31.0 13.1 18.2
PTB-POS 31.9 11.5 14.9

Table 5: Results on error detection when training
is alternated between the two tasks (e.g., error de-
tection and POS tagging) and datasets.

effectiveness of our approach, we implement two
alternative multi-task learning strategies for error
detection. For these experiments, we make use of
three established sequence labeling datasets that
have been manually annotated for different tasks:

e The CoNLL 2000 dataset (Tjong Kim Sang
and Buchholz, 2000) for chunking, contain-
ing sections of the Wall Street Journal and
annotated with 22 different labels.

The CoNLL 2003 corpus (Tjong Kim Sang
and De Meulder, 2003) contains texts from
the Reuters Corpus and has been annotated
with 8 labels for named entity recognition
(NER).

The Penn Treebank (PTB) POS corpus (Mar-
cus et al., 1993) contains texts from the Wall
Street Journal and has been annotated with 48
POS tags.

The CoNLL-00 dataset was identified by Bingel
and Sggaard (2017) as being the most useful ad-
ditional training resource in a multi-task setting;
The CoNLL-03 NER dataset has a similar label
density as the error detection task; and the PTB
corpus was chosen as POS tags gave consistently
good performance for error detection on both the
development and test sets, as demonstrated in the
previous section.

In the first setting, each of these datasets is used
to train a sequence labeling model for their re-
spective tasks, and the resulting model is used to
initialise a network for training an error detection
system. While it is common to preload word em-
beddings from a different model, this strategy ex-
tends the idea to the compositional components
of the network. Results in Table 4 show the per-
formance of the error detection model with and
without pre-training. There is a slight improve-
ment when pre-training the model on the CoNLL-
00 dataset, but the increase is considerably smaller



compared to the results in Section 5. One of the
main advantages of multi-task learning is regular-
isation, actively encouraging the model to learn
more general-purpose features, something which
is not exploited in this setting since the training
happens in separate stages.

In the second set of experiments, we explore the
possibility of training on the second domain and
task at the same time as error detection. Similar to
Collobert and Weston (2008), we randomly sam-
ple a sentence from one of the datasets and update
the model parameters for that specific task. By al-
ternating between the two tasks, the model is able
to retain the regularisation benefits. However, as
shown in Table 3, this type of training does not im-
prove error detection performance. One possible
explanation is that the domain and writing style of
these auxiliary datasets is very different from the
learner writing corpus, and the model ends up op-
timising in an unnecessary direction. By includ-
ing alternative labels on the same dataset, as in
Section 5, the model is able to extract more in-
formation from the domain-relevant training data
and thereby achieve better results.

7 Additional Training Data

The main benefits of multi-task learning are ex-
pected in scenarios where the available task-
specific training data is limited. However, we
also investigate the effect of auxiliary objectives
when training on a substantially larger training
set. More specifically, we follow Rei and Yan-
nakoudakis (2016), who also experimented with
augmenting the publicly available datasets with
training data from a large proprietary corpus. In
total, we train this large model on 17.8M to-
kens from the Cambridge Learner Corpus (CLC,
Nicholls 2003), the NUS Corpus of Learner En-
glish (NUCLE, Dahlmeier et al. 2013), and the
Lang-8 corpus (Mizumoto et al., 2011).

We use the same model architecture as Rei and
Yannakoudakis (2016), adding only the auxiliary
objective of predicting the automatically gener-
ated POS tag, which was the most successful ad-
ditional objective based on the development ex-
periments. Table 6 contains results for evaluating
this model, when trained on the large training set.
On the FCE test data, the auxiliary objective does
not provide an improvement and the model per-
formance is comparable to the results by Rei and
Yannakoudakis (2016) (R&Y). Since most of the
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R&Y Fos P R Fps
FCE DEV 60.7 75.1 351 61.2
FCE TEST 64.3 784 370 64.1
CoNLL TEST1 34.3 447 20.5 36.1
CoNLL TEST2 44.0 63.8 20.8 45.1

Table 6: Error detection results using auxiliary ob-
jectives, trained on additional data.

large training set comes from the CLC, which is
quite similar to the FCE dataset, it is likely that the
available training data is sufficient and the auxil-
iary objective does not offer an additional benefit.
However, there are considerable improvements on
the CoNLL test sets, with 1.8% and 1.1% absolute
improvements on the corresponding benchmarks.
Only small amounts of the training data are simi-
lar to the CoNLL dataset, and including the aux-
iliary objective has provided a more robust model
that delivers better performance on different writ-
ing styles.

8 Previous Work

Error detection: Early error detection systems
were based on manually constructed error gram-
mars and mal-rules (e.g., Foster and Vogel 2004).
More recent approaches have exploited error-
annotated learner corpora and primarily treated the
task as a classification problem over vectors of
contextual, lexical and syntactic features extracted
from a fixed window around the target token. Most
work has focused on error-type specific detec-
tion models, and in particular on models detecting
preposition and article errors, which are among the
most frequent ones in non-native English learner
writing (Chodorow et al., 2007; De Felice and Pul-
man, 2008; Han et al., 2010; Tetreault et al., 2010;
Han et al., 2006; Tetreault and Chodorow, 2008;
Gamon et al., 2008; Gamon, 2010; Kochmar and
Briscoe, 2014; Leacock et al., 2014). Maximum
entropy models along with rule-based filters ac-
count for a substantial proportion of utilized tech-
niques. Error detection models have also been an
integral component of essay scoring systems and
writing instruction tools (Burstein et al., 2004; An-
dersen et al., 2013; Attali and Burstein, 2006).
The Helping Our Own (HOO) 2011 shared task
on error detection and correction focused on a
set of different errors (Dale and Kilgarriff, 2011),
though most systems were type specific and tar-
geted closed-class errors. In the following year,



the HOO 2012 shared task only focused on cor-
recting preposition and determiner errors (Dale
et al., 2012). The recent CoNLL shared tasks
(Ng et al., 2013, 2014a) focused on error cor-
rection rather than detection: CoNLL-13 targeted
correcting noun number, verb form and subject-
verb agreement errors, in addition to preposition
and determiner errors made by non-native learners
of English, whereas CoNLL-14 expanded to cor-
rection of all errors regardless of type. Core com-
ponents of the top two systems across the CoNLL
correction shared tasks include Average Percep-
trons, L1 error correction priors in Naive Bayes
models, and joint inference capturing interactions
between errors (e.g., noun number and verb agree-
ment errors) (Rozovskaya et al., 2014), as well as
phrase-based statistical machine translation, under
the hypothesis that incorrect source sentences can
be “translated” to correct target sentences (Felice
et al., 2014; Grundkiewicz, 2014).

The work that is most closely related to our own
is the one by Rei and Yannakoudakis (2016), who
investigate a number of compositional architec-
tures for error detection, and propose a framework
based on bidirectional LSTMs. In this work, we
used their system architecture as a baseline, com-
pared our model to their results in Sections 5 and
7, and showed that multi-task learning can further
improve performance and allow the model to gen-
eralise better.

Multi-task learning: Multi-task learning was first
proposed by Caruana (1998) and has since been
applied to many language processing tasks and
neural network architectures. For example, Col-
lobert and Weston (2008) constructed a convolu-
tional architecture that shared some weights be-
tween tasks such as POS tagging, NER and chunk-
ing. Whereas their model only shared word em-
beddings, our approach focuses on learning better
compositional features through a shared bidirec-
tional LSTM.

Luong et al. (2016) explored a multi-task archi-
tecture for sequence-to-sequence learning where
encoders and decoders in different languages are
trained jointly using the same semantic represen-
tation space. Klerke et al. (2016) used eye tracking
measurements as a secondary task in order to im-
prove a model for sentence compression. Bingel
and Sggaard (2017) explored beneficial task rela-
tionships for training multitask models on differ-
ent datasets. All of these architectures are trained
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by randomly switching between different tasks
and updating parameters based on the correspond-
ing dataset. In contrast, we treat alternative tasks
as auxiliary objectives on the same dataset, which
is beneficial for error detection (Section 6).

There has been some research on using aux-
iliary training objectives in the context of other
tasks. Cheng et al. (2015) described a system
for detecting out-of-vocabulary names by also pre-
dicting the next word in the sequence. Plank et al.
(2016) predicted the frequency of each word to-
gether with the POS, and showed that this can im-
prove tagging accuracy on low-frequency words.
However, we are the first to explore the auxiliary
objectives described in Section 3 in the context of
error detection.

9 Conclusion

We have described a method for integrating aux-
iliary loss functions with a neural sequence label-
ing framework, in order to improve error detec-
tion in learner writing. While predicting binary
error labels, the model also learns to predict addi-
tional linguistic information for each token, allow-
ing it to discover compositional features that can
be exploited for error detection. We performed
a systematic comparison of possible auxiliary la-
bels, which are either available in existing annota-
tions or can be generated automatically. Our ex-
periments showed that POS tags, grammatical re-
lations and error types gave the largest benefit for
error detection, and combining them together im-
proved the results further.

We compared this training method to two other
multi-task approaches: learning sequence labeling
models on related tasks and using them to initialise
the error detection model; and training on multiple
tasks and datasets by randomly switching between
them. Both of these methods were outperformed
by our proposed approach using auxiliary labels
on the same dataset — the latter has the benefit of
regularising the model with a different task, while
also keeping the training data in-domain.

While the main benefits of multi-task learning
are expected in scenarios where the available task-
specific training data is limited, we found that er-
ror detection benefits from additional labels even
with large training sets. Successful error detection
systems have to learn about language composition,
and introducing an additional objective encour-
ages the model to train more general composition



functions and better word representations. The
error detection model, which also learns to pre-
dict automatically generated POS tags, achieved
improved performance on both CoNLL-14 bench-
marks. A useful direction for future work would
be to investigate dynamic weighting strategies for
auxiliary objectives that allow the network to ini-
tially benefit from various available labels, and
then specialise to performing the main task.
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Abstract

The use of linked data within language-
learning applications is an open research
question. A research prototype is presen-
ted that applies linked-data principles to
store linguistic annotation generated from
language-learning content using a vari-
ety of NLP tools. The result is a data-
base that links learning content, linguist-
ic annotation and open-source resources,
on top of which a diverse range of tools
for language-learning applications can be
built.

1 Introduction

Since Berners-Lee (2001) presented his vision of a
Semantic Web at the turn of the century, there has
been an explosion of technologies and tools made
available to implement it'. The core idea of the Se-
mantic Web is linked data, where data forms a gi-
ant graph spread across the internet, known as the
Giant Global Graph or Web 3.0. In Berners-Lee’s
original vision, this linked data should be open
source and the resulting graph is freely available
over the internet. Of course, the same principles
and technologies can be applied to create a private
graph database used for commercial purposes, for
applications like a social network or knowledge
base.

Use of linked data in linguistics in general is a
burgeoning research topic (Section 2). In this pa-
per, linked-data technology is applied in the con-
text of a language-learning application, in order
to create a prototype database of linguistic an-
notation for learning content (Section 3). The
database further links learning content and lin-
guistic annotation with resources from the Lin-
guistic Linked Open Data (LLOD) cloud and other

'https://www.w3.org/standards/semanticweb/
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open-source linguistic resources. The resulting
database is flexible enough to allow a variety of
useful applications for the language learner to be
built on top of it.

Although NLP tools for creating linguistic an-
notation on the fly are becoming more and more
accurate’ and are adequate for many purposes,
this prototype tests storage of linguistic annotation
with the future aim of storing high-quality, curated
linguistic annotation. This linguistic annotation,
to be derived from a combination of various NLP
tools and human expertise, could then be updated
or expanded as new technology becomes avail-
able. The result would be a database of linguistic
annotation that is more accurate than the output of
any single tool and can be used for a variety of pur-
poses related to language-learning applications.

There are already a number of approaches avail-
able for automatically generating exercises for lan-
guage learning, such as using Google n-grams
(Hill and Simha, 2016) or a mix of techniques in-
cluding crowdsourcing, measuring WordNet dis-
tance, and machine learning (Kumar et al., 2015).
Although it is the focus of the evaluation of the
prototype (Section 4), automatic generation of ex-
ercises is only one possible use of the database
discussed here. Linking between learning content,
linguistic annotation and the LLOD cloud creates
a resource that can be used for a variety of pur-
poses, for example assessing the number of lem-
mas seen in exercises completed by a user up to
a certain point in time, or showing the user gram-
matical information for a particular exercise.

The state of the art in automatic syntax parsing reports
models with an upper limit of around to 95% accuracy for
certain types of input (Andor et al., 2016). For part-of-speech
tagging, the state of the art is around 97%, depending on the
type of input. Accuracy rates can be much lower for low-
frequency tokens, out-of-context text, and data that differs
significantly from the training set.
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2 Linked Data in Linguistics

Recently, applications of linked-data technology
in the field of linguistics in general have been
gaining in popularity, as witnessed by the large
amount of resources in the LLOD cloud (Section
2.1) and the growing number of linguistic onto-
logies (Section 2.2). In addition to being able to
link to the LLOD cloud, Semantic Web has the ad-
vantage of a native graph-based data model (Sec-
tion 2.3), namely the Resource Description Frame-
work® (RDF).

The use of linked-data technology in applic-
ations for language learning has, however, been
limited, meaning that the potential of the LLOD
cloud has yet be fully exploited in this area. A
notable exception is El Maarouf et al. (2015), who
created a multilingual network of linguistic re-
sources by using sense linking to bridge the lan-
guage gap with the goal of facilitating the creation
of language-learning content.

2.1 LLOD

The LLOD cloud diagram4 (McCrae et al., 2016;
Chiarcos et al., 2012) shows that there is already
a wealth of free and open-source linguistic linked
data available to use. Major resources are each
represented by a single node in the LLOD cloud
diagram. These include DBpedia (Mendes et al.,
2012), consisting of structured information extrac-
ted from Wikipedia; WordNet RDF (McCrae et al.,
2014), an RDF translation of Princeton’s WordNet
lexical database project; and DBnary (Sérasset,
2015), derived from Wiktionary.

2.2 Ontologies

An ontology is a document that specifies the struc-
ture of a system through entities and relations
(Guarino et al., 2009). Complex abstract mod-
els can be specified precisely via ontologies in
the Web Ontology Language® (OWL). A variety
of ontologies have been proposed to describe the
components of language analysis, each developed
with a different purpose in mind.

ISOcat (Windhouwer and Wright, 2012) and
GOLD (Farrar and Langendoen, 2003) were cre-
ated with the aim of covering a large range
of linguistic terminological categories. Ontolo-
gies of Linguistic Annotation (OLiA), an inter-

3https://www.w3.org/RDF/
*http://linguistic-lod.org/llod-cloud
>https://www.w3.org/OWL/
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mediate level of representation between ISOcat
and GOLD, addresses conceptual interoperability
(Chiarcos, 2012; Chiarcos and Sukhareva, 2015).

POWLA (Chiarcos, 2012) represents any kind
of linguistic annotation in a theory independent
way. It is an adaptation of the PAULA XML ex-
change format (Zeldes et al., 2013).

Lemon (McCrae et al., 2012) is an ontology for
exchanging lexical information on the Semantic
Web. It is used, for example, in the DBnary pro-
ject (Sérasset, 2015) and WordNet RDF (McCrae
etal., 2014).

2.3 Linguistic Annotation as a Graph

Representing linguistic annotation as a graph has
the advantage of avoiding undue influence from
the data serialization format (e.g. XML) or the
database type (e.g. relational). For example,
Zipser (2009) describes how, when a format
for exchanging linguistic annotation is specified
without an abstract model being explicitly spe-
cified, it can lead to the format’s implicit abstract
model being influenced or limited by the data
serialization format used. An example would be
XML-based formats being influenced by the tree-
based structure of XML to the extent that the im-
plicit abstract model of the linguistic annotation
format becomes tree based.

Semantic Web technology largely allows this
problem to be avoided. RDF-based linguistic ex-
change formats are inherently graph based, so are
only limited in structure to the extent that a la-
belled, directed multigraph is limited. Further,
OWL is designed specifically for ontology spe-
cification, and allows complex models to be spe-
cified in a precise way. Although, of course,
the XML syntax for RDF (Gandon and Schreiber,
2014) shows that a graph may be specified in the
XML format, so the pitfall of influence from the
data serialization format can also be avoided with
clear specification of the abstract model independ-
ent of the data serialization format, e.g. in the Uni-
fied Modeling Language (UML).

The graph-based SALT model (Zipser and Ro-
mary, 2010) further shows that a graph structure
preserves the abstract model for a wide range of
linguistic annotation formats, including PAULA,
ELAN, ANNIS and more.

Chiarcos (2012) likewise argues that a repres-
entation of linguistic annotation as a labelled, dir-
ected graph represented in OWL and RDF can



Resource Type

Stanford CoreNLP Language analysis
FreeLing Language analysis
WebLicht Annotation framework
WordNet RDF Lexical database
DBnary Lexical database
Specialist lexicon  Lexical database
Lemon Ontology

Table 1: External Resources

solve interoperability issues and enables connec-
tion to the LLOD cloud.

Bird and Liberman (2001) also argued that it is
of greatest importance to have a well-defined com-
mon conceptual framework and that the standard-
ization of file formats is of secondary importance.
They present an annotation graph as a common
conceptual framework for a number of annotation
formats.

3 Design of the Database

The starting point for the database was Babbel’s
learning content (Section 3.1). Linguistic annota-
tion for the content was then created via NLP
pipelines (Section 3.2). The learning content
and its annotation was then converted to RDF
and linked with LLOD resources and other open-
source linguistic resources (Section 3.3). Table 1
summarizes the external dependencies.

3.1 Learning Content

Babbel is a language-learning application with
over 1 million active subscribers and has been
shown to be an effective way to learn a foreign
language (Vesselinov and Grego, 2016). The lan-
guage application is based on a large corpus of lan-
guage exercises created by a team of didactic ex-
perts. There are a range of types of exercises, test-
ing users’ reading, writing, listening and speaking
skills.

YAML files containing the exercises were used
as the starting point for the database. Additionally,
a variety of metadata for the learning content was
available in an XML format.

3.2 Linguistic Annotation

Linguistic annotation was derived from NLP
pipelines set up for each of the two learning lan-
guages, English and Spanish. These NLP pipe-
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lexis:hasNext

(lexis:Languageltem) lexis:hasToken lexis:Token

Figure 1: Lexis Language Item and Token

lines used a combination of custom implement-
ations and open-source tools, including Stanford
CoreNLP (Manning et al., 2014) and FreeLing
(Padré and Stanilovsky, 2012). As the pipelines
are used for a variety of research purposes, the
resulting linguistic annotation was stored in Web-
Licht’s Text Corpus Format (TCF) (Heid et al.,
2010) in XML files, rather than directly in RDF.
The NLP pipeline produces the following lay-
ers: text, tokens, sentences, lemmas, part-of-
speech tags, morphological features, and depend-
ency parsing.

3.3 Linking the Data

The learning content and linguistic annotation
were converted to RDF (Section 3.3.1) and then
linked to existing LLOD resources (Section 3.3.2),
and other open-source linguistic resources conver-
ted to RDF (Section 3.3.2).

3.3.1 Linking Learning Content

Three ontologies were created with OWL to
model the learning content from the three differ-
ent sources: the Graph ontology for the XML
metadata files; the Lesson ontology for the learn-
ing content YAML files; and the Lexis® ontology
for the TCF XML files. A Java program was then
created to convert the XML and YAML structures
to RDF triples.

The Graph ontology models a variety of
metadata, including the order of lessons within a
learning module. The Lesson ontology models in-
formation within a lesson, like the parts of the lan-
guage item that the user interacts with e.g. a gap
in a sentence that the user fills in. Given that the
learning content and metadata already had a well-
defined underlying structure, a parallel structure
was created in the Graph and Lesson ontologies.

The following OWL classes were defined
within the Lexis ontology: LanguageItem,
Token, Dependency, Feature and Sense.
Figures 1 to 5 show the main OWL object prop-
erty relations between the classes.

SFrom the Ancient Greek Aé€ns meaning ‘word’



. lexis:hasDependency .
lexis:Token ‘M% >l‘ lexis:Dependency

Figure 2: Lexis Token and Dependency Relation

lexis:Token lexis:hasFeature >|‘ lexis:Feature

Figure 3: Lexis Token and Feature

Figure 1 shows that a second language text frag-
ment, namely a LanguageItem, may have one
or more entities of type Token related to it by
the hasToken property. The hasNext prop-
erty points to the next ordered Token for the
LanguageItem. A number of OWL datatype
property relations are further defined for Token,
e.g. the text value of the token.

The property hasDependency (Figure 2)
connects a Token and a Dependency according
to the dependency relations specified by the Uni-
versal Dependencies project (Nivre, 2016). The
head of a dependency relation is another token, in-
dicated by the hasHead object property. Mor-
phological features of tokens, including part of
speech and grammatical gender, are assigned to
the Feature class, related to a token via the ob-
ject property hasFeature (Figure 3).

The Lexis ontology imports the Lemon onto-
logy (Section 2.2), which is used to connect word
senses of tokens to the corresponding WordNet
entries (Figures 4 and 5). The lemma of a token is
saved as a datatype property of the token’s sense.

For the Lexis ontology, in addition to Lemon, it
would have been possible to reuse other existing
ontologies designed for representing linguistic an-
notation, like POWLA, GOLD or OLiA (Section
2.2). For this initial research prototype, however,
the design decision was made to create a new, min-
imal ontology and the mapping of Lexis to other
ontologies is left for future research.

[ lexis: Token } lexis:hasSense

Figure 4: Lexis Token and Sense
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[ lexis:Sense } lemon:reference

Figure 5: Lexis Sense and Lemon Reference

wordnet-ontology:Synset

3.3.2 Linking LLOD Resources

As mentioned above, the RDF version (McCrae
et al., 2014) of WordNet (Miller, 1995) was used,
connecting synsets to tokens via lexical sense
(Figure 5). As an expedient initial assignment, the
part of speech and lemma of a token were used to
search for the corresponding WordNet synset with
the highest frequency (tag count). Links to DBn-
ary (Sérasset, 2015) were created in a similar way.

3.3.3 Linking Other Linguistic Resources

The majority of open-source linguistic resources
are currently not available as five-star linked open
data according to Berners-Lee’s (2006) definition.
However, as long as the data is three star, then
it can generally be meaningfully converted into
linked data, usually with some manual work in-
volved to create a mapping. Three-star data is
available to use with an open licence; available as
structured, machine-readable data; and available
in a non-proprietary format (Berners-Lee, 2006).
Indeed this is the source of many of the LLOD re-
sources, like DBpedia, whose data were originally
available in some other format. For the current re-
search prototype, two main resources were conver-
ted to RDF, the Specialist lexicon’ and the FreeL-
ing Spanish dictionary®. These were then linked to
the learning content in a similar way to the LLOD
resources (Section 3.3.2).

The Specialist lexicon (Browne et al., 2000) is
a large English lexicon developed within the Uni-
fied Medical Language System by the US National
Library of Medicine (Bodenreider, 2004). The
XML version of the lexicon was imported using
the provided (but slightly adapted) XML format
specification. A custom ontology was created in
OWL that paralleled the underlying structure of
the dictionary entries. A Java program was then
written to convert the XML to RDF according to
the ontology. The ontology and Java program have
been made available as an open-source project’.

The FreeLing Spanish dictionary entry files
were converted into RDF triples according to the

"http://specialist.nlm.nih.gov/lexicon
8https://github.com/TALP-UPC/FreeLing
*https://github.com/babbel/specialist_rdf



Lemon ontology (McCrae et al., 2010).

3.4 Storing Linguistic Linked Data

With the recent rise in popularity of NoSQL data-
bases, there are now a number of databases spe-
cifically designed for storing linked data as RDF
triples, such as Ontotext’s GraphDB (based on
RDF4]J, formerly Sesame) and Apache Jena Fu-
seki. The created and collected linguistic link-
ed data described in Section 3.3 was stored in
GraphDB.

4 Evaluation

A suite of example use cases were built on top of
the database, serving as experimental evaluation.
These use cases included a Spanish conjugation
exercise (Section 4.1) and an English syntax dis-
play (Section 4.2). Apart from unit testing to as-
sure the graph is produced as expected, the qual- 1
ity of the data produced was not evaluated. The
quality of the linguistic annotation depends on the
tools used to generate it, e.g. Stanford CoreNLP. 3
The evaluation of the quality of the sense linkingg
with WordNet and DBnary is left for further re- 6

search. 7
8
4.1 Spanish Conjugation 9

A learning exercise for verb conjugation in Span-10
ish was built on top of the existing learning con-!
tent in the database'’. Learning content for Span- 3
ish was searched for sentences in the present tensel4
of the form subject—verb—direct object. Spanish'?
verbs in the present tense have a different form de-
pending on politeness (Helmbrecht, 2013) and the
person and number of the subject. The verb was
then replaced with its infinitive form and a drop-
down menu showing all present tense verb forms
for the same verb. The user is then asked to choose
the correct form of the verb. For example, “Este
piso tiene un jardin privado” becomes “Este piso
tener un jardin privado”, with a drop-down menu
for “tener” displaying all the present tense forms
of the verb. If the user selects the incorrect verb
form from the drop-down menu, a message is dis-
played and they may try again. If the user selects
the correct verb form from the drop-down menu,
the exercise is complete.

The authors thank Raphaela Wrede, Pierpaolo Frasa,
Katharina Schoppa and Simon Kreiser for their help in testing
a prototype of this idea.
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4.2 English Syntax

A further use case was built on top of the database
for selecting English language items containing
auxiliary verbs. The SPARQL request shown in
Listing 1 selects English language items that have
a dependency relation where one verb acts as an
auxiliary to another verb. This query returns URIs
for languages items such as “Which pants should
I buy?”, where ‘should’ is the auxiliary verb and
‘buy’ is the main verb. A further SPARQL query
retrieves the tokenization for this language item,
enabling the auxiliary verb and main verb to be
identified and highlighted for the user in the GUIL.
Such a use case could be extended to any other
syntactic construction, so that the user could revise
the construction in question, e.g. by highlighting
the correct verb types.

Listing 1: SPARQL Query
PREFIX lexis: <http ://www.babbel.com/

lexis#>

PREFIX lesson: <http ://www.babbel.com/
lesson#>

SELECT DISTINCT ?subject

WHERE {

?7subject a lexis:Languageltem

?subject lesson:alpha3 ‘eng’

?subject lexis:hasToken ?token

?7token lexis:hasDependency ?dependency
?dependency lexis:dependencyFunction ¢

aux’
?dependency lexis:hasHead ?head
?head lexis:hasFeature ?feature

?7feature lexis:featureValue ?pos
?7feature lexis:featureName ‘pos’
FILTER regex (?pos, ‘°V’)

} LIMIT 50

4.3 Performance

The technology for RDF triple stores is not as ma-
ture as for relational databases and this is reflected
in their performance as witnessed by the so-called
“RDF tax”, although recent work has been done
to improve this (Boncz et al., 2014). Performance
for this prototype was also affected by the quality
of the data contained in the database and the type
of query performed. When the linguistic annota-
tion saved in the database is clean and precise, the
SPARQL query can be simpler and get the desired
result faster.

The SPARQL query in Listing 1 sent via cURL
took 0.035 seconds on average when run 100 times
in a row on a MacBook Pro with 8GB RAM. The
database stops searching and replies as soon as it
has found 50 items that fulfill the request.



The SPARQL query in Section 4.1, however,
took around seven seconds when executed in the
GraphDB SPARQL GUI. This is not unexpected
as the query searches through every single item in
the database. A large number of complicated con-
ditions were further required in the query, as the
NLP tool did not distinguish between certain types
of objects. For example, temporal phrases and dir-
ect objects were coded the same, so these had to
be manually added as conditions to the SPARQL
query, so as not to be included in the end result.

5 Conclusion and Further Work

The prototype database presented here combines
RDF resources created from Babbel’s learning
content with linguistic annotation and existing re-
sources from the LLOD cloud and elsewhere. The
concept of the database was validated by experi-
mental evaluation in the form of use cases built on
top of it (Section 4).

In the first prototype, the minimal Lexis on-
tology was designed to test the concept. In fu-
ture iterations, more work on this ontology could
take place, including identification of areas where
ontology design patterns (Blomqvist et al., 2016)
could be used; and mapping to existing ontolo-
gies for linguistic annotation (Section 2.2). Like-
wise, work on conceptual (semantic) interoperab-
ility could take place, using ISOcat categories or
similar, to enable use cases that incorporate lin-
guistic annotation across more than one language,
and to enable more use of external LLOD re-
sources.

Future iterations could also incorporate im-
proved word sense disambiguation techniques
based on supervised machine learning (Navigli,
2009). Alternatively, the availability of transla-
tions of the learning content into multiple lan-
guages could be exploited to infer the correct map-
ping (Tufis et al., 2004).

As seen in Section 4.1, query performance time
suffers, when the query becomes too complex due
to errors in the linguistic annotation or under-
specification in annotation categories. Improving
the quality of the linguistic annotation, either by
swapping out a given NLP tool, or using a com-
bination of multiple NLP tools and manual review,
would further improve the efficiency and useful-
ness of the database. As the second-language
text fragments generally do not have any context,
manual review will likely always be necessary.
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Future work could also be done on database per-
formance in general, for example by exploring the
use of the compact Header, Dictionary and Triples
structure for storing RDF (Ferndndez et al., 2010).
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Abstract

High quality classroom discussion is im-
portant to student development, enhancing
abilities to express claims, reason about
other students’ claims, and retain informa-
tion for longer periods of time. Previous
small-scale studies have shown that one
indicator of classroom discussion quality
is specificity. In this paper we tackle the
problem of predicting specificity for class-
room discussions. We propose several
methods and feature sets capable of out-
performing the state of the art in specificity
prediction. Additionally, we provide a set
of meaningful, interpretable features that
can be used to analyze classroom discus-
sions at a pedagogical level.

1 Introduction

Classroom discussion plays an important role in
the learning process. It has been shown that rea-
soning, reading, and writing skills can be pos-
itively affected by high-quality student-centered
classroom discussion in the context of English
Language Arts (ELA) classrooms (Reznitskaya
and Gregory, 2013; Graham and Perin, 2007; Ap-
plebee et al., 2003). High quality discussions
encourage student-to-student talk, negotiation of
claims, supporting claims with evidence, and rea-
soning about those claims. Although the effective-
ness of particular kinds of claims, evidence and
reasoning can vary across disciplines, Chisholm
and Godley (2011) and Lee (2006) showed that
the specificity of these argument moves is related
to discussion quality. These findings are based on
a largely qualitative analysis of a single classroom
discussion that relied on the manual annotation of
specificity and discussion quality. The proposed
method in this paper will help address this limita-
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tion by making the annotation of specificity auto-
matic.

Specificity is defined by the Oxford Dictionary
as “The quality of belonging or relating uniquely
to a particular subject” '. Natural language pro-
cessing (NLP) techniques can be used to facilitate
the analysis of classroom discussion and of speci-
ficity. Chen et al. (2014) developed a tool for
teacher self-assessment of classroom discussion
through the analysis of the frequency of partici-
pation of students in the discussion, and teacher-
student turn patterns. Blanchard et al. (2016) de-
veloped a system for detecting teacher questions
from classroom discussion recordings. These
works, however, do not take into account the ac-
tual student discussion content. Speciteller (Li
and Nenkova, 2015) is a current state of the art
method for predicting sentence specificity. It was
developed by analyzing newspaper articles to dis-
tinguish between general and specific sentences.
Spoken and written language differ in grammat-
ical structure, contextual influence, and cognitive
process and skills (Chafe and Tannen, 1987; Biber,
1988). As such we believe that using Speciteller
as-is on classroom discussions will lead to sub-
optimal performance, which we can improve.

In this paper we propose a method to auto-
matically determine specificity of student turns
at talk in high school ELA classroom discus-
sions of texts. The contributions of this paper are
twofold. For the educational community this work
will enable the exploration of hypotheses concern-
ing specificity and discussion quality over large
datasets, spanning multiple classes and including a
large number of students, which would otherwise
require a prohibitive amount of work for manually
annotating data. Additionally, we develop a set of
pedagogically meaningful features which can be

"https://en.oxforddictionaries.com/definition/specificity
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used to understand important elements of highly
specific discussions. For the NLP community, we
make the following contributions: we experimen-
tally evaluate the performance of prior approaches
for predicting specificity in a new domain; we
compare between different feature sets and algo-
rithms; finally, we provide a model for predicting
specificity tailored to spoken dialogue and in an
educational context, which outperforms the cur-
rent state of the art.

2 Related Work

To the best of our knowledge, this is the first work
to analyze specificity of spoken dialogue, and
more precisely in classroom discussions. Louis
and Nenkova (2011) analyzed specificity in news
articles and their summarizations. Their proposed
method leverages a combination of lexical and
syntactic features and annotated data from the
Penn Discourse Treebank to train a logistic regres-
sion classifier. They used the trained model to
analyze differences in specificity between human-
written and automatically-generated summaries of
news articles. Li and Nenkova (2015) developed
Speciteller, a tool for predicting the specificity
score of sentences. Specificity was defined in re-
lation to the amount of details in a sentence. This
tool uses a set of shallow features (described in
Section 4.2) and two dense word vector represen-
tations to train two logistic regression models on
Wall Street Journal articles. Additionally, they
improved classification accuracy by using a semi-
supervised co-training method on over thirty thou-
sand sentences from the Associated Press, New
York Times, and Wall Street Journal. Finally, Li et
al. (2016) improved the annotation scheme used
in (Louis and Nenkova, 2011; Li and Nenkova,
2015) by considering contextual information, and
by using a scale from 0 to 6 rather than binary
specificity annotations. Our annotation scheme is
based on prior educational work in coding speci-
ficity (Chisholm and Godley, 2011), and our pre-
diction models will incorporate features used by
Speciteller.

Like other machine learning-based methods,
Speciteller is highly dependent on its training data.
Since our objective is to analyze classroom dis-
cussion, we also draw on work that has used Spe-
citeller to analyze data that is more similar to our
corpus. Swanson et al. (2015) analyzed online fo-
rum dialogues in the context of argument mining.
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By performing feature selection they observed that
argument quality is highly correlated with speci-
ficity as measured by Speciteller across multiple
topics. We believe there might be a correlation be-
tween specificity and other features used in their
work (described in Section 4.3) to predict argu-
ment quality, therefore we used some of these fea-
tures in our approach.

3 Dataset Description

The dataset for this work consists of manually
transcribed text-based classroom discussions from
English Language Arts high school classes. Text-
based discussions are about a “text” (e.g., litera-
ture such as Macbeth and Memoir of a Geisha,
a news article, a speech, etc.) and can either be
mediated by a teacher or conducted exclusively
among students. The number of students per dis-
cussion ranges from 5 to 13 in our dataset.

Motivated by Chisholm and Godley’s (2011)
and Lee’s (2006) coding of classroom discussions,
a codebook for manually annotating student argu-
ment moves and specificity has been developed.
Each student turn at talk is labeled for: () speci-
ficity (low, medium, high); (i) argument move
(claim, evidence, warrant). Specificity was labeled
at the level of argument move: each transcript was
preprocessed by one of the annotators and a deci-
sion was made on whether to segment each turn
at talk into multiple ones if the turn at talk could
potentially contain multiple argument move types.
The following aspects were considered when la-
beling specificity for a turn at talk:

1. it involves one character or scene;

2. it gives substantial qualifications or elabora-
tion;

3. it uses content-specific vocabulary;

4. it provides a chain of reasons.

If none of the four elements was present, or if the
turn at talk refers to all humans or the text in gen-
eral, the turn at talk is labeled as low specificity.
Medium specificity turns at talk contain one of the
four elements, while high specificity ones contain
at least two of the four elements.

Table 1 shows examples of specificity annota-
tion from one of the discussions in our dataset
about the book Death of a Salesman. The first
turn at talk in the table was labeled as low speci-
ficity because the claim made by the student was



Turn at talk Specificity
It’s just kind of a maintaining personality low
Yeah because she just couldn’t- I mean, it’s not a fake personality, but it’s kind of med
like superficial

At one point, I don’t even think she’s concerned that like with her sons as much as high

she is with Willy, or you know, she’s just focusing most of her attention and comfort
on Willy and um, when Biff and Happy are there it makes him, like, [inaudible]. I
think she’s trying to like, you know, be the bridge between them and Willy.

Table 1: Examples of turns at talk for different specificity classes.

unsubstantiated. The student did not give a defini-
tion of what maintaining personality means in this
context, nor did they mention the reasons for mak-
ing such a claim. The second turn at talk in the
table, although not providing considerable elab-
oration, is clearly about one individual character
in the book. As such, it is classified as medium
specificity. The third turn at talk is classified as
high specificity because the statement is particular
to one or a few selected characters, and the student
shows a clear chain of reasoning.

The dataset spans 23 classroom discussions and
over 2000 turns at talk. Two pairs of annota-
tors coded specificity for 5 and 9 transcripts re-
spectively, while the remaining 9 transcripts were
single-coded. Inter-rater reliability on specificity
labels for the two annotator pairs as measured by
quadratic-weighted Cohen’s Kappa is 0.714 and
0.9, indicating substantial agreement and almost
perfect agreement, respectively.” A gold standard
set of labels for each double-coded discussion was
obtained by resolving the disagreements between
the two annotators. Table 2 shows the distribution
of specificity classes in our dataset.

Specificity
Turns at talk Low | Medium | High
2057 730 | 974 | 353

Table 2: Dataset statistics.

4 Proposed Method

This section provides a description of Speciteller
(Li and Nenkova, 2015) and additional features
and models that we propose to predict specificity.

2 Although argument move types are not used in our study,
Kappa for the two annotator pairs were 0.75 and 0.89.

4.1 Speciteller tool

The baseline for testing our hypotheses consists
of using Speciteller out of the box to predict the
specificity of each turn at talk. Speciteller accepts
a string as input and outputs a specificity score
in the range [0, 1], where 0 indicates general sen-
tences and 1 indicates specific sentences. Since
the unit of analysis for the current work is a turn at
talk, which may consist of multiple sentences, we
evaluated the performance of Speciteller in several
scenarios (e.g. sentence, turn at talk). We found
that the best results are obtained when using the
complete turn at talk as input to Speciteller. In or-
der to convert the numeric specificity score into a
specificity class (i.e. low, medium, or high) we
set two thresholds ¢1 and ¢, then labeled turns at
talk with specificity score s < t; as low, those
with score 1 < s < t9 as medium, and those
with score s > ¢y as high. The optimal thresholds
were found by starting at 0 and iteratively increas-
ing them by 0.001 at each step, while saving the
best results. The values for the optimal thresholds
are: t; = 0.02 and ¢t = 0.78. It is important to
note that this represents the upper bound for Spe-
citeller’s performance. Finding the optimal thresh-
olds is not trivial and in practice it could be done
through cross-validation.

4.2 Speciteller feature set

The initial set of features we evaluated was that
used in Speciteller. We extracted features from
each turn at talk using the source code provided
by Speciteller’. In their proposed method, Li and
Nenkova extracted two categories of features, a
shallow feature set and a word embeddings set,
and used them for two separate classifiers. In this
work, we concatenate both shallow features and
word embeddings to form a single feature vector.
We will refer to these features as the Speciteller

3 https://www.cis.upenn.edu/ nlp/software/speciteller.html



set. Shallow features for each sentence consist of:
number of connectives, sentence length (number
of words), number of numbers, number of capi-
tal letters, number of symbols (including punctua-
tion), average number of characters for the words
in the sentence, number of stopwords (normalized
by sentence length), number of strongly subjec-
tive and polar words (using the MPQA (Wilson
et al., 2009) and the General Inquirer (Stone and
Hunt, 1963) dictionaries), average word familiar-
ity and imageability (using the MRC Psycholin-
guistic Database (Wilson, 1988)), average, maxi-
mum, minimum inverse document frequency val-
ues. Word embeddings features consist of the av-
erage of 100-dimensional vectors for each word in
the sentence. The embeddings were provided by
Turian et al. (2010) and trained on a corpus con-
sisting of news articles.

4.3 Online dialogue features

While extracting arguments from online forum di-
alogues, Swanson at al. (2015) found that Spe-
citeller scores (as a measure of specificity) are
highly correlated with argument quality. In addi-
tion to Speciteller scores, their model used several
feature sets. While not explicitly stated by the au-
thors, we believe there might exist a correlation
between specificity and the other feature sets. We
will add the following sets of features to the fea-
tures already present in Speciteller.

Semantic features The number of pronouns
present in a given turn at talk. Descriptive statis-
tics for word lengths: minimum, maximum, av-
erage, and median length of the words in a turn
at talk. It is worth noting that the average word
length differs from the one implemented in Spe-
citeller as this feature keeps punctuation into ac-
count. Number of occurrences of words of length
1 to 20: one feature for each word length - words
longer than 20 characters will be counted in the
feature for length 20.

Lexical features N-gram language models are
often powerful features, but one drawback is their
dependence on specific domains. Since we plan
to build a model for predicting specificity which is
able to generalize to multiple topics, we did not
use the raw N-gram features. To alleviate this
problem, we used the term frequency - inverse
document frequency (tf-idf) feature for each uni-

“The name of the feature set in the original paper is
semantic-density features; we use semantic features for
brevity.
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gram and bigram in the corpus with frequency of
at least 5. Descriptive statistics of lexical features
for each turn at talk, namely minimum, maximum,
and average, were also used.

Syntactic features To mitigate the data sparsity
that impacts word n-grams, and to get more gener-
alizable features, we extracted unigrams, bigrams,
and trigrams of Parts Of Speech (POS) tags, using
the Natural Language Toolkit (Bird et al., 2009).

4.4 Additional feature sets

In addition to the previous feature sets, we also
extracted the following feature sets which we be-
lieve are able to capture specificity with respect to
the educational domain of ELA text-based class-
room discussions.

Pronoun features Pronouns are grammatical
units that might help us gain useful information
about the focus of a turn at talk. For example,
if the pronoun “she” is present in a turn at talk,
the student might likely be referring to one spe-
cific character, which is one of the aspects con-
sidered when annotating specificity. Therefore we
extracted a set of the following pronoun features:
binary feature indicating presence/absence of pro-
nouns; total number of pronouns in the turn at
talk’; the numbers of first, second, and third per-
son pronouns; the number of singular and plural
pronouns; the number of pronouns for each of the
following categories: personal, possessive, reflex-
ive, reciprocal, relative, demonstrative, interroga-
tive, indefinite.

Named entities Named entities might give us a
sense of characters or places that students discuss,
with respect to specificity. For example, saying “I
did not like Biff” is more specific than saying “I
did not like one of the characters” as it points out
which of the characters a student might not like.
For this task we used the Stanford Named Entity
Recognizer (Finkel et al., 2005) (NER) with the
pre-trained 3 class model detecting location, per-
son and organization entities. We extracted the
following features: a binary feature indicating the
presence/absence of any named entity; a binary
feature indicating presence/absence of each of the
three named entity classes; the total number of
named entities; the total number of named entities
per class. We complemented the previous counts
by adding a normalized feature, with respect to the

SThis feature differs from that described in section 4.3:
the feature from the online dialogue set only considers deictic
pronouns.



length of the turn at talk, for each of them.

Book features Since our dataset consists of
text-based discussions, we might be able to lever-
age information about the texts (i.e. books) for
each discussion to understand how much each turn
at talk is related to the book or its characters. First,
a manually-created summary and a list of charac-
ters for each book were obtained from the web, us-
ing Wikipedia when possible or Sparknotes as an
alternative. Then, the following character-related
features were extracted from each turn at talk: a
binary feature indicating the presence/absence of
a character’s name; the number of characters men-
tioned; the number of characters mentioned nor-
malized by the length of the turn at talk. A charac-
ter was counted by matching each word in the turn
at talk to their first name, last name, or their nick-
name. Additionally the following summary re-
lated features were extracted: the number of over-
lapping words with the turn at talk; Jaccard simi-
larity between the turn at talk and the summary; tf-
idf based cosine similarity between the summary
and the turn at talk. We extracted the summary
related features in two different settings: consider-
ing the book summary as a single entity; comput-
ing the similarity between the turn at talk and each
sentence in the summary, then picking the maxi-
mum. All features were extracted after removing
stopwords from the turn and summary.
Embeddings Li and Nenkova (2015) used sen-
tence embeddings based on word embeddings in
order to increase the accuracy of Speciteller. The
sentence embeddings were obtained by comput-
ing the average of pre-trained word embeddings
for each word in the sentence. We believe our
method can further benefit from sentence em-
beddings specifically trained on our corpus and
optimized for our target: predicting specificity.
We generated embeddings by training a character-
level Long-Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997), using it as
an encoder on the turns at talk from our corpus.
Each turn at talk, which might consist of multiple
sentences, represents one sequence (training sam-
ple) for the LSTM training. Since punctuation is
not very meaningful given that we are analyzing
spoken discussions, all characters that are not let-
ters or numbers are ignored. Inputs for the LSTM
consist of one-hot (1 X N) encoding of individual
characters.

The neural network is trained by using the hid-
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low / med / high

LSTM
} }
Turn at talk Handcrafted
features

Figure 1: Network setup for training neural
network-based embeddings.

den state of the LSTM unit at the end of the
turn at talk as embedding, feeding it to a soft-
max classifier for predicting specificity, and back-
propagating errors. Cross-entropy was used as the
objective function to optimize during training. A
disadvantage of neural network models is the fact
that their large number of parameters requires ex-
tensive amount of data to show their expressive
power. Given the size of our training data we try to
mitigate this problem by merging the embeddings
for a turn at talk with handcrafted features. Ideally
we would combine embeddings with all the fea-
tures described previously but the resulting model
would be far too large for our dataset, therefore we
chose to use the Speciteller + Semantic feature
set for this task. The training procedure changes
slightly: a turn at talk is propagated through the
LSTM resulting in a fixed size embedding; hand-
crafted features are extracted from the turn at
talk, concatenated to form a vector, and a fully-
connected layer is applied to those; the output of
the fully-connected layer is concatenated with the
embedding, and given as input to a softmax classi-
fier to predict specificity. A graphical overview of
the model is given in Figure 1.

It is important to note that the neural net-
work for embeddings and the classifier are jointly
trained, therefore the embeddings are specifically
tailored to encode information regarding speci-
ficity. The Keras library (Chollet et al., 2015) was
used for extracting sentence embeddings as well
as for evaluating performance of the softmax clas-
sifier.

Pedagogical feature set In addition to max-
imizing kappa for specificity prediction, an ad-
ditional objective for this study is to find mean-
ingful features that can help explain different as-



pects of highly specific discussions. Many of the
features described above, like N-grams or tf-idf,
might have good predictive power but they are not
easily interpretable and bear little relation to our
codebook.

When considering NLP techniques applied to
the educational domain, there is an increasing in-
terest in developing models that capture important
components of the construct to measure. Rahimi
et al. (2017), for example, developed a model for
automated essay scoring using rubric-based fea-
tures; Loukina et al. (2015) evaluated different
feature selection methods to obtain interpretable
features in an educational setting.

In order to create an interpretable feature set
we started by manually selected meaningful fea-
tures from Speciteller (imageability, subjectivity,
polarity, and familiarity ratings, number of con-
nectives, fraction of stopwords). At training/test
time, this set is combined with features from the
Pronoun, Named entities, and Book feature sets.
Since all the features from the last 3 sets are inter-
pretable, we only chose a few features from each
set, selecting the ones with highest information
gain with respect to specificity. For each fold, we
first rank features in the Pronoun, Named entities,
and Book sets by information gain, then select the
top k (based on the number of features in each re-
spective set), concatenate them to the interpretable
Speciteller features and train a logistic regression
model. Section 5.4 will give examples of selected
features.

S Experiments and Results

In this section we provide results for our ex-
periments. All classifiers and feature sets were
evaluated using 10-fold cross validation, and us-
ing quadratic-weighted Cohen’s kappa as the per-
formance metric since it is important to make a
distinction between different classification errors
(e.g. classifying a low specificity turn at talk as
high should result in bigger error than classifying
it as medium). We used the scikit-learn Python
package® for training and evaluating classifiers, as
well as performing feature selection. Specifically,
sections 5.1 and 5.2 will be used to test our first
hypothesis: that by retraining an existing model
on our corpus we will obtain an improvement in
performance. Sections 5.2 and 5.3 will be used
to test our second hypothesis: that by using fea-

Shttp://scikit-learn.org/stable/
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Figure 2: Speciteller scores by specificity class.

tures from additional NLP literature we can fur-
ther improve the performance of a state-of-the-art
model. Section 5.4 will test our third hypothesis:
that the additional features we handcrafted to cap-
ture specificity with respect to verbal discussion
in an educational setting will lead to better perfor-
mance.

5.1 Baseline using Speciteller off-the-shelf

Since we plan to use Speciteller as a baseline
for comparing the performance of our proposed
method, we iteratively tested thresholds to find the
set which results in the highest quadratic-weighted
kappa in all scenarios described in Section 4.1.
The best result was obtained when the input to
Speciteller is the complete turn at talk, and the re-
sulting quadratic-weighted kappa is 0.495, which
represents Speciteller’s upper bound performance.
Figure 2 shows the frequency distribution of spe-
citeller scores for each specificity class.

From the figure we can see that Speciteller is
able to correctly capture specificity for a portion
of the turns at talk in the dataset, as there is a peak
in the low end of the spectrum for the distribution
of low specificity scores and a peak in the high end
of the spectrum for the distribution of high speci-
ficity scores. The medium specificity class seems
to be the most problematic one, which has a sim-
ilar trend as the low specificity class distribution
in the low end of the spectrum, and a similar trend
to the high specificity class distribution in the high
end of the spectrum. Ideally we would expect the
medium specificity distribution to have a peak to-
wards the middle of the spectrum but that is not the
case. Additionally, the low specificity class distri-
bution shows a peak between 0.6 and 0.7 which



will further penalize accuracy.

Table 3 shows the confusion matrix when ap-
plying the optimal thresholds in order to get speci-
ficity labels from Speciteller scores. As we can
see from the confusion matrix the overlap be-
tween the low and medium specificity classes and
the medium and high specificity classes causes a
large number of misclassifications: almost half of
the low specificity turns at talk are classified as
medium, over 40% of the medium specificity turns
at talk are classified as either low or high, and al-
most 40% of high specificity turns at talk are clas-
sified as medium. We believe these errors stem
from two main reasons: as with many data-driven
approaches, Speciteller is highly dependent on its
training corpus. Speciteller was trained on articles
from the Wall Street Journal and the New York
Times. Articles written by professional writers are
inherently different from transcriptions of spoken
discussions between high school students. Addi-
tionally, for training the model, Speciteller used
a binary general/specific label, while we consider
three labels in our work. Since Speciteller has no
prior knowledge on medium specificity sentences,
it is understandable that most of the misclassifica-
tions come from this class.

5.2 Training using Speciteller features

Our hypotheses as to why Speciteller does not
work effectively out of the box are related to its
corpora and the way it was trained. With respect
to the features used by Speciteller, we believe they
might be useful in the context of classroom discus-
sion as well. We extracted the shallow feature set
and the neural network word embeddings feature
sets and combined them to train a logistic regres-
sion classifier on our dataset. This classifier was
chosen because one of our objectives is to compare
the importance of other feature sets in addition to
the Speciteller one, and in order for this compar-
ison to be fair we decided to use the same clas-
sifier Speciteller uses. Additionally, the classifier

predictions
low | med | high
low | 352 | 360 | 18
med | 280 | 565 | 129
high | 4 139 | 210

ground truth

Table 3: Confusion matrix using Speciteller scores
to classify according to the optimal split points.

weights can be used to understand the importance
of each feature. It is important to note that, un-
like Speciteller, we will be using a single classifier
on the combination of all features, and will not be
able to leverage semi-supervised co-training.
Table 4 shows the performance of a logistic re-
gression classifier trained on this feature set and
others described in the previous section. As we

Feature sets QWKappa
Speciteller 0.5758
Speciteller + Online dialogue 0.6347*
All:  Speciteller + Online dia- | 0.6360*
logue + Pronoun + NE + Book

Speciteller + Semantic + Em- | 0.6550%*
beddings

Pedagogical 0.5886

Table 4: Classification performance of different
feature sets. * indicates statistically significant im-
provement over Speciteller features with p-value
< 0.001. Statistical significance was tested using
a two-tailed paired t-test. Bold font highlights best
results.

can see from the table, training a classifier using
the Speciteller feature set on our corpus results
in a considerable increase in performance, with
QWKappa of 0.5758 which represents a 16% rel-
ative improvement over the 0.495 QWKappa ob-
tained using Speciteller out of the box. This con-
firms our first hypothesis that Speciteller’s perfor-
mance, like many other methods, is highly depen-
dent on its training corpus and using this model
out of the box would give sub-optimal results.

5.3 Speciteller and online dialogue features

To test whether features from Section 4.3 are use-
ful, we combined the Speciteller features with
the Semantic, Lexical, and Syntactic features and
trained a logistic regression classifier based on
the concatenated feature vectors. Table 4 con-
firms our hypothesis that the 4 feature sets com-
bined result in statistically significant (using a
two-tailed paired t-test) higher kappa than using
only Speciteller features. When combining Spe-
citeller with each of the 3 other feature sets in-
dividually, kappa increases but not with statisti-
cal significance. We evaluated additional classi-
fiers (Support Vector Machine, decision tree, ran-
dom forest, Naive Bayes) but none of them out-
performed logistic regression. Since the num-



ber of features is over 7000, we also tried using
Recursive Feature Elimination (RFE) and Princi-
pal Component Analysis (PCA) for feature selec-
tion/reduction, but neither improved performance.

5.4 Additional features

To the feature set described in the previous section,
we added the features described in Section 4.4. We
then tested our third hypothesis by evaluating the
performance of a logistic regression model trained
with these features.

We can see from Table 4 that all additional
feature sets yield better performance than the
Speciteller feature set by itself. This result con-
firms our third hypothesis: the additional fea-
ture sets are able to capture aspects of speci-
ficity with respect to verbal discussion and the
educational domain. In particular the feature set
containing neural network-based sentence embed-
ding achieved the best kappa measure of 0.6550,
which suggests that sentence embeddings are also
domain-dependent. Compared to using Speciteller
off-the-shelf this method improves kappa by 32%.
While the size of the neural network was constant
during training/test (not optimized for each fold),
we experimented with several numbers of hidden
nodes (ranging from 50 to 200) for the LSTM and
fully-connected layers, which resulted in kappa
values in the range 0.6283 — 0.6550.

The Pedagogical feature set is also able to
marginally outperform the Speciteller feature set.
Compared to the best result, the loss in kappa
when using the Pedagogical set is 11%. At the
expense of a slightly lower accuracy we gain the
ability to use only informative features, which can
be used to better understand highly specific versus
general classroom discussions. The use of logistic
regression also makes this possible: the model’s
coefficients give us an indication of how important
features are. Table 5 shows the top 12 features in
the Pedagogical feature set ranked by the magni-
tude of the model’s coefficients.

The table shows the results of a model trained
on the complete dataset. The number of connec-
tives seems to be the most important feature for
predicting high specificity. This seems straight-
forward, as more connectives translates into more
clauses, which provide more information. While
the annotators did not look for connectives dur-
ing coding, one of the aspects they analyzed was
the presence/absence of a chain of reasoning, and

59

Feature Coefficient
Number of connectives 1.9168
Cosine similarity whole sum- 0.9293
mary

MRC imageability 0.8172
Number of characters 0.6931
MPQ subjectivity -0.5440
Fraction of stopwords -0.4087
MRC familiarity 0.3986
Number of possessive pro- 0.2035
nouns

Number of named entities nor- 0.1865
malized

Number of 3'¢ person pronouns 0.1755
Word overlap whole summary 0.1585
Number of personal pronouns 0.1476

Table 5: Pedagogical feature set and respective
logistic regression coefficients. Italic font shows
features developed in this study (Section 4.4).

the number of connectives might capture that as-
pect. The cosine similarity between the turn at talk
and the book summary (considered as one entity)
is another important feature in the model: higher
similarity between the summary and what a stu-
dent says means that they are using terms from the
book. This feature seems to capture another aspect
in our codebook, the use of book-specific vocabu-
lary. We can use the information provided by these
features to understand specificity, and to give feed-
back to teachers and students: if for example a stu-
dent tends to produce low specificity turns at talk
and the number of connectives used is generally
low, that might be an indication that they should
elaborate more on their statements. Conversely,
if the number of connectives used is high but the
number of characters mentioned is low, that might
be an indication that the student should reference
specific characters more often.

6 Conclusions and Future Work

We proposed several models for predicting speci-
ficity and evaluated them on text-based, high
school classroom discussion data. We showed that
an existing general-purpose system achieves sig-
nificantly better performance when its features are
used for retraining on educational data. We also
showed that performance can be further improved
by using additional features from the NLP litera-
ture (Swanson et al., 2015), especially when com-



bined with neural network embeddings and other
new features tailored to text-based classroom dis-
cussion. Finally we proposed a subset of peda-
gogical features which, even though slightly less
performing, provide the ability to interpret the fea-
tures, which is especially important for the educa-
tional community.

As more data becomes available, we will ex-
plore more advanced neural network models and
examine method generalization (e.g., social sci-
ence vs. ELA, middle vs. high school). We also
plan to analyze features at a finer granularity than
a turn at talk and to extract the book summary fea-
tures automatically from the original texts. Since
our dataset is already annotated for argument type,
and will be annotated for discussion quality, we
plan to investigate relationships between speci-
ficity, argumentation, and quality.
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Abstract

Native Language Identification (NLI) is
the task of automatically identifying the
native language (L1) of an individual
based on their language production in a
learned language. It is typically framed
as a classification task where the set of
L1s is known a priori. Two previous
shared tasks on NLI have been organized
where the aim was to identify the L1 of
learners of English based on essays (2013)
and spoken responses (2016) they pro-
vided during a standardized assessment of
academic English proficiency. The 2017
shared task combines the inputs from the
two prior tasks for the first time. There are
three tracks: NLI on the essay only, NLI
on the spoken response only (based on a
transcription of the response and i-vector
acoustic features), and NLI using both re-
sponses. We believe this makes for a more
interesting shared task while building on
the methods and results from the previous
two shared tasks. In this paper, we report
the results of the shared task. A total of
19 teams competed across the three dif-
ferent sub-tasks. The fusion track showed
that combining the written and spoken
responses provides a large boost in pre-
diction accuracy. Multiple classifier sys-
tems (e.g. ensembles and meta-classifiers)
were the most effective in all tasks, with
most based on traditional classifiers (e.g.
SVMs) with lexical/syntactic features.

Visit the website for more info about the task:
https:/sites.google.com/site/nlisharedtask/
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1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language (L.1)
of an individual based on their writing or speech
in another language (L2). NLI works by identify-
ing language use patterns that are common to cer-
tain groups of speakers that share the same native
language. This process is underpinned by the pre-
supposition that an author’s linguistic background
will dispose them towards particular language pro-
duction patterns in their learned languages, as in-
fluenced by their mother tongue.

Predicting the native language of a writer has
applications in different fields. It can be used
for authorship identification (Estival et al., 2007),
forensic analysis (Gibbons, 2003), tracing lin-
guistic influence in potentially multi-author texts
(Malmasi et al., 2017), and naturally to support
Second Language Acquisition research (Malmasi
and Dras, 2014). It can also be used in educational
applications such as developing grammatical er-
ror correction systems which can personalize their
feedback and model performance to the native lan-
guage of the user (Rozovskaya and Roth, 2011).

Most work in NLI focused on predicting the na-
tive language of an ESL (English as a Second Lan-
guage) writer based on a sample essay, although
NLI has also been shown to work on other lan-
guages (Malmasi and Dras, 2015). Work by Kop-
pel et al. (2005), Tsur and Rappoport (2007) Wong
and Dras (2009), and Tetreault et al. (2012) set
the stage for much of the recent research efforts.
However, it was the 2013 Native Language Iden-
tification Shared Task (Tetreault et al., 2013) that
led to an explosion of interest in this area by mak-
ing public a large dataset developed specifically
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for this task called the TOEFL11 (Blanchard et al.,
2013). In that shared task, 29 teams participated,
making it one of the largest NLP competitions that
year alone.

In addition to analyzing the written responses, a
recent trend in NLP research has been the use of
speech transcripts (generated manually or via Au-
tomatic Speech Recognition) and audio features
for dialect identification (Malmasi et al., 2016), a
task that involves identifying specific dialects of
pluricentric languages, such as Spanish or Ara-
bic.! The combination of transcripts and acoustic
features has also provided good results for dialect
identification (Zampieri et al., 2017b), demon-
strating that it is possible to improve performance
by combining this information.

While there has been growing interest in using
such features, the use of speech transcripts for NLI
is not entirely new. In fact, the very first NLI
study by Tomokiyo and Jones (2001) was based
on applying a Naive Bayes classifier to transcrip-
tions of speech from native and non-native speak-
ers, albeit using limited data. However, this strand
of NLI research has not received much attention,
most likely due to the costly and laborious nature
of collecting and transcribing non-native speech.
Following this trend, the 2016 Computational Par-
alinguistics Challenge (Schuller et al., 2016) also
included an NLI task based on the spoken response
using the raw audio.

The NLI Shared Task 2017 attempts to combine
these approaches by including a written response
(essay) and a spoken response (speech transcript
and i-vector acoustic features) for each candidate.
The competition also allows for the fusion of all
features, a novel task that has not been previously
tried. Another motivation for this task was the
rapid growth of deep learning methods for natu-
ral language processing tasks (Manning, 2015). In
prior shared tasks, there were several barriers to
using deep learning for NLP. However, deep learn-
ing has now had a positive impact on many tasks
across NLP and it is an area of investigation on
whether the same successes can be found in NLI.

In the following section, we provide a summary
of the prior work in Native Language Identifica-
tion, for both text and speech based tracks. Next,
in §3, we describe the data used for training, de-

'NLI could also be framed as a dialect identification task
if we assume that each L1 group has their own interlan-
guage/dialect which is influenced by their L1.
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velopment, and testing in this shared task. In §4
we describe the results of each sub-task, with a
short description of each team’s submission. Then
in §5, we discuss the commonalities and trends in
and across the three sub-tasks, and present an en-
semble analysis of all submissions. Finally, in §6,
we offer conclusions and ideas for avenues of re-
search in this growing field.

2 Related Work

NLI is most commonly framed as a supervised
classification task, where features are extracted
from a linguistic response produced by non-native
speakers, and used to train a classification model.
NLI is a recent, but rapidly growing, area of re-
search. While some early research was conducted
in the early 2000s, most work has only appeared
in the last few years.

2.1 Text-based NLI

Most NLI research has focused on English texts
where both lexical and syntactic features (often
based on n-gram frequency profiles) have been
used. Popular lexical features include character,
word and lemma n-grams, while syntactic fea-
tures are based on constituent parse trees, depen-
dency parse features and part-of-speech tags. Sup-
port Vector Machine (SVM) models have been
the most prevalent classification approach. Re-
searchers have mainly focused on experimenting
with different features and methods of combining
them. While a detailed analysis of previous work
is beyond the scope of this report, a comprehen-
sive exposition of NLI research from 2001-2015,
including all of the systems from the first shared
task, can be found in Malmasi (2016, Section 2.3).

The winning entry for the 2013 shared task
was that of Jarvis et al. (2013), achieving 83.6%
in terms of accuracy (the official metric). The
features used in the system include n-grams of
words, parts-of-speech, and lemmas. A log-
entropy weighting schema was used to normalize
the frequencies. An L2-regularized SVM classi-
fier was used to create a single-model system.

A notable trend in NLI has been the success of
multiple classifier systems, such as ensemble clas-
sifiers (Tetreault et al., 2012). In fact, such ap-
proaches have consistently achieved state-of-the-
art performance on the NLI Shared Task 2013
dataset. Bykh and Meurers (2014) applied a tuned
and optimized ensemble, reporting an accuracy of



84.82% on this data. Ionescu et al. (2014) used
string kernels to perform NLI. They create several
string kernels which are then combined through
multiple kernel learning. They report an accuracy
of 85.3% on the 2013 Test set, 1.7% higher than
the winning shared task system. More recently,
Malmasi and Dras (2017) presented a thorough ex-
amination of meta-classification models for NLI,
achieving state-of-the-art results on three datasets
from different languages, including an accuracy
of 87.1% on the 2013 data.

2.2 Speech-based NLI

The task of speech-based NLI is closely related
to the tasks of language identification and dialect
identification, for which substantially more re-
search has been conducted. For those tasks, the
two main types of approach are based on acous-
tic features (Dehak et al., 2011) and phonotac-
tic features (Zissman, 1996). For further details
we refer the reader to Rao and Nandi (2015) and
Etman and Beex (2015) which provide compre-
hensive overviews of the different approaches that
have been taken for speech-based language and di-
alect identification.

The 2016 Computational Paralinguistic Chal-
lenge on NLI was designed to explore the related
task of speech-based NLI in more detail. The
data set for that task contained 64 hours of speech
from 5,132 non-native speakers of English (ap-
proximately 45 seconds per speaker) representing
the same 11 L1 backgrounds as the 2013 NLI
Shared Task corpus. Each language was repre-
sented by recordings ranging from 458 to 485 dif-
ferent speakers representing a range of English
speaking proficiencies. The best performing sys-
tem in the challenge was that of Abad et al. (2011):
their system used i-vector features that were based
on Phone Log-Likelihood Ratios and achieved a
performance of 81.3% (in terms of Unweighted
Average Recall, which was the evaluation metric
for the challenge) on the test set.

3 Task Description and Data

There were three tracks in the NLI Shared Task
2017: essay-only, speech-only, and fusion. The
corpus consists of both written essays and ortho-
graphic transcriptions of spoken responses. These
were provided by test takers in the context of a
standardized assessment of a non-native speaker’s
ability to use and understand English for academic
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purposes at the university level, TOEFL® iBT.
There were 11,000 test takers included in the train-
ing data (1,000 per L1) and 1,100 each for devel-
opment and test (100 per L1). The 11 L1 back-
grounds included in the NLI Shared Task 2017
were identical to the 2013 and 2016 shared tasks:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.
These L1s and their language families are shown
in Figure 1.

The test takers’ essays and spoken responses
were elicited by test questions (hereafter referred
to as prompts) asking about an opinion (e.g.,
which of two choices the test taker would pre-
fer) or a personal experience. A total of 8 essay
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition; a total of 9 different speaking
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition. Prompt IDs for both the es-
says and the spoken responses were provided with
the corpus. We tried to ensure the the data was as
balanced as possible by prompt (in addition to by
L1), though we did not always have enough data
for all L1s for some prompts.

In the essay-only track, the task was to predict
the L1 of a candidate based only on an essay writ-
ten in English. The essay training data consisted
of the training plus development data used in the
NLI Shared Task 2013, while the development es-
say data consisted of the test data from the 2013
task. The test data for this track was new, previ-
ously unreleased data. The average length of the
essays across all three partitions was 316.2 words
(SD: 77.6, Min.: 2, Max.: 796).

In the speech-only track, the task was to pre-
dict the L1 of a candidate based only on a 45-
second-long spoken response in English. The
main source of data was a manually-created or-
thographic transcription of the spoken response.
The average length of the speech transcriptions
across all three partitions was 89.5 words (SD:
25.7, Min.: 0, Max.: 202). Unfortunately, it was
not possible to distribute the raw audio for the re-
sponses. To provide a more realistic sense of the
performance of a speech-based NLI system, a fea-
ture file of i-vectors was provided to participants
who requested it. An i-vector is a fixed-length,
low-dimensional representation of the sequence of
frame-level acoustic measurements extracted from
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Figure 1: Language families in the task. The languages were selected to represent different families, but
to also have several from within the same families. Diagram reproduced from Blanchard et al. (2013).

the speech signal (Dehak et al., 2011; Martinez
etal.,2011). The dimensions of the i-vectors (800)
and number of Gaussian components (1024) were
tuned on the development set by using the Kaldi
toolkit.> In order to be able to distinguish the ef-
fects of new features or approaches, participants
were encouraged to clearly describe the relative
contribution of their features on the task both with
and without the i-vector features.

In the fusion track, the task was to predict the
L1 of a candidate using the combination of their
written essay and spoken response.

The training and development data were re-
leased in two phases. The first phase consisted
of only the essays, while the second phase con-
sisted of the spoken transcriptions and optionally
i-vectors. Simple baseline scripts that used uni-
gram features and an SVM learner were also pro-
vided for each track.

There were both open and closed competitions
for each track. In the closed competition, only the
data provided could be used for training (though
features based on external data sources such as
language models or parsers could be included). In
the open competition, additional NLI training data
could be used to help improve predictions. There
were no submissions to the open competition.

The test period for each track lasted 3 days, and
teams could submit up to 12 systems per track.
The essay-only and speech-only test phases ran
concurrently. The IDs for the essay data and tran-
scription data were generated by separate random
processes for this test period. For the fusion test
period, an updated package providing linked IDs
between the essay and spoken transcription data
was released.

2http://kaldi-asr.org
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3.1 Evaluation and Ranking

The majority of NLI research to date has reported
results using accuracy as the main metric. For
this task, however, we decided to use the macro-
averaged Fl-score as the official evaluation met-
ric. The macro-averaged F1-score is calculated by
first computing the F1-score for each class, and
then taking the average across all classes (Yang
and Liu, 1999). This metric favors more consis-
tent performance across classes rather than simply
measuring global performance across all samples.
Accuracy was still reported for completeness.

We also used statistical significance testing for
ranking purposes. McNemar’s test® (with an alpha
value of 0.05) was applied to the ordered results
to identify groups of teams where the highest and
lowest results were not significantly different, and
they were therefore assigned the same rank.

For comparison, we compare to two types of
baselines: a random baseline and one that use a
linear SVM classifier. There were three random
baselines, one for each task, and five simple SVM
baselines in total across the three tasks. For the
essay-only task there was one baseline based on
raw unigram frequencies from the essay texts. For
the speech-only task there were two baselines: one
an SVM based on raw unigram frequencies from
the orthographic transcriptions alone, and a sec-
ond SVM that combined the unigram features with
the i-vectors using horizontal concatenation. For
the fusion task there were two baselines: one, an
SVM combining the unigrams from the essays and
the transcriptions, and a second SVM combining
the unigrams from the essays and the transcrip-
tions with the i-vectors.

3For more details see §7.3 of Malmasi and Dras (2017)



4 Results

A total of 19 teams participated in the task, 17
of which submitted system description papers.
Participation across the three tracks varied, with
17 participants in the essay-only track, 9 in the
speech-only track, and 10 in the fusion track. The
results for each track are described in the follow-
ing sections. For every track we briefly outline
each team’s best system. Interested readers can
refer to the team’s paper for more details.

4.1 Essay-only Track

The best essay-only submission for each team,
along with rankings and other details, are listed
in Table 4.1. Each team’s best system is briefly
described below, ordered by rankings.

ItaliaNLP Lab (Cimino and Dell’Orletta, 2017)
utilize a novel classifier stacking approach based
on a sentence-level classifier whose predictions
are used by a second document-level classifier.
The sentence classifier is based on a Logistic Re-
gression model trained on standard lexical, stylis-
tic, and syntactic NLI features. The document-
classifier is an SVM, trained using the same fea-
tures, as well as the sentence prediction labels.
Their experiments indicate that inclusion of the
sentence prediction features provides a small in-
crease in performance.

CIC-FBK (Markov et al., 2017) build an SVM
with multiple lexical and syntactic features. They
introduce two new feature types — typed charac-
ter n-grams and syntactic n-grams — and combine
them with word, lemma, and POS n-grams, func-
tion words, and spelling error character n-grams.
Features are weighted using log-entropy.

Groningen (Kulmizev et al., 2017) achieve their
best results using a very simple system based on
character 1-9 grams. Features are counted in a bi-
nary fashion and normalized via tf-idf. They also
conducted experiments omitting data from some
prompts during training and observe that perfor-
mance can drop considerably, depending on which
prompt is left out.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). Their
best run for this track was a voting ensemble with
10 SVM models.
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tubasfs (Rama and Coltekin, 2017) used a sin-
gle SVM classifier trained on word bigrams and
character 7-grams. They tried a variety of n-gram
combinations and found this to work best on the
development data.

UnibucKernel (Ionescu and Popescu, 2017) use
different types of character-level string kernels
which are combined with multiple kernel learning.

WLZ (Li and Zou, 2017) build an ensemble of
single-feature SVMs fed into a multi-layer percep-
tron (MLP), which is a meta-classifier trained on
the outputs of the base SVM classifiers. The sin-
gle features are based on lexical and syntactic in-
formation and the best submission includes char-
acter, word, stem, and function word n-grams as
well as syntactic dependencies.

Uvic-NLP (Chan et al., 2017) trained a single
SVM model on word n-grams (1-3) and character
n-grams (4-5). They also conducted several post-
evaluation experiments, improving their results to
0.8730 using an LDA meta-classifier trained on in-
dividual SVM classifiers.

ETRI-SLP (Oh et al., 2017) designed a system
that was based on word n-gram features (with n
ranging from 1 to 3) and character n-gram fea-
tures (with n ranging from 4 to 6). The normalized
count vectors based on these features were used to
extract LSA features, which were then reduced us-
ing LDA. The count and LSA-LDA features were
used to train SVM and DNN classifiers whose out-
puts were subsequently combined via late fusion
in a DNN-based ensemble classifier.

CEMI (Ircing et al., 2017) use a Logistic Re-
gression meta-classifier to achieve their best
essay-only results. The meta-classifier is trained
on the outputs of several base classifiers, which are
trained on TF-IDF weighted word unigrams, word
bigrams, character n-grams and POS n-grams.

RUG-SU (Bjerva et al., 2017) primarily focus
on applying neural network models to NLI. Sev-
eral systems are trained: A deep residual network
based on word unigrams and character n-grams; a
sentence-level LSTM based on POS-tagged sen-
tences; a Logistic Regression model based on
spelling error features; and a CBOW model based
on document embeddings. Their best result is
achieved by an ensemble combining these systems
together with an SVM meta-classifier. Spelling er-
ror features did not improve overall performance.



Rank Team F1 Acc. Approach
1 ItaliaNLP Lab 0.8818 0.8818 Stacked classifier w/ lexical and syntactic features
1 CIC-FBK 0.8808 0.8809 SVM with log-entropy weighted n-gram and syntactic features
1 Groningen 0.8756 0.8755 Linear SVM with character n-grams (1-9)
1 NRC 0.8740 0.8736 Voting ensemble w/ SVM models using lexical/syntactic features
1 tubasfs 0.8716 0.8718 SVM trained on word bigrams and char 7-grams
1 UnibucKernel 0.8695 0.8691 Character-level string kernels combined w/ multiple kernel learning
1 WLZ 0.8654 0.8655 MLP meta-classifier trained on SVMs w/ lexical/syntactic features
2 Uvic-NLP 0.8633 0.8636 SVM trained on word and character n-grams
2 ETRI-SLP 0.8601 0.8600 Ensemble of SVMs & DNNs using LSA-LDA features
2 CEMI 0.8536 0.8536 LogReg meta-classifier trained on word/char/POS base models
3 RUG-SU 0.8323 0.8318 Ensemble of resnets, LSTM and document embeddings
3 NLI-ISU 0.8264 0.8264 Logistic Regression model with word n-grams (1-3)
3 IUCL 0.8262 0.8264 Phonetic features combined in an SVM
3 GadjahMada  0.8107 0.8110 Char embeddings w/ a feed-forward NN classifier
4 superliuxz 0.7896 0.7900 No paper submitted.
4 1tl 0.7676 0.7673 No paper submitted.
5 ut.dsp 0.7609 0.7636 n-gram language models over characters (3-4) and words (1-2)
Word Unigram Baseline ~ 0.7104 0.7109 Linear SVM trained on word unigrams
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 1: Official results in the essay-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

NLI-ISU (Vajjala and Banerjee, 2017) explored
the use of n-grams and embeddings in their sub-
missions. Their best run was a Logistic Regres-
sion model trained on word 1-3 grams. They also
report that spell checking features, as well as word
and document embeddings did not work well on
the development data.

IUCL (Smiley and Kiibler, 2017) investigated
the use of phonetic features for the essay classi-
fication task based on the hypothesis that speak-
ers from different L1 backgrounds may tend to
use English words that match sounds in their own
L1 more frequently than speakers from other L1
backgrounds. They explored three sets of phonetic
features based on algorithms for fuzzy text match-
ing (Soundex, Double Metaphone, and NYSIIS)
as well as a set of features based on representa-
tions of the words using the CMU Pronouncing
Dictionary. While none of these feature sets indi-
vidually outperformed a system based on charac-
ter n-grams, the addition of the Double Metaphone
features to the character n-gram features led to a
small performance improvement.
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GadjahMada (Sari et al., 2017) apply a charac-
ter embedding model with a feed-forward neural
network classifier in the essay track. This is based
on the relatively high performance of character n-
grams in previous research. An embedding size of
25 was used with n-grams of length 2-5.

ut.dsp (Mohammadi et al., 2017) utilize n-gram
language models over words and characters. For
each L1, a language model over character 3- and
4-grams as well as word unigrams and bigrams is
calculated and smoothing is applied. For each text
in the test set, the probably of the whole text for
all language models in each class is calculated and
the class with the maximum probability is chosen
as the predicted label. This approach does not in-
volve any supervised learning.

4.2 Speech-only Track

The best speech-only submission for each team,
along with rankings and other details, are listed
in Table 4.2. Each team’s best system is briefly
described below, ordered by rankings.



Rank Team F1 Acc. Approach
1 UnibucKernel 0.8755 0.8755 Character-level string kernels and i-vector features
1 ETRI-SLP 0.8664 0.8664 DNN ensemble with early fusion using LSA-LDA features
1 CEMI 0.8607 0.8609 Ensemble of transcript & i-vector features w/ softmax fusion
2 NRC 0.8448 0.8445 Single models trained on transcript char 6-grams and i-vectors
2 tubasfs 0.8333 0.8336 LDA classifier using only i-vector features
Baseline: transcript +i-vector 0.7980 0.7982 Linear SVM trained on word unigrams (transcripts) + i-vectors
Baseline: transcript only 0.5435 0.5464 Linear SVM trained on word unigrams (transcripts)
3 GadjahMada 0.5084 0.5073 FFNN classifier trained on character embeddings (transcripts)
4 ut.dsp 0.4530 0.4536 n-gram language models over transcript characters & words
4 NLI-ISU 0.4259 0.4282 Logistic Regression model w/ word n-grams (1-3) on transcripts
5 1tl 0.3714 0.3718 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 2: Official results in the speech-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their essay-only system based on character-
level string kernels to include the transcription
data, as well as an additional kernel for the i-vector
features. The various models are combined using
multiple kernel learning.

ETRI-SLP (Oh et al., 2017) submitted a sys-
tem for the Speech task that was similar to their
submission for the Essay task, although the SVM
classifiers and one of the DNN classifiers were
not used in the ensemble classifier. They exper-
imented with both late fusion and early fusion
for combining the text-based features with the i-
vectors and obtained the best results with an early-
fusion ensemble classifier.

CEMI (Ircing et al., 2017) attained their best re-
sult with an ensemble consisting of a SGD classi-
fier trained on transcript word features and a feed-
forward neural network trained on the i-vector fea-
tures. The final prediction is selected via softmax
combination.

NRC (Goutte and Léger, 2017) use a single
classifier trained on transcript character 6-grams
and the i-vector features to achieve their best
speech-only results.

tubasfs (Rama and Coltekin, 2017) used an
LDA classifier using only the i-vector features, a
simple approach that yielded good results.
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GadjahMada (Sari et al., 2017) did not use the i-
vector features for the speech track, applying their
character embedding model from the essay track
to the transcripts.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the transcripts.

NLI-ISU (Vajjala and Banerjee, 2017) did not
use the i-vector features for the speech track, in-
stead applying their n-gram based model from the
essay track. They report that the essay features do
not work very well for transcripts, hypothesizing
that this may be due to the shorter texts.

4.3 Fusion Track

The best fusion submission for each team, along
with rankings and other details, are listed in Ta-
ble 4.3. Each team’s best system is briefly de-
scribed below, ordered by rankings.

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their speech system to also include essays, in
addition to the transcripts and i-vectors. The mod-
els are combined via multiple kernel learning.

CEMI (Ircing et al., 2017) obtain their best re-
sults using a neural network based meta-classifier.
They use several isolated feed-forward neural net-
work models, each trained on one feature type.
Features include word, character, and POS n-
grams (from transcripts/essays) plus i-vectors.
The outputs from the networks are fused using
softmax combination to predict the final label.



Rank Team F1 Acc. Approach
1 UnibucKernel 0.9319 0.9318 Character-level string kernels and i-vector features
1 CEMI 0.9257 0.9255 NN meta-classifier over lexical/syntactic/i-vector features
1 ETRI-SLP 0.9220 0.9218 DNN ensemble with early fusion using LSA-LDA features
1 NRC 0.9193 0.9191 Voting ensemble w/ half sampling to choose the SVM models
2 tubasfs 0.9175 0.9173 Ensemble w/ word/char n-grams (essay/transcript) & i-vectors
3 GadjahMada 0.8414 0.8409 FFNN trained on essay character embeddings and i-vectors
3 L2F 0.8377 0.8391 BPE n-grams, NN fusion, i-vector post-processing
3 ZCD 0.8358 0.8355 Ensemble of word/char. n-gram and i-vector SVM classifiers
Baseline: essay/transcript/i-vector 0.7901 0.7909 SVM trained on word unigrams (essay/transcript) + i-vectors
Baseline: Essay + Transcript 0.7786 0.7791 Linear SVM trained on word unigrams (essays + transcripts)
4 ut.dsp 0.7748 0.7764 n-gram language models over chars/words (essay-+transcript)
5 1tl 0.7346 0.7345 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 3: Official results in the fusion track. The official metric is the macro-averaged F1-score. Accuracy
(Acc.) is also reported. Team rankings are determined by statistical significance testing (see §3.1).

ETRI-SLP (Oh et al., 2017) submitted a system
for the Fusion task that was similar to their sub-
missions for the Essay and Speech tasks, although
the SVM and DNN classifiers were not used in the
ensemble classifier; their ensemble classifier for
the fusion task only combined the LSA-LDA fea-
tures and the i-vectors. As with the Speech task,
they experimented with both late fusion and early
fusion for combining the text-based features with
the i-vectors and obtained the best results with an
early-fusion ensemble classifier.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). For the
fusion track, their best submission used half sam-
pling which uses one half of the data to estimate
the best number of models to include in the fi-
nal voting ensemble, and the other half to estimate
which models to include.

tubasfs (Rama and Coltekin, 2017) obtain their
best result with an ensemble model based on mean
probability combination. The ensemble includes
individual SVM models trained on word and char-
acter n-grams from essays and transcripts, and an
LDA classifier trained on the i-vector features.

GadjahMada (Sari et al., 2017) extended their
essay-based character embedding model to in-
clude i-vectors for the fusion track. They did not
use the speech transcript data.
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L2F (Kepler et al., 2017) designed a system that
combined three types of text-based classifiers (an
RNN with a bidirectional GRU layer, a Naive
Bayes classifier with byte n-grams, and a Naive
Bayes classifier with n-grams based on representa-
tions of the words using Byte Pair Encoding) with
versions of the i-vector features that were post-
processed using centering and whitening in an at-
tempt to reduce channel variability. These classi-
fiers were combined together in a Neural Network
fusion approach and the authors demonstrated that
the i-vector features were the main driver of per-
formance.

ZCD (Zampieri et al., 2017a) used an approach
based on ensembles of multiple SVM classifiers.
Separate SVM classifiers were trained using char-
acter n-grams (with n ranging from 1 to 10) and
word n-grams (with »n ranging from 1 to 2). In-
dividual classifiers with cross-validation perfor-
mance lower than 0.8 were retained in the ensem-
ble; the classifiers that were retained were based
on character n-grams with n in 6,7,8. These n-
gram-based classifiers were then combined into an
ensemble with a classifier based on the i-vector
features and the majority vote from the ensemble
was taken as the final prediction.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the combination of essays and transcripts.



S Discussion and Analysis

In this section we synthesize the overarching find-
ings from this edition of the NLI shared task.

5.1 Primary Trends

Multiple Classifier Systems are very effective.
Almost all of the top ranked teams employed some
type of multiple classifier system, including meta-
classifiers (classifier stacking), ensemble combi-
nation methods (voting and probability based fu-
sion), and multiple kernel learning. Their use has
become much more prevalent compared to the pre-
vious shared task.

Lexical n-grams are the best single feature type.
Surface form features such as word and character
n-grams continue to be the powerhouse feature for
the text classification tasks. Evidence from vari-
ous participants suggests that high-order character
n-grams (as high as n = 10) are extremely useful
for this task. This is likely because when extracted
across word boundaries, these features capture not
only sub-word (e.g. morphological) information,
but also dependencies between words. However,
it should also be noted that the top systems in all
tracks made use of syntactic features which can
give them a slight performance boost. This is not
surprising as it has been shown that lexical and
syntactic features each capture diverse types of in-
formation that are complementary (Malmasi and
Cahill, 2015).

Feature weighting schemes are important.
Similar to past results, many of the top teams ap-
ply a form of feature weighting (such as TF-IDF
or log-entropy) to their data.

Acoustic features are highly informative for
speech-based NLI. Using only text-based fea-
tures over the transcripts did not work well, and
teams that did not utilize the i-vector features per-
formed much worse in the speech-only track. The
top-ranked teams combined the transcripts and i-
vectors.

Speech transcript features did not perform
well. Teams that used only the transcript features
did not fare well in the speech track. This could be
due to the different types of linguistic phenomena
that are present in spontaneous speech, which may
be less informative than those found in the essays.
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Various teams also hypothesize that this may po-
tentially be due to their relatively shorter lengths
compared to the essays (see §3 for stats).

Fusion of writing and speech features provides
the best results. The substantial performance in-
crease between the essay/speech tracks and the fu-
sion track indicates that the acoustic features are
complementary and lead to much more reliable re-
sults.

Traditional classifier models continue to domi-
nate text classification tasks. It has been noted
that traditional supervised learning models out-
perform newer deep learning approaches on high-
dimensional text classification tasks (Malmasi
et al., 2016, §6.2). The results from this NLI task
do not provide any evidence to suggest otherwise;
almost all of the top teams in the essay-only track
used an SVM or similar linear model. Uvic-NLP
(Chan et al., 2017) compared SVMs and neural
network models, finding that SVM models achieve
better results with shorter training times.

Average performance is much higher than
2013. Although much of the training data remains
the same, the submissions were much more com-
petitive than the first NLI shared tasks. This
is likely due to NLI being a much more estab-
lished task, as well as the aforementioned preva-
lence of more sophisticated models such as meta-
classifiers.

A number of open questions remain. For ex-
ample, it is not clear if any one approach is dom-
inant across all tracks as most of the top-ranked
teams in the essay track did not participate in the
other tracks. It is hard to say how well their sys-
tems would have done in the other tracks, but the
trends from the teams who did participate in all
tracks suggest that their approaches could have
done well.

It is also clear that ensemble-based systems at-
tain some of the best results, but while we note
that meta-classifiers were particularly popular, it
is difficult to draw conclusions about the best ap-
proach as most teams used different configurations
(e.g. different base classifiers and meta-classifier
models). A comprehensive and detailed study is
needed to provide an empirical comparison of the
different methods.



2013 2017

Essay Speech Fusion

# Systems 29 17 9 10
Shared Task Best | 0.8359 | 0.8818 0.8755 0.9319
Oracle | 0.9791 | 0.9628 0.9572 0.9809
Accuracy@3 | 0.9555 | 0.9592 0.9508 0.9764
Accuracy@2 | 0.9218 | 0.9501 0.9290 0.9700
Plurality Vote | 0.8425 | 0.8793 0.8508 0.9319

Table 4: Oracle results on the NLI 2013 and 2017 shared task systems. The ensemble includes each
team’s best system in each track. Results are reported as the macro-averaged F1-score.

5.2 Ensemble Analysis

One interesting research question is to measure the
upper-bound on accuracy for this year’s task. This
can be measured by treating each team’s best sub-
mission as an independent system, and combining
the results using ensemble methods such as a plu-
rality vote or an oracle. This type of analysis has
previously been applied to the NLI 2013 task and
shown to be helpful in other work (Malmasi et al.,
2015). Following the approach of Malmasi et al.
(2015), we apply the following combination meth-
ods to the 2017 data.

Plurality Voting: This is the standard combina-
tion strategy that selects the label with the highest
number of votes, regardless of the overall percent-
age of votes it received (Polikar, 2006). This dif-
fers from a majority vote combiner where a label
must obtain over 50% of the votes.

Oracle: An oracle is a type of fusion method that
assigns the correct class label for an instance if
any of the classifiers in the ensemble produces the
correct label for that data point. This method has
previously been used to analyze the limits of ma-
jority vote classifier combination (Kuncheva et al.,
2001). It can help quantify the potential upper
limit of an ensemble’s performance on the given
data and how this performance varies with differ-
ent ensemble configurations and combinations.

Accuracy@N: To account for the possibility that
a classifier may randomly predict the correct la-
bel (with a probability determined by the random
baseline) and thus exaggerate the oracle score, an
Accuracy@N combiner has been proposed (Mal-
masi et al., 2015). This method is inspired by the
“Precision at £~ metric from Information Retrieval
(Manning et al., 2008) which measures precision
at fixed low levels of results (e.g. the top 10 re-
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sults). Here, it is an extension of the Plurality vote
combiner where instead of selecting the label with
the highest votes, the labels are ranked by their
vote counts and a sample is correctly classified if
the true label is in the top N ranked candidates.*
Another way to view it is as a more restricted ver-
sion of the Oracle combiner that is limited to the
top N ranked candidates in order to minimize the
influence of a single classifier having chosen the
correct label by chance. In this study we experi-
ment with NV = 2 and 3. We also note that setting
N =1 is the same as the Plurality voting method.

We applied the above combiners to all three
tracks in the NLI 2017 task. The results are pre-
sented in Table 4. The results for each track are
compared against the best system in the shared
task. The equivalent results from the NLI 2013
shared task are also included for comparison.

We note that the 2017 oracle performance is
similar to that of 2013, despite having fewer sys-
tems. The Accuracy@?2 results are also substan-
tially higher. Another difference in 2017 is that the
voting ensemble did not outperform the single best
system in any track, which was the case in 2013.
Taken together, these trends seem to suggest that
the 2017 entries were more accurate, rather than
the test set being easier to classify (in which case
we would have expected higher oracle results).

Results from the Accuracy@2 combiner show
that a great majority of the texts are close to be-
ing correctly classified: this value is significantly
higher than the plurality combiner and not much
lower than the oracle itself. This shows that the
correct label receives a significant portion of the
votes, and when not the winning label, it is often
the runner-up.

“In case of ties we choose randomly from the labels with
the highest number of votes.
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It is also evident that the results for the fusion
track are much higher, again highlighting the util-
ity of combining multiple modalities for NLI.

In addition to using each team’s best system, We
also experimented with creating ensembles of dif-
ferent sizes. For each track we created N ensem-
bles F; ... En, with N being the number of sys-
tems in that track. Each ensemble E,, contains the
top n systems in the given track, so that the first
ensemble contains only the top system, the second
contains the top two systems, and so on, with the
final ensemble containing every team’s system.

This analysis enables us to assess the ensemble
performance as more predictions are added. The
results for the Oracle and Plurality Vote ensem-
bles in the essay and fusion tracks are shown in
Figure 2 and Figure 3. For comparison we also in-
clude the ensemble combinations generated from
the 2013 test set, as shown in Figure 4.

For both tracks we observe that oracle accuracy
increases as more systems are added, which is to
be expected. For voting combination, performance
increases as the top systems are added, but then
begins to drop off as errors are introduced from
the less accurate systems. This suggests that it
might be possible to develop a system that per-
forms slightly better than the top-ranked system.

On balance, the analysis presented in this sec-
tion suggests that it will be challenging to de-
velop NLI systems that attain statistically signif-
icant gains on this data.

6 Conclusion and Future Work

We presented the results of the NLI Shared Task
2017. This edition of the task introduced the use
of transcriptions and i-vector features for speech-
based NLI, as well the as the fusion task which
jointly uses the spoken and written responses.

The task attracted strong participation with 19
entrants, many of whom developed systems that
built on recent research in the field. The fu-
sion track demonstrated that the combination of
the written and spoken response can provide a
substantial boost in classification accuracy. Mul-
tiple classifier systems (such as ensembles and
meta-classifiers) were the most effective across all
tracks. Mainly using lexical and syntactic features,
models were mostly based on traditional classifi-
cation methods (e.g. SVMs) which were not out-
performed by deep learning approaches. Taken to-
gether, their results have generated a number of



new insights for this task, and serve as a building
block for future work. The results obtained here
will also provide an important benchmark for as-
sessing future results.

There are a number of avenues for future NLI
research. Although we were not able to include
the raw audio data in this task, its inclusion in the
speech and fusion tasks could be an interesting ad-
dition. The expansion of the L1 classes to include
a larger number of linguistically diverse languages
can also be insightful. Most NLI research to date
has been limited to approximately a dozen lan-
guages, so it is not clear how these systems will
fare as the number of classes increases.

The relatively low performance of transcription-
based features also merits further investigation. A
first step would be to assess whether the primary
issue is related to the shorter lengths of the texts.
This hypothesis can be tested by obtaining tran-
scripts of longer spoken responses, or even arti-
ficially creating longer texts by concatenating the
existing data.

Finally, the essay-based NLI results obtained on
English L2 data have been replicated on a range
of other languages (Malmasi and Dras, 2015). It
would be interesting to see to what degree the
speech-based NLI methodologies would work on
other languages. The paucity of spoken responses
from learners of languages other than English
makes this a challenging research question.
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Abstract

This study provides a detailed analysis of
evaluation of English pronoun reference
questions which are created automatically
by machine. Pronoun reference questions
are multiple choice questions that ask test
takers to choose an antecedent of a target
pronoun in a reading passage from four
options. The evaluation was performed
from two perspectives: the perspective of
English teachers and that of English learn-
ers. Item analysis suggests that machine-
generated questions achieve comparable
quality with human-made questions. Cor-
relation analysis revealed a strong cor-
relation between the scores of machine-
generated questions and that of human-
made questions.

1 Introduction

Asking questions has been widely used as a
method to assess the effectiveness of teaching and
learning activities. By asking questions, teach-
ers can get feedback whether students understand
about the teaching materials. In this context, creat-
ing questions becomes an important task in teach-
ing and learning activities. Questions are usu-
ally made by human experts, which demands man-
ual efforts; thus it is time-consuming and expen-
sive. Automatic question generation is a solution
to solve this problem.

Several past studies worked on various kinds
of automatic question generation. Heilman and
Smith (2009) worked on the automatic question
generation for the purpose of reading compre-
hension assessment and practice. Liu and Calvo
(2012) worked on the automatic generation of trig-
ger questions (directive and facilitative) for sup-
porting writing activities. Chali and Hasan (2015)
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worked on the automatic generation of all possi-
ble questions given a topic of interest. Serban
et al. (2016) worked on the automatic generation
of questions about an image.

Research on automatic question generation has
been active, yet there are few studies which elab-
orate the detailed evaluation process and in-depth
analysis of the machine-generated questions. QG-
STEC 2010 is the first shared task about question
generation that comprises two subtasks: question
generation from paragraphs and question genera-
tion from sentences (Rus et al., 2010). Human
judges were utilised to evaluate question quality
by considering five criteria: syntactic correctness
and fluency, question type, relevance, ambiguity,
and variety.

Liu and Calvo (2012) evaluated their trigger
question generation system for academic writing
support by comparing machine-generated trigger
questions to human-made trigger questions based
on five aspects: clarity, correctness, relevance,
usefulness for learning concepts, and usefulness to
improve the literature review documents. Twenty-
three students were instructed to write essays and
then to assess the trigger questions if these ques-
tions could improve their essays. Because the
machine-generated trigger questions were created
based on the collected student essays, their anal-
ysis showed that they were effective only for the
collected student essays while the human-made
trigger questions were effective for general essays
as well as the collected essays.

Zhang and VanLehn (2016) employed students
to rate machine-generated questions and human-
made questions based on relevance, fluency, am-
biguity, pedagogy and depth. Araki et al. (2016)
evaluated their question generation system by
judging the questions on three metrics: grammat-
ical correctness, answer existence and inference
steps.

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 76—85
Copenhagen, Denmark, September 8, 2017. (©2017 Association for Computational Linguistics



On John Black Tuley's land, on Meshach Creek, 6
miles northeast of Tompkinsville, two human
skeletons were found in a small opening, which has
since been known as the Bone Cave. It is a room not
over 10 feet across at any part, in a limestone
conglomerate, and may be of quite recent origin.
Being inconvenient of access, it is not in a position
for residence purposes. The skeletons were probably
those of Indian hunters. They were less than 2 feet
below the surface. The material in which the little
cave is formed will crumble easily in cold weather,
being rather wet from the soil water soaking through

1: reading passage

2: target pronoun

The word “they” in the passage
refers to

(A) skeletons

(B) feet
(C) purposes ]‘
(D) hunters

the hill above it.

Figure 1: Example of pronoun reference question

Susanti et al. (2017) utilised English teachers
and students to evaluate their question generation
system. English teachers were asked to distin-
guish machine-generated questions from human-
made questions apart. The English teachers also
judged the questions on their usability in a real test
and their difficulties using five scale rating. They
also received suggestions to improve the questions
from the English teachers. Furthermore, students
were asked to answer the machine-generated ques-
tions and human-made questions; their answers
were analysed using item analysis and the analysis
based on Neural Test Theory (Shojima, 2007).

To sum up, the evaluation of automatic question
generation systems in the past research was per-
formed by utilising human judges and students.
In this study, we provide detailed evaluation ex-
periments and analysis of automatically generated
pronoun reference questions. Pronoun reference
questions consist of four components, i.e. a read-
ing passage, a target pronoun, a correct answer,
and three distractors as illustrated in Figure 1. We
focus on pronoun reference questions because they
measure the test taker’s ability to resolve pronoun
in reading passages. We argue that resolving pro-
noun is an important skill for reading comprehen-
sion.

The evaluation target of this study is the English
pronoun reference questions generated by our sys-
tem (Satria and Tokunaga, 2017). To the best of
our knowledge, there is no other system for gen-
erating pronoun reference questions. The system
generates questions from human-written texts by
performing a sentence splitting technique on non-
restrictive relative clauses. The details of the ques-
tion generation system are explained in Section 2.
We evaluate the questions from two different per-
spectives following Susanti et al. (2017). The first
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perspective is from English teachers. We argue
that English teachers have the ability to differenti-
ate the good questions from the bad ones because
creating questions is one of the teacher’s respon-
sibilities in the classroom; thus asking English
teachers to judge the quality of machine-generated
questions is reasonable. The second perspective is
from English learners. Good questions can dis-
criminate high proficiency learners from low pro-
ficiency learners. English learners were instructed
to answer the questions and their responses were
used for analysing the characteristics of the ques-
tions.

In what follows, we explain the automatic ques-
tion generation system to be evaluated (Section 2),
followed by the elaboration of the evaluation from
the English teacher perspective (Section 3) and the
English learner perspective (Section 4). We con-
clude the evaluation results and point out the pos-
sible future research direction (Section 5).

2 Generating pronoun reference
questions

Pronoun reference questions such as in Figure 1
ask test takers to identify the antecedent of the
target pronoun in the reading passage; thus the
correct answer can be obtained by employing an
anaphora resolution system to identify the an-
tecedent of the target pronoun. Using this ap-
proach, the performance of the anaphora resolu-
tion system directly affects the quality of the gen-
erated questions. Since the performance of the
state-of-the-arts anaphora resolution system is still
insufficient to be employed for generating pro-
noun reference questions, we proposed to utilise
nonrestrictive relative clauses to obtain pairs of
the correct answer (antecedent) and the target pro-
noun (Satria and Tokunaga, 2017). The core idea



of our method is transforming a sentence with a
nonrestrictive relative clause into two sentences
by applying a sentence splitting technique with re-
placing the relative pronoun with a personal pro-
noun. An assumption behind our method is that
the antecedent identification of relative pronouns
is relatively easier than that of personal pronouns
because the antecedents of the relative pronouns
appear in a restricted region in the sentence.

The system receives human-written texts from
Project Gutenberg' that span several genres (i.e.
science, technology and history) and produces
question components based on the texts. The
question generation process comprises four steps:
correct answer generation, reading passage gen-
eration, target pronoun generation, and distractor
generation.

The nonrestrictive relative clause is vital in our
system because we transform human-written texts
by applying the sentence splitting technique re-
garding nonrestrictive relative clauses to create the
correct answer, the reading passage and the tar-
get pronoun. Nonrestrictive relative clauses are
clauses that do not specify its modifying noun;
they only give additional information to it in-
stead. Thus, they can be detached from their main
clauses. This property allows the sentence split-
ting technique to work most of the cases without
changing the meaning of the texts.

There are cases, however, where the sentence
splitting induces a change of text meaning, mostly
due to the introduced pronoun refers to a differ-
ent antecedent from that referred to by the relative
pronoun in the original sentence. For instance, the
text (2) is derived from the text (1) by extracting
the nonrestrictive relative clause (underlined part)
and replacing the relative pronoun “which” with a
pronoun “it”. The antecedent of “it” in the third
sentence looks to be “legend”, a subject in the pre-
vious sentence. But it should be “knowledge” in
the previous sentence when we look at the original
sentence where “which”, the counterpart of “it” in
(2), obviously refers to “knowledge”. To exclude
such spurious anaphora, we apply the Centering
theory (Brennan et al., 1987; Grosz et al., 1995)
to see the introduced pronoun refers to the same
antecedent as in the original sentence. In this par-
ticular example, the Centering theory tells us that
“legend” in the second sentence of (2) has a higher
status than “knowledge” because the former is a

'https://www.gutenberg.org/
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subject and the latter is an element in the prepo-
sitional phrase. Thus “legend” is a more probable
antecedent of “it”, which contradicts the original
sentence of (1).

(I) The church of S. Croce has seen another
strange death of a Pope, that of Sylvester
II. (999-1003), a Frenchman, Gerbert by
name. A legend, related first by car-
dinal Benno in 1099, describes him as
deep in necromantic knowledge, which he
had gathered during a journey through the
Hispano-Arabic provinces.

The church of S. Croce has seen another
strange death of a Pope, that of Sylvester
II. (999-1003), a Frenchman, Gerbert by
name. A legend, related first by car-
dinal Benno in 1099, describes him as
deep in necromantic knowledge. He had
gathered it during a journey through the
Hispano-Arabic provinces.

2

2.1 Correct answer generation

The identified antecedent of the relative pronoun
is used as a correct answer. To identify the an-
tecedent of the relative pronoun, we employed
both lexical parser and dependency parser. The
lexical parser produces a parse tree of the target
sentence, i.e. a sentence that contains a nonre-
strictive relative clause. The parse tree is traversed
based on hand-made rules (Satria and Tokunaga,
2017) which consider the syntactic attachment and
the linguistic feature, i.e. number. The depen-
dency parser produces a set of dependencies which
include the acl:relc? dependency relation. If only
both results from the lexical parser together with
hand-made rules and the dependency parser agree
on the antecedent of the relative pronoun, the tar-
get sentence is further processed in the next steps.
The system discards the target sentence which
causes discordance on the antecedent of the rel-
ative pronoun.

2.2 Reading passage and target pronoun
generation

We create a reading passage by splitting a sen-
tence at a nonrestrictive relative clause. Sentence
splitting divides the target sentence into two sen-
tences: the main clause and the relative clause.

Zhttp://universaldependencies.org/docs/en/dep/acl-
relcl.html



Table 1: Example of the evaluation table filled by the evaluators

question  quality reading passage target pronoun correct answer distractors ~comments
Q1 2 v v
Q2 1 v
Q60 3

When splitting the target sentence, the connection
between two sentences must be maintained in or-
der to retain the sentence meaning. The connec-
tion of those sentences is maintained through the
target pronoun. The system creates the target pro-
noun by replacing the relative pronoun with a per-
sonal pronoun with considering linguistic features.
Because the target pronoun resides in the reading
passage, splitting target sentence and replacing the
relative pronoun with the target pronoun complete
the reading passage generation. For instance, the
text (4) is derived from (3). The underlined non-
restrictive relative clause in (3) is taken out into a
separate sentence and placed after the main clause
in (4). At the same time, the relative pronoun in
the relative clause is replaced with the personal
pronoun “they”. We further confirm that the intro-
duced pronoun “they” surely refers to the subject
in the previous sentence regarding the Centering
theory.

(3) The flowers, which are individually larger
than those of the False Acacia, are of a
beautiful rosy-pink, and produced in June
and July.

(4) The flowers are of a beautiful rosy-pink,
and produced in June and July. They are
individually larger than those of the False
Acacia.

2.3 Distractor generation

Distractor generation comprises the following
three steps.

Candidate generation Since we restrict the an-
tecedent of the pronoun, i.e. the correct answer,
to a noun or a noun phrase, distractors must also
be nouns or noun phrases. The part-of-speech tag-
ger was employed to extract all nouns and noun
phrases in the passage. The incompatible candi-
dates on linguistic features are eliminated from the
distractor candidates.

Coreference chain extraction A coreference
chain consists of a list of expressions that refer to
the same entity in a text. Thus, expressions in the
same coreference chain with the correct answer
are also a possible correct answer. Therefore, they
are eliminated from the distractor candidates.

Candidate ranking Since we need only three
distractors, the distractor candidates are ranked on
the recency principle. Recently mentioned enti-
ties are likely to be maintained in human mem-
ory because they are still fresh; thus those entities
are likely to be referred to by pronouns. More re-
cently mentioned entities are ranked higher than
the less recently mentioned entities. Finally, the
three highest ranked candidates are selected as the
distractors.

3 Evaluation from English teacher
perspective

3.1 Experimental setting

We asked five English teachers® to evaluate the
quality of 60 machine-generated questions by as-
signing a score of one, two or three to each ques-
tion. The meaning of the scores is described be-
low.

1. problematic, the question is not usable in a
real test. Significant modifications are neces-
sary for real use.

2. acceptable but can be improved, the ques-
tion is usable in a real test as it is, but it can
be further improved.

3. acceptable, the question has no problem to
be used in a real test without any change.

If the question quality is judged to be one
or two, the evaluators must further identify the
problematic question components by checking

3They are non-native English speakers but the TESOL
(http://www.tesol.org) certificate holders.



the corresponding columns as shown in Table 1.
The evaluators leave the problematic components
columns empty for acceptable quality questions.
The evaluators may optionally give comments on
problematic components or suggestions to im-
prove the question quality.

Table 2: Distribution of pairwise disagreement

evaluator\score {1,2} {1,3} {2,3}
(A, B) 7 4 28
(A, C) 2 7 14
(A, D) 4 6 24
(A, E) 2 8 20
(B, C) 1 1 28
(B, D) 1 0 28
(B, E) 3 4 30
(C,D) 1 0 27
(C,E) 4 3 22
(D,E) 1 5 19
total 26 38 240

Table 3: Distribution of rating

evaluator\score 1 2 3 total
A 10 18 32 60

B 1 35 24 60

C 1 20 39 60

D 0 18 42 60

E 6 16 38 60

total 18 107 175 300

3.2 Result and discussion

First, we investigated the agreement between the
evaluators by computing the ordinal Krippen-
dorff’s alpha (Krippendorff, 1970); it was 0.05 in-
dicating very low agreement between the evalua-
tors. We further investigated the reason of the low
agreement. We calculated the pairwise disagree-
ment frequency between every pair of the eval-
uators as shown in Table 2. The table indicates
that the disagreement between the judgement “ac-
ceptable but can be improved” and “acceptable”
({2, 3}) is dominant (80%). This fact suggests the
decision on these two categories is highly subjec-
tive. Since they are both acceptable categories, we
recalculated the Krippendorftf’s alpha after merg-
ing them into a single category to obtain the value
0.06. The average of the pairwise observation
agreement was 0.89 after merging. Table 3 shows
the distribution of scores judged by each evaluator.
As the table shows, the highly skewed distribution
of judgment can be considered as the main reason
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of a very low alpha despite the fairly high obser-
vation agreement.

Table 4: Majority quality scores of 60 questions

majority score  frequency
1 0
2 12
3 39
tie 9
total 60

Table 4 shows the distribution of the quality
score calculated by the majority principle. The
majority principle means that when at least three
evaluators rate a same value, that particular value
is defined as the question quality score. Table 5 in-
dicates that there are 39 questions (65%) which the
majority of the evaluators rated “acceptable (3)”.
All nine tie cases get at most two “problematic”
rating, i.e. the “problematic” can not be the ma-
jority. This means all generated questions were
judged “usable in a real test” based on the major-
ity principle.

Table 5: Average quality scores of 60 questions

average score  frequency
1.6 1
1.8 1
2.0 4
2.2 8
2.4 7
2.6 22
2.8 13
3.0 4
total 60

Table 5 summarises the average quality scores
of five evaluators with their frequency. Even
though the majority quality is the same, the actual
rating may be different; thus it yields a different
average quality. The question with the score 1.6
gets two ones and three twos. All evaluators agree
that this particular question has an error in the cor-
rect answer. The question with the score 1.8 gets
two ones, two twos and one three. Four evaluators
agree that this particular question has an error in
the correct answer.

Table 6 summarises the comments from the five
evaluators with their frequency. The most com-
mon comments are related to the correct answer.
This tendency is consistent with the component-
wise evaluation of our past research (Satria and



Table 6: Evaluator’s comments with frequency

comments frequency
other option could be the correct answer 71
the reading passage is too long 28
the distractors do not distract 18
the distractors are too distracting 11
the reading passage offers little context 6

there are multiple correct answers 5

the reading passage has many technical word 4
(i.e. too difficult)

the correct answer is too obvious 1

the target pronoun is inadequate 1

Tokunaga, 2017). We counted the number of ques-
tions with a checked cell in the “correct answer”
column of the evaluation table (Table 1) to find
80 such cells in total. This number is roughly
the same as that of the comments on correct an-
swers. Among these 80 questions, 12 questions
were rated 1 (problematic) and 68 were rated 2
(acceptable but can be improved). These cases
suggest that the filtering with the Centering theory
should be further improved.

4 Evaluation based on English learner
perspective

The evaluation from the English learner perspec-
tive was conducted to evaluate the behaviour of
machine-generated questions in measuring test
taker’s proficiency.

4.1 Experimental setting

We prepared three sets of questions each of
which contains ten machine-generated questions
(MGQs) and ten human-made questions (HMQs),
in total 20 questions. These 30 HMQs were ran-
domly selected from TOEFL preparation books
while these 30 MGQs were randomly selected
from the set of MGQs which were judged accept-
able on the majority principle in the evaluation by
the English teachers as described in Section 3. The
question sets were created so that the difference of
the average of question difficulty across the ques-
tion sets was minimised. The balance of ques-
tion difficulty among three groups, and between
MGQs and HMQs is important because we cal-
culate the student-wise score correlation between
scores from MGQs and HMQs as explained later
in4.2.

To balance question difficulty among the ques-
tion sets, we utilised the reading passage diffi-
culty. A question is considered difficult if its read-
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Dr.; M. Aurelg Steing, principals of; the; Orientaly
College; at; Lahoreg, has; now; ready; for; publications
the; first; volumes of; his; criticals editions of; the;
Rajataranginig, or; Chronicless of; the; Kings; of;
Kashmirg, upon; which; he; has; been; engageds for;
some; years;. This; work; is; of; special; interest;
as; being; almost; the; soles example; of; historicals
literatures in; Sanskritg. It; was; writtens by the; poeta
Kalhanag in; the; middle; of; the; twelfth; century;.

Figure 2: Example of reading passage with word
difficulty level (subscripts correspond to the level)

Table 7: Mean of reading passage difficulty

metric question set MGQ HMQ
average Qsl 2.15 2.14
JACETS8000 Qs2 2.13 2.13
Qs3 2.12 2.12
Flesch-Kincaid Qsl 9.9 11.2
grade level Qs2 10.0 9.8
Qs3 9.6 10.7
Flesch-Kincaid Qsl 60.3 46.1
reading ease Qs2 59.9 58.9
Qs3 65.2 50.5
Dale-Chall Qsl 9.0 9.9
readability formula  Qs2 9.0 9.1
Qs3 8.9 9.7

ing passage is difficult and vice versa. The read-
ing passage difficulty is calculated based on the
word difficulty in the passages. We employed
JACETS8000 (Uemura and Ishikawa, 2004), a list
of 8,000 English words divided into eight levels
of word difficulty based on their word frequency.
Level 1 is the most frequent (i.e. the easiest) while
level 8 is least frequent (i.e. the most difficult).
Words that do not appear in the list are considered
even less frequent than level 8; thus they are con-
sidered to be level 9. To obtain the reading passage
difficulty, we assigned a JACET8000 word diffi-
culty level to every word in the reading passage as
illustrated in Figure 2 and calculated the average
of the difficulty levels. The average of reading pas-
sage difficulty for each question set is presented in
Table 7.

Many metrics to measure text readability have
been proposed in the past, such as Flesch-Kincaid
grade level (Kincaid et al., 1975), Flesch-Kincaid
reading ease (Kincaid et al., 1975) and Dale-Chall
readability formula (Dale and Chall, 1948). The
first two calculate text difficulty with respect to
the number of sentences, words and syllables in
the text. The third one takes into account the dif-
ficulty of each word as well. Table 7 also shows



Table 8: TOEIC score of each group

student question TOEIC score number of
group set mean  SD students
1 Qsl 561 146 31
2 Qs2 559 123 25
3 Qs3 554 122 25

the mean values of these metrics for each question
set and generation mode, i.e. machine-generated
vs. human-made. Overall, the difficulty of read-
ing passages in every question set is well balanced
against every metric.

Eighty-one Japanese university students (57
first year and 24 second year students) were re-
cruited and divided into three groups, 27 students
for each group, considering their TOEIC scores;
we did our best to minimise the difference of
the score distribution and the mean of the scores
across these three groups. Each student group was
assigned a different question set and instructed to
finish the assigned question set within 30 minutes.

4.2 Result and discussion

Although we made three groups of the same num-
ber of students (27) and assigned a different ques-
tion set to each group, four students mistakenly
worked on a wrong question set. Therefore the
distribution of the number of students in a group
was skewed as shown in Table 8. Table 8 also
shows the average TOEIC score of each group
with a standard deviation (SD).

Table 9: Item difficulty of MGQs and HMQs

MGQ HMQ
mean 0.59 0.60
standard deviation  0.24 0.17
minimum 0.20 0.26
maximum 0.96 0.90

The item analysis investigates the test taker’s re-
sponses to individual question items to evaluate
the quality of those items. It often uses two mea-
sures: the item difficulty and the item discrimina-
tion index. The item difficulty is a proportion of
the number of test takers who answered correctly
to the number of all test takers (Brown, 2013). The
value ranges from 0 to 1 with a larger value repre-
senting an easier item. Table 9 shows the descrip-
tive statistics of the item difficulty of the sets of 30
MGQs and 30 HMQs.
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Figure 3: Distribution of item difficulty

Table 9 shows no big difference in mean of the
item difficulty between MGQs and HMQs. This
result suggests that MGQs have similar difficulty
with HMQs. This is consistent with the fact we
maintained the balance of question difficulty be-
tween MGQs and HMQs as explained in Sub-
section 4.1. We also provide the distribution of
the item difficulty of the MGQs and HMQs in
Figure 3. Although the mean is similar between
the MGQs and HMQs as shown in Table 9, Fig-
ure 3 reveals that the distribution of the item diffi-
culty for HMQs is closer to the normal distribution
than that for MGQs. We conducted the Levene’s
test (Levene et al., 1960) to assess the item dif-
ficulty variance homogeneity between MGQs and
HMQ)s to find that their variances are not homoge-
neous. As we do not care about controlling item
difficulty when generating question items, this is a
natural consequence.

Mexico, 1818. This species, though not hardy enough for
every situation, is yet sufficiently so to stand unharmed as
a wall plant. It grows from 10 feet to 12 feet high, with
deep-green leaves that are hoary on the under sides. The
flowers are bright blue, and produced in June and the fol-
lowing months. They are borne in large, axillary panicles.
In a light, dry soil and sunny position this shrub does well
as a wall plant, for which purpose it is one of the most or-
namental. There are several good nursery forms, of which
the following are amongst the best: C. azureus Albert Pet-
titt, C. azureus albidus, C. azureus Arnddii, one of the best,
C. azureus Gloire de Versailles, and C. azureus Marie Si-
mon.

(A) leaves

(B) sides

(C) flowers «— correct answer

(D) months

Figure 4: The easiest question

Figure 4 shows the easiest question item while



There are two recesses in the cliff on the opposite side of
the little creek formed by the spring. They are 40 to 50
feet above the water, each with an irregular floor of 20 by
30 feet under shelter of the rock. No solid rock is visible
in front of them, but a projecting ledge appears on either
side about 6 feet below the present average level of the
floor; and this is probably the depth of accumulation at the
front. It seems continuous. It may be less toward the rear.
The cavities are in a stratum which is somewhat shelly and
crumbles easily.

(A) ledge < correct answer

(B) depth

(C) accumulation

(D) front

Figure 5: The most difficult question

8
6 E MGQ
2 e W HMQ
5
2 4 A -
jon)
QG.;_‘: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ...l ... B |
Tl |
0_I 1
DD N D D N A A D O
Q'\\fQ Q'\ Q(}’ an QP‘ Qb Q'b Q/'\ Qo'o Qg
VOO DAV NE N
TNV QOO

discrimination index

Figure 6: Distribution of item discrimination in-
dex

Figure 5 shows the most difficult one in the MGQs
in which the target pronoun is in bold and the op-
tions are underlined in the reading passage for the
readability purpose. Twenty-four out of 25 stu-
dents answered correctly for the easiest one. This
question item is easy because the subject pronoun
refers to the subject of the previous sentence. Only
five out of 25 students answered correctly for the
most difficult question item. Both extremes are not
preferable in measuring test taker’s proficiency be-
cause too easy items lead to very high scores while
too difficult items lead to very low scores for the
most of test takers.

We calculated the Pearson correlation coeffi-
cient between the JACET8000 based reading pas-
sage difficulty as we defined in Table 7 and the
item difficulty of the MGQs and obtained the value
of 0.56. This result suggests that the reading pas-
sage difficulty can be one of the important factors
for predicting and controlling the item difficulty of
question items.

The item discrimination index is a metric to
measure the discrimination power of question
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items (Brown, 2013). The discrimination power
is the ability of question items in discriminating
high-proficiency test takers from low-proficiency
test takers. This metric is vital for language test-
ing because a good test must be able to discrim-
inate test taker’s proficiency precisely. The item
discrimination index of a question item i is com-
puted as follows
U, — L;

ID; = ——=¢,
n

where U; and L; represent the number of test tak-
ers who correctly answered the question item i in
the high proficiency group and the low proficiency
group respectively, and n denotes the number of
test takers in a group. The groups of high and
low proficiency are defined as the top 27% of the
test takers and bottom 27% of the test takers re-
spectively. The threshold value of 27% is utilised
to maximise two characteristics; those two groups
must be as different as possible to discriminate
clearly, and the number of test takers in each group
must be as large as possible to achieve reliabil-
ity (Popham, 1981; Kelley, 1939).

We computed the item discrimination index for
each question item and the average of them. The
average is 0.33 for the MGQs and 0.37 for the
HMQs. A question item is considered to be ac-
ceptable if its discrimination index is greater than
or equal to 0.2 (Brown, 1983). According to this
criteria, we counted the number of question items
of which the discrimination index is greater than
or equal to 0.2. Out of 30 question items, the
22 MGQs and 24 HMQs items cleared this con-
dition. Figure 6 shows the distribution of the dis-
crimination index. There seems to be no big dif-
ference between the MGQs and HMQs in terms of

The region may be roughly characterized as a vast sandy
plain, arid in the extreme; or rather as two such plains,
separated by a chain of mountains running northwest and
southeast. In the southern part of the reservation this
mountain range is known as the Choiskai mountains, and
here the top is flat and mesa-like in character, dotted with
little lakes and covered with giant pines. They in the sum-
mer give it a park-like aspect. The general elevation of
this plateau is a little less than 9,000 feet above the sea
and about 3,000 feet above the valleys or plains east and
west of it.

(A) plains

(B) mountains

(C) lakes

(D) pines «— correct answer

Figure 7: MGQ example with a poor discrimina-
tion index (I D = 0.125)



the average discrimination index (0.33 vs. 0.37)
and the number of items clearing the 0.2 crite-
rion (22 vs. 24). Their distribution reveals that
the HMQs shows a slightly better distribution than
the MGQs. However, the MGQs have comparable
discrimination power as the HMQs.

Figure 7 shows an example of MGQ which has
a poor discrimination index, i.e. ID = 0.125.
Three test takers in the high proficiency group and
two test takers in the low proficiency group an-
swered correctly. The distractor “mountains” dis-
tracted test takers in the high proficiency group
very much; thus the number of correctly answered
test takers was almost the same between the two
groups. The potential reason is that “mountains”
appears twice in the text, so it lured the test takers
to choose “mountains”.

To assess the ability of the MGQs in measuring
test taker’s proficiency, we calculated the correla-
tion between the test taker’s score of the MGQs
and other scores including that of the HMQs and
TOEIC scores. We argue that the test taker’s
TOEIC scores provide their true English profi-
ciency. The Pearson correlation coefficient (Pear-
son, 1896) was calculated, presented in Table 10.
The p-value of all the correlation coefficients is
less than 0.05.

Table 10 shows that there is no big difference
between the MGQs and HMQs in terms of the cor-
relation between the test taker’s scores and their
TOEIC scores. Furthermore, the correlation with
the TOEIC Reading scores is stronger than that
with the TOEIC Listening scores. This is a rea-
sonable tendency because the pronoun reference
questions are designed for assessing reading com-
prehension ability.

5 Conclusion

This paper presented the evaluation of auto-
matically generated pronoun reference questions
which ask test takers the antecedent of the spec-
ified pronoun in the reading passage. A pronoun
reference question was automatically generated by
splitting a sentence in a human-written text at a
nonrestrictive relative clause and replacing the rel-
ative pronoun with a personal pronoun.

The evaluation was performed from two differ-
ent perspectives: the English teacher perspective
and the English learner perspective. Automati-
cally generated 60 question items were evaluated
by five English teachers, resulting in that 39 out

Table 10: Peason correlation coefficients between
test taker’s scores

MGQ HMQ
TOEIC Listening 0.56 0.57
TOEIC Reading 0.65 0.68
TOEIC Listening & Reading  0.74 0.77
HMQ 0.61 —

of 60 (65%) question items were considered ac-
ceptable to be used in a real test. We administered
30 MGQs from these acceptable question items to-
gether with 30 HMQs from TOEFL preparation
books to the 81 university students. The analy-
sis results of the test taker’s responses showed that
the MGQs achieved comparable quality with the
HMQs on their item difficulty and item discrimi-
nation index. Furthermore, there was a strong cor-
relation between the MGQ scores and the TOEIC
scores of the same test takers.

Possible future work includes controlling item
difficulty of the generated questions and generat-
ing other types of questions. For instance, our ex-
perimental result suggested that the item difficulty
of the generated questions had a moderate corre-
lation with the reading passage difficulty. Thus,
controlling the passage difficulty might enable us
to control the difficulty of the question items. We
also need to further explore other factors affecting
the item difficulty.
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Predicting Audience’s Laughter During Presentations Using
Convolutional Neural Network
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Abstract

Public speakings play important roles in
schools and work places and properly us-
ing humor contributes to effective pre-
sentations. For the purpose of automat-
ically evaluating speakers’ humor usage,
we build a presentation corpus containing
humorous utterances based on TED talks.
Compared to previous data resources sup-
porting humor recognition research, ours
has several advantages, including (a) both
positive and negative instances coming
from a homogeneous data set, (b) con-
taining a large number of speakers, and
(c) being open. Focusing on using lexical
cues for humor recognition, we systemati-
cally compare a newly emerging text clas-
sification method based on Convolutional
Neural Networks (CNNs) with a well-
established conventional method using lin-
guistic knowledge. The advantages of the
CNN method are both getting higher de-
tection accuracies and being able to learn
essential features automatically.

1 Introduction

The ability to make effective presentations has
been found to be linked with success at school and
in the workplace (Hill and Storey, 2003; Stevens,
2005). Humor plays an important role in success-
ful public speaking, e.g., helping to reduce pub-
lic speaking anxiety often regarded as the most
prevalent type of social phobia, generating shared
amusement to boost persuasive power, and serv-
ing as a means to attract attention and reduce ten-
sion (Xu, 2016).

Automatically simulating an audience’s reac-
tions to humor will not only be useful for presenta-
tion training, but also improve conversational sys-
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tems by giving machines more empathetic power.
The present study reports our efforts in recogniz-
ing utterances that cause laughter in presentations.
These include building a corpus from TED talks
and using Convolutional Neural Networks (CNNs)
in the recognition.

The remainder of the paper is organized as fol-
lows: Section 2 briefly reviews the previous re-
lated research; Section 3 describes the corpus we
collected from TED talks; Section 4 describes the
text classification methods; Section 5 reports on
our experiments; finally, Section 6 discusses the
findings of our study and plans for future work.

2 Previous Research

Humor recognition refers to the task of deciding
whether a sentence/spoken-utterance expresses a
certain degree of humor. In most of the previous
studies (Mihalcea and Strapparava, 2005; Puran-
dare and Litman, 2006; Yang et al., 2015), humor
recognition was modeled as a binary classification
task.

In the seminal work (Mihalcea and Strappar-
ava, 2005), a corpus of 16,000 “one-liners” was
created using daily joke websites to collect hu-
morous instances while using formal writing re-
sources (e.g., news titles) to obtain non-humorous
instances. Three humor-specific stylistic features,
including alliteration, antonymy, and adult slang
were utilized together with content-based features
to build classifiers. In a recent work (Yang et al.,
2015), a new corpus was constructed from the Pun
of the Day website. Yang et al. (2015) explained
and computed stylistic features based on the fol-
lowing four aspects: (a) Incongruity, (b) Ambi-
guity, (c) Interpersonal Effect, and (d) Phonetic
Style. In addition, Word2Vec (Mikolov et al.,
2013) distributed representations were utilized in
the model building.

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 86-90
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Beyond lexical cues from text inputs, other
research has also utilized speakers’ acoustic
cues (Purandare and Litman, 2006; Bertero and
Fung, 2016b). These studies have typically used
audio tracks from TV shows and their corre-
sponding captions in order to categorize charac-
ters’ speaking turns as humorous or non-humorous
based on canned laughter.

Convolutional Neural Networks (CNNs) have
recently been successfully used in several text
categorization tasks (e.g., review rating, senti-
ment recognition, and question type recognition).
Kim (2014); Johnson and Zhang (2015); Zhang
and Wallace (2015) suggested that using a simple
CNN setup, which entails one layer of convolu-
tion on top of word embedding vectors, achieves
excellent results on multiple tasks. Deep learning
recently has been applied to computational humor
research (Bertero and Fung, 2016b,a). In Bertero
and Fung (2016b), CNN was found to be the best
model that uses both acoustic and lexical cues for
humor recognition. However, it did not outper-
form the Logistical Regression (LR) model when
using text inputs exclusively. Beyond treating hu-
mor detection as a binary classification task, Bert-
ero and Fung (2016a) formulated the recognition
to be a sequential labeling task and utilized Re-
current Neural Networks (RNNs) (Hochreiter and
Schmidhuber, 1997) on top of CNN models (serv-
ing as feature extractors) to utilize context infor-
mation among utterances.

From the brief review, it is clear that there is
a great need for an open corpus that can sup-
port investigating humor in presentations.! CNN-
based text categorization methods have been ap-
plied to humor recognition (e.g., in (Bertero and
Fung, 2016b)) but with limitations: (a) a rigorous
comparison with the state-of-the-art conventional
method examined in Yang et al. (2015) is missing;
(b) CNN’s performance in the previous research
is not quite clear; and (c) some important tech-
niques that can improve CNN performance (e.g.,
using varied-sized filters and dropout regulariza-
tion (Hinton et al., 2012)) were not applied. There-
fore, the present study is meant to address these
limitations.

'While we were working on this paper, we found a recent
Master’s thesis (Acosta, 2016) that also conducted research
on detecting laughter on the TED transcriptions. However,
that study only explored conventional text classification ap-
proaches.
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3 TED Talk Data

TED Talks? are recordings from TED conferences
and other special TED programs. Many effects in
a presentation can cause audience laugh, such as
speaking content, presenters’ nonverbal behaviors,
and so on. In the present study, we focused on
the transcripts of the talks. Most transcripts of the
talks contain the markup ‘(Laughter)’, which rep-
resents where audiences laughed aloud during the
talks. This special markup was used to determine
utterance labels.

We collected 1,192 TED Talk transcripts®. An
example transcription is given in Figure 1. The
collected transcripts were split into sentences us-
ing the Stanford CoreNLP tool (Manning et al.,
2014). In this study, sentences containing or im-
mediately followed by ‘(Laughter)’ were used as
‘Laughter’ sentences, as shown in Figure 1; all
other sentences were defined as ‘No-Laughter’
sentences. Following Mihalcea and Strapparava
(2005) and Yang et al. (2015), we selected the
same numbers (n = 4726) of ‘Laughter’ and ‘No-
Laughter’ sentences. To minimize possible topic
shifts between positive and negative instances, for
each positive instance, we randomly picked one
negative instance nearby (the context window was
7 sentences in this study). For example, in Fig-
ure 1, a negative instance (corresponding to ‘sent-
2’) was selected from the nearby sentences rang-
ing from ‘sent-7’ to ‘sent+7’. More details about
this data set can refer to Lee et al. (2016). The
TED data set can be obtained by contacting the
authors.

4 Methods
4.1 Conventional Model

Following Yang et al. (2015), we applied Random
Forest (Breiman, 2001) to perform humor recog-
nition by using the following two groups of fea-
tures. The first group are humor-specific stylistic
features covering the following 4 categories*: In-
congruity (2), Ambiguity (6), Interpersonal Effect
(4), and Phonetic Pattern (4). The second group
are semantic distance features, including the hu-
mor label classes from 5 sentences in the training
set that are closest to the sentence being evalu-
ated (found by using a k-Nearest Neighbors (kNN)

http://www.ted.com

3The transcripts were collected on 7/9/2015.

“The number in parenthesis indicates how many features
are in that category.



sent-7 ...

No-Laughter He has no memory of the past, no knowledge of the future, and he only cares about two

things: easy and fun.
sent-1 Now, in the animal world, that works fine.

Laughter If you’re a dog and you spend your whole life doing nothing other than easy and fun things,

you're a huge success! (Laughter)

sent+1 And to the Monkey, humans are just another animal species.

sent+7 ...

Figure 1: An excerpt from TED talk “Tim Urban: Inside the mind of a master procrastinator” (http:

//bit.1ly/211P3RJ)

method), and each sentence’s averaged Word2Vec
representations (n = 300). More details can be
found in Yang et al. (2015).

4.2 CNN model

Our CNN-based text classification’s setup follows
Kim (2014). Figure 2 depicts the model’s details.
From the left side’s input texts to the right side’s
prediction labels, different shapes of tensors flow
through the entire network for solving the classifi-
cation task in an end-to-end mode.

Firstly, tokenized text strings were converted to
a 2D tensor with shape (L x d), where L rep-
resents sentences’ maximum length while d rep-
resents the word-embedding dimension. In this
study, we utilized the Word2Vec (Mikolov et al.,
2013) embedding vectors (d = 300) that were
trained on 100 billion words of Google News.
Next, the embedding matrix was fed into a 1D
convolution network with multiple filters. To
cover varied reception fields, we used filters of
sizes of f,, — 1, fw, and f,, + 1. For each fil-
ter size, ny filters were utilized. Then, max pool-
ing, which stands for finding the largest value from
a vector, was applied to each feature map (to-
tal 3 x ny feature maps) output by the 1D con-
volution. Finally, maximum values from all of
3 x ny filters were formed as a flattened vector to
go through a fully connected (FC) layer to predict
two possible labels (Laughter vs. No-Laughter).
Note that for 1D convolution and FC layer’s in-
put, we applied ‘dropout’ (Hinton et al., 2012)
regularization, which entails randomly setting a
proportion of network weights to be zero during
model training, to overcome over-fitting. By using
cross-entropy as the learning metric, the whole se-
quential network (all weights and bias) could be
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optimized by using any SGD optimization, e.g.,
Adam (Kingma and Ba, 2014), Adadelta (Zeiler,
2012), and so on.

5 Experiments

We used two corpora: the TED Talk corpus (de-
noted as TED) and the Pun of the Day corpus’
(denoted as Pun). Note that we normalized words
in the Pun data to lowercase to avoid a possibly
elevated result caused by a special pattern: in the
original format, all negative instances started with
capital letters. The Pun data allows us to verify
that our implementation of the conventional model
is consistent with the work reported in Yang et al.
(2015).

In our experiment, we firstly divided each cor-
pus into two parts. The smaller part (the Dev
set) was used for setting various hyper-parameters
used in text classifiers. The larger portion (the
CV set) was then formulated as a 10-fold cross-
validation setup for obtaining a stable and com-
prehensive model evaluation result. For the PUN
data, the Dev contains 482 sentences, while the
CV set contains 4344 sentences. For the TED data,
the Dev set contains 1046 utterances, while the
CV set contains 8406 utterances. Note that, with
a goal of building a speaker-independent humor
detector, when partitioning our TED data set, we
always kept all utterances of a single talk within
the same partition.

When building conventional models, we de-
veloped our own feature extraction scripts and
used the SKLLS python package for building Ran-
dom Forest models. When implementing CNN,

5The authors of Yang et al. (2015) kindly shared their data
with us. We would like to thank them for their generosity.

*https://github.com/
EducationalTestingService/sk1ll
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Figure 2: CNN network architecture

| Acc. (%) | F1 | Precision | Recall

|

Pun set
Chance 50.2 | .498 .506 497
Base 78.3 | .795 757 .839
CNN 86.1 | .857 864 864
TED set
Chance 51.0 | .506 .510 .503
Base 52.0 | .595 .515 .705
CNN 58.9 | .606 582 .632

Table 1: Humor recognition on both Pun and TED
data sets by using (a) random prediction (Chance),
conventional method (Base) and CNN method

we used the Keras Python package’. Regarding
hyper-parameter tweaking, we utilized the Tree
Parzen Estimation (TPE) method as detailed in
Bergstra et al. (2013). After running 200 itera-
tions of tweaking, we ended up with the follow-
ing selection: f,, is 6 (entailing that the vari-
ous filter sizes are (5,6,7)), ny is 100, dropout;
is 0.7 and dropouts is 0.35, optimization uses
Adam (Kingma and Ba, 2014). When training the
CNN model, we randomly selected 10% of the
training data as the validation set for using early
stopping to avoid over-fitting.

On the Pun data, the CNN model shows consis-
tent improved performance over the conventional
model, as suggested in Yang et al. (2015). In par-
ticular, precision has been greatly increased from
0.762 to 0.864. On the TED data, we also ob-
served that the CNN model helps to increase pre-
cision (from 0.515 to 0.582) and accuracy (from
52.0% to 58.9%). The empirical evaluation results
suggest that the CNN-based model has an advan-
tage on the humor recognition task. In addition,
focusing on the system development time, gener-

"Our  code  implementation was  based

https://github.com/shagunsodhani/
CNN-Sentence-Classifier

on

&9

ating and implementing those features in the con-
ventional model would take days or even weeks.
However, the CNN model automatically learns
its optimal feature representation and can adjust
the features automatically across data sets. This
makes the CNN model quite versatile for support-
ing different tasks and data domains. Compared
with the humor recognition results on the Pun data,
the results on the TED data are still quite low, and
more research is needed to fully handle humor in
authentic presentations.

6 Discussion

For the purpose of monitoring how well speak-
ers can use humor during their presentations, we
have created a corpus from TED talks. Com-
pared to the existing corpora, ours has the fol-
lowing advantages: (a) it was collected from au-
thentic talks, rather than from TV shows per-
formed by professional actors based on scripts; (b)
it contains about 100 times more speakers com-
pared to the limited number of actors in exist-
ing corpora. We compared two types of lead-
ing text-based humor recognition methods: a con-
ventional classifier (e.g., Random Forest) based
on human-engineered features vs. an end-to-end
CNN method, which relies on its inherent rep-
resentation learning. We found that the CNN
method has better performance. More importantly,
the representation learning of the CNN method
makes it very efficient when facing new data sets.

Stemming from the present study, we envision
that more research is worth pursuing: (a) for pre-
sentations, cues from other modalities such as au-
dio or video will be included, similar to Bertero
and Fung (2016b); (b) context information from
multiple utterances will be modeled by using se-
quential modeling methods.
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Abstract

We present crowdsourced collection of er-
ror annotations for transcriptions of spo-
ken learner English. Our emphasis in data
collection is on fluency corrections, a more
complete correction than has traditionally
been aimed for in grammatical error cor-
rection research (GEC). Fluency correc-
tions require improvements to the text,
taking discourse and utterance level se-
mantics into account: the result is a more
naturalistic, holistic version of the origi-
nal. We propose that this shifted empha-
sis be reflected in a new name for the task:
‘holistic error correction’ (HEC). We anal-
yse crowdworker behaviour in HEC and
conclude that the method is useful with
certain amendments for future work.

1 Introduction

By convention, grammatical error detection and
correction (GEC) systems depend on the availabil-
ity of labelled training data in which tokens have
been annotated with an error code and a correc-
tion. In (1) for example, taken from the open FCE
subset of the Cambridge Learner Corpus (CLC)
(Nicholls, 2003; Yannakoudakis et al., 2011), the
original token ‘waken’ is coded as a “TV’ (verb
tense) error and annotated with the correct token
‘woken’ on the right-hand side of the pipe.

(1) In the morning, you are <NS type=“TV’>
wakenlwoken </NS> up by a singing puppy.

Such efforts to annotate learner corpora are
time-consuming and costly, but with sufficient
quantities it is possible to train GEC systems to
identify and correct errors in unseen texts. For ex-
ample, 29 million tokens of the CLC have been
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error-annotated, of which the FCE is a publicly-
available 500k token subset (Yannakoudakis et al.,
2011). The Write & Improvel GEC system (W&I)
has been built on these resources (Andersen et al.,
2013), providing automated assessment and per-
token error feedback. In common with other GEC
systems, W&I prizes precision ahead of recall — so
as to avoid false positive corrections being pre-
sented to the user.

Indeed the field of GEC as a whole adopts a
conservative stance on error correction (hence pre-
ferring precision to recall in the well-established
Fg.5 metric), is focused at the token level, and
has tended to train separate classifiers for each er-
ror type (De Felice and Pulman, 2008; Tetreault
etal., 2010; Dahlmeier and Ng, 2012), has adopted
a machine translation approach (Brockett et al.,
2006; Park and Levy, 2011; Yuan et al., 2016),
or a hybrid of the two (Rozovskaya and Roth,
2016). Ease of correction varies by class of er-
ror, with Table 1 showing best-to-worst recall of
the top-performing system for each error type in
the CoNLL-2014 shared task on GEC of NUCLE
data (Ng et al., 2014).

It is apparent that detection rates are relatively
high for certain error types, namely issues of regis-
ter, subject-verb agreement, determiner errors and
noun number. We note that there are several error
types in the lower half of Table 1 — such as sen-
tence fragments, linking words, redundancy, un-
clear meaning and wrong collocations — which re-
late to fluency broadly defined. This indicates that
these error types are harder to solve, or at least
have not been worked on so much. Either way
they require further attention.

Some notable blind-spots of the current GEC
approach are found above the token level, in sen-
tence and discourse level semantics and coher-

'https://writeandimprove.com
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Code Error Training % | Recall % | System
Wtone inappropriate register 1.3 81.8 | AMU
SVA subject-verb agreement 34 70.3 | CUUIL
ArtOrDet | article/determiner error 14.8 58.9 | CUUIL
Nn noun number 8.4 58.7 | AMU
Spar parallelism 1.2 50.0 | RAC
WOadv adjective/adverb order 0.8 47.6 | CAMB
Wform word form 4.8 45.6 | AMU
Mec spelling & punctuation 7.0 43.5 | RAC
Prep preposition 54 38.3 | CAMB
VO missing verb 0.9 36.7 | NARA
Vm modal verb 1.0 359 | RAC
Vform verb form 3.2 27.6 | NARA
Vt verb tense 7.1 26.2 | RAC
Sfrag sentence fragment 0.6 25.0 | UMC
Pform pronoun form 0.4 22.6 | CAMB
Trans linking words 3.1 214 | CAMB
Npos possessive 0.5 20.0 | NARA
Rloc— redundancy 10.5 20.2 | CAMB
Pref pronoun reference 2.1 19.4 | CAMB
Um unclear meaning 2.6 15.8 | PKU
Ssub subordinate clause 0.8 154 | NARA
Wei wrong collocation 11.8 12.0 | AMU
WOinc word order 1.6 6.7 | UMC
Others miscellaneous 33 3.1 | RAC
Cit citation 1.5 0| _
Smod dangling modifier 0.1 0| _

Srun run on sentence 1.9 0| _

Wa acronym 0.1 0| _

Table 1: Best recall by error type in the CoNLL-2014 shared task on GEC (Ng et al., 2014), including
frequency of error type in the training data, and recall against gold-standard edits>.

ence. Hence there has been a call for greater em-
phasis on fluency in error correction (Sakaguchi
et al., 2016). We may think of fluency as en-
compassing the grammaticality-per-token focus of
GEC thus far, with added layers of sentence and
discourse level semantics and coherence. It is also
more than just spoken fluency, which is a common
usage of the term. Instead, it is a holistic notion of
all-linguistic performance competence.

For example, in (2) we see the kind of sentence
which in the GEC approach might only be cor-
rected for the ungrammaticality of ‘shorten’, as in
(3). But in fact the new version still lacks native-
like fluency. The meaning is clear, a fact we can
use to offer the fluent correction seen in (4).

(2) From this scope, social media has shorten our
distance®

(3) From this scope, social media has shortened
our distance.

(4) From this perspective, social media has short-
ened the distance between us.

Furthermore, in speech the problem is height-
ened by the fact that, relative to grammaticality,

4Exarnples (2)—(4) from Sakaguchi et al (2016).
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fluency is arguably of greater importance than it
is in writing. In the immediate communication
scenario of spontaneous conversation — the default
setting for speech, though there are others — the
signal is ephemeral and interlocutors are both for-
giving of errors and adept at rapid repair (Clark
and Schaefer, 1987; Cahn and Brennan, 1999;
Branigan et al., 2007).

Except in classroom settings or when explicitly
asked to do so, the listener rarely corrects or points
out the speaker’s grammatical errors. Instead she
tends to signal understanding, offer signs of agree-
ment or other emotional reaction, and seek clarifi-
cation — all of which have been listed among the
typical acts of ‘alignment’ in dialogue (Pickering
and Garrod, 2004). She focuses more on the mean-
ing of what is said, and the fluency of linguistic
construction plays an important role in how suc-
cessfully meaning is conveyed. We work with spo-
ken data from learners, and the implication is that
fluency takes on added importance in our view.

We therefore support the call for greater em-
phasis on fluency rather than grammaticality (Sak-
aguchi et al., 2016), propose that we represent
that changed emphasis with a changed label for
the field — ‘holistic error correction’ (HEC) is our



suggestion — and finally we present and evaluate
a crowdsourcing method for fluency correction of
transcriptions of spoken learner English. We anal-
yse crowdworker behaviour in this task, discuss
how the data can be used, and assess how the
method can be improved in future work with a
view to creating an open dataset of fluency anno-
tations.

2 Crowdsourcing

Annotation of language corpora is an expensive
process in both cost and time. And yet the la-
belling of corpora is highly desired as it opens the
data up to further linguistic analysis and machine
learning experiments. We describe our efforts to
use the crowd for fast, low-cost annotation tasks
and conclude as others have done before that, ‘they
can help’ (Madnani et al., 2011) — the resultant an-
notations are good enough to be useful.

We engaged 120 crowdworkers through Pro-
lific Academic® to provide fluency corrections
for transcriptions of spoken learner English.
A recent evaluation of Prolific Academic and
two other widely-used crowdsourcing services,
CrowdFlower and Amazon Mechanical Turk, re-
ported favourable comparisons for Prolific in
terms of both data quality and participant diversity
(Peeretal.,2017). We recruited workers from Pro-
lific on condition that they had an approval rating
of 95% or more, that they reported English to be
their first language, and that they were educated to
at least U.K. GCSE level or equivalent (normally
taken at 16 years).

This meant that the worker pool was reduced
to 17,363 from an original pool of 23,973 at the
time of recruitment (January 2017). Nevertheless
recruitment proceeded at a rapid pace and all tasks
had been completed within 24 hours of launch.
Workers were paid £1 for what was estimated to
be 10 minutes of work correcting 16 items (plus
the two test items we put in to catch pathological
contributions®). In fact our 120 workers spent an
average of 16 minutes on the task (max=43 mins,
min=7.2 mins, st.dev=7.6 mins). Workers de-
clared themselves to be 45% female and 55% male

Shttp://www.prolific.ac

These were the straightforward grammatical errors in,
‘The currency of the USA be dhollars’, and, ‘“The capital of
the UK are Londoin’, where we could pattern match for the
corrections we expected. The absence of such corrections
warned us to check the worker’s whole contribution and judge
whether to reject it and refuse payment.
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and were in the age range 17-70 years (mean=33).

The data were language learner monologues
from Cambridge English Language Assessment
Business Language Testing Service (BULATS)
oral exams’. The learners were prompted to dis-
cuss business topic scenarios and allowed to talk
for up to a minute at a time. Recordings were tran-
scribed by two different workers from the Ama-
zon Mechanical Turk crowdsourcing service and
subsequently combined into a single transcript by
finding the best path through a word network con-
structed out of the two transcript versions, using
automated speech recognition (van Dalen et al.,
2015). This method is of course not error-free:
van Dalen et al report a word error rate of 28%
on a 55k token test set.

The learners’ first languages (L.1s) were Arabic,
Dutch, French, Polish, Thai and Vietnamese (Ta-
ble 2), and their proficiency was judged by two
examiners such that they could be placed on the
CEFR scale (Common European Framework of
Reference for Languages) as shown in Table 3.

Whilst the learners are fairly well-balanced by
L1 in terms of both speaker numbers and token
counts, it is clear that there’s a skew towards the
middle ranks of the CEFR scale — namely, A2
to C1 — with fewer Al learners and only two C2
level learners. As would be expected, the token-
to-speaker ratio rises with increasing proficiency:
thus there are more tokens for each proficiency
level (excepting C2), even where speaker numbers
do not go up.

We prepared a web application using R Shiny
and shinyapps hosting (R Core Team, 2017; Chang
et al., 2016; Allaire, 2016). We named it ‘Correct-
ing English’ and directed crowdworkers to it from
Prolific Academic. If necessary, transcriptions
were divided into ‘speech-units’ (Moore et al.,
2016) — analogous to the sentence in writing — and
presented speech-unit by speech-unit (SU). Work-
ers were greeted with a welcome page explaining
that they would be shown transcriptions of spo-
ken learner English, that the learners were talking
about business topics, and that they could expect
to see mistakes.

Workers were asked to make corrections so that,
“it sounds like something you would expect to
hear or produce yourself in English”. Whether the
target should be the proficiency of a native speaker
or a high proficiency learner is a fraught ques-

"nttp://www.bulats.org



L1 Speakers | Tokens | SUs
Arabic 40 | 12,181 425
Dutch 33 11,549 396
French 37 11,716 383
Polish 40 9729 393
Thai 37 10,207 414
Vietnamese 39 9858 361
Total 226 | 65,240 | 2372

Table 2: L1 of speakers in the BULATS corpus:
number of tokens and speech-units per group.

CEFR | Speakers | Tokens | SUs
Al 38 4553 | 325
A2 48 9584 451
Bl 48 | 14,766 | 520
B2 48 | 16,854 | 509
Cl1 42 | 17,749 | 541
C2 2 624 26
Total 226 | 65,240 | 2372

Table 3:  CEFR proficiency level of speakers
in the BULATS corpus: number of tokens and
speech-units per group.

tion in second language acquisition research, so
we avoid reference to any such target and instead
ask the worker to envisage how they might express
the information contained in the SU. We intended
that this gave the worker a concrete standard of
English to aim for, and we assume that they are
native speakers in any case, since we filtered for
that in the recruitment stage. Moreover it encour-
ages them to think about how they would speak the
same thought, the intention being that this would
lead them to think more about fluency than about
grammaticality. We added that they should make
as many changes as necessary, echoing Sakaguchi
and colleagues’ instruction for ‘fluency edits’ as
opposed to ‘minimal edits’ (2016).

On the annotation page, workers were also able
to view the context of a learner’s response: that
is, a summary of the ‘prompt’ to which they had
responded. They could opt to skip the given tran-
scription if they could not make any sense of it
(and it would be replaced with another: such a
move did not ‘run down’ the 18 required annota-
tions). They could indicate with a tick-box that
the transcription needed no correction. And they
could grade their own confidence in their judge-
ments, from ‘not sure’ to ‘very sure’ with ‘quite
sure’ in between. A screenshot of a Correcting
English page is given in Figure 1.

Once the worker completed 18 annotations (the
16 BULATS items and 2 test items) they were
redirected to Prolific Academic and we were re-
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Correcting English

3of 18
The original:

Of course that's not a question huh I think we mm should hand out wine
Show context

What the speakers were asked to talk about:

"giving gifts to visitors when they leave"

Your corrected version:

Of course that's not a question huh | think we mm should hand out wine

Gan you make any sense of the sentence? If not, press skip 1o reject this
sentence and replace it with a different one.

Skip

Or tick here if it's fine:

no correction needed

How sure are you of your corrections?

© Very sure
Quite sure
Not sure

Next

Figure 1: Screenshot from the Correcting English
web application for crowdsourcing fluency correc-
tions of spoken learner English: note that the orig-
inal speech-unit is reproduced verbatim in the cor-
rection text-box, ready for the crowdworker to edit
(or not).

quired to approve or reject their submission. In
total we approved 120 submissions.

3 Results

The BULATS dataset is different to those pre-
viously submitted for crowdsourced error anno-
tation, to the best of our knowledge, in that it
is spoken data and it is learner English. In all,
1507 unique SUs were selected at random and pre-
sented to crowdworkers for annotation, represent-
ing 63.5% of the 2372 SUs in the corpus. Workers
made a total of 5706 judgements, excluding the
test items.

3.1 Skipped speech-units

The majority of judgements were ‘skip’ moves to
reject the presented SU. Overall workers skipped
almost two-and-a-half SUs for every one they an-
notated (Table 4).

We found that variation in proficiency level ex-
plains the SU skip rate to some extent. The ra-
tio of skipped to annotated SUs decreases from
5.8:1 to 1.5:1 from level Al to C1, indicating that
workers were more willing to annotate SUs uttered
by higher proficiency speakers. There is a non-
significant correlation between the percen and the
grade assigned to the recording (r = —0.182,p <



CEFR | Skips | Annotations | Skip:Annotation | Unique SUs | Corpus %
Al 507 87 5.8 46 14.2
A2 832 238 3.5 117 259
Bl 948 387 24 162 31.2
B2 837 359 2.3 164 32.2
Cl 870 582 1.5 232 429
C2 23 18 1.3 6 23.1
Total 4017 1671 24 727 30.6

Table 4: CEFR proficiency level of speakers in the BULATS corpus: number of tokens and speech-units

per group.

0.001,df = 1155). As a consequence our cor-
pus of annotations is skewed towards higher pro-
ficiency levels (ignoring the small C2 subset for
now), with almost half of the C1 SUs in our cor-
pus being annotated at least once, in contrast to
just one-sixth of A1 SUs (Table 4).

Of the SUs presented to crowdworkers, 348
were never skipped (Table 5). Recall that the skip
action was intended for workers to indicate that
they could make no sense of the speech-unit, and
therefore could not reasonably be expected to cor-
rect it. Of the skipped SUs, 282 were skipped once
only. Since linguistic intuitions are highly subjec-
tive, we put these aside as singular opinions on the
SUs while we wait for a second opinion. There-
fore we have 877 SUs which have been skipped
two or more times, and we pay attention to this
subset in some way.

Skips | SUs || Skips | SUs
0| 348 9 27
1] 282 10 9
2 | 259 11 7
3| 194 12 8
4| 128 13 5
5 97 14 3
6 59 15 5
7 48 16 2
8 24 18 2

Table 5: Number of skips per speech-unit in the
BULATS corpus.

Examples of highly-skipped SUs include the
following:

(5) A lot of coaching ment mentor.

(6) Ah we work very very well together ah we uh
very close we can share lots of things er we
also have time to uh sit down and talk about
how school is developing and ah whether we
are doing the right things together or not.

(7) Uh so I think I think location of facility is
where the is good to store it to store.
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In (5) the SU is too short, disfluent and lacking
in a main verb to make any sense of. In contrast
(6) is very long, peppered with filled pauses (‘ah’,
‘uh’, ‘er’), and made up of several main clauses
run on to one another in a chain. Both are difficult
to make sense of for different reasons. Both were
spoken by learners of CEFR level C1, whereas in
(7) the level is B1 and the difficulty in interpreta-
tion perhaps stems more from the low proficiency
level of the speaker.

How can we make use of the information in
crowdworkers’ skipping actions? We could inter-
pret them as judgements as to the futility of at-
tempting automatic correction on these units. For
example, we could choose to exclude those SUs
which have been skipped on at least two of the oc-
casions they have been presented to crowdwork-
ers. These SUs would constitute a ‘nonsensical’
portion of the corpus which (for now) we might
deem too hard to automatically correct, as it is not
possible to infer what the speaker intended to say.
With the proposed threshold, 282 SUs would have
to be set aside — or, 38.8% of the 727 SUs in the
current dataset.

The implication for HEC evaluation is that we
are only judging system performance against those
SUs which we can reasonably expect to be cor-
rected. The implication for computer-assisted lan-
guage learning (CALL) applications is that if such
an utterance were automatically detected, the sys-
tem could ask the learner to clarify what they said
or ask them to try again, rather than attempting
a correction and damaging the system’s reputa-
tion through nonsensical corrections to nonsensi-
cal SUs. However, it is apparent that many SUs
would be trimmed through this method and with
the proposed threshold. Is this a sensible ap-
proach? We leave this as a matter for debate, and
welcome feedback in this regard.



3.2 Corrected speech-units

In terms of annotations then, 727 (30.6%) of the
2372 SUs in the corpus were annotated at least
once (Table 4). If all 120 crowdworkers had sub-
mitted 16 SU annotations of suitable quality, it
would give us a corpus of 1920 annotated SUs.
However, in a quality control stage we removed
249 units due to poor contributions by workers,
thereby losing just over one-eighth of the total sub-
missions and leaving us with 1671 remaining an-
notations. Data loss of 13% seems a reasonable
amount to allow for in designing a crowdsourc-
ing study, and certainly we never expected a 100%
success rate in terms of data quality.

These 1671 remaining annotations represent
727 unique SUs. Thus we have approximately
two annotations for each SU on average. How
can we assess what changes crowdworkers made
to the original texts? Firstly we note that on the
whole SUs were shortened in correction: the mean
character difference between the original and cor-
rected SU is -9.2 characters, while the median was
-4 characters.

Self-reported confidence levels are generally
high: workers rated their confidence level as ‘very
sure’ or ‘quite sure’ for 85% of their annotations.
We could choose to exclude the remaining 15% of
annotations of which the workers declared them-
selves unsure. This would reduce the 1671 anno-
tations to 1425 and the number of included SUs
from 727 to 632. That would be the conser-
vative approach, and probably the decision one
would take before training a HEC system. Nev-
ertheless we can use this information in evaluating
HEC outputs, weighting scoring so that hypothe-
ses measured against gold-standard fluency edits
(of which the worker is at least quite sure) are
valued more highly than those measured against
silver-standard edits (the ‘not sure’ annotations).

Moreover, confidence level tends to be lower
the greater the character difference between orig-
inal and corrected SUs: in Figure 2 we see that
the character difference values are more widely
spread around the zero mark for the lower confi-
dence levels, ‘not sure’ and ‘quite sure’. For ‘very
sure’ on the other hand, there is a peak of char-
acter differences around the zero mark, suggesting
that no change has been made in the majority of
cases. This indicates that crowdworkers tended to
feel unsure when they took action: whether this
is a property of the dataset or human nature is a

96

matter for further investigation. It could also be
that where no change was needed, the worker felt
no need to change the confidence level from its
default setting (‘very sure’). Thus in future work
we will consider alternative methods of collecting
confidence ratings: either with larger scales or an
interface other than radio buttons.

Another indicator of the changes made by
the crowdworkers comes from lexical diver-
sity scores: the mean type-token ratio (TTR)
of the original SUs is 0.872 (st.dev=0.114),
whereas mean TTR of the corrected SUs is 0.915
(st.dev=0.089). This overall increase in diver-
sity suggests that one way in which workers ‘im-
proved’ the SUs was to make them more expres-
sive in terms of vocabulary use.

Of the 727 SUs annotated by crowdworkers,
433 were annotated at least twice. For all pair-
wise comparisons within a set of SU annotations
we measured identical corrections, like Sakaguchi
and colleagues (2016) on the basis that interanno-
tator agreement is difficult to operationalise and
arguably an inappropriate measure for error anno-
tation (Bryant and Ng, 2015). Having made 7676
comparisons in this way, we find that 14.8% of er-
ror corrections are identical, a figure close to the
15.3% reported for the ‘expert’ annotators in Sak-
aguchi et al’s study (and well above the 5.9% for
the ‘non-expert’ crowdworkers).

We also report translation edit rate (TER) — a
measure of the number of edits needed to trans-
form one text into another, where an edit is an in-
sertion, deletion, substitution, or phrasal shift, and
where TER is expressed as edits per token (Snover
et al., 2006).

In Table 6 we selected a speech-unit from the
BULATS corpus along with two crowdsourced
corrections. In the first correction, minimal ed-
its have been made to make the SU more accept-
able in grammatical terms (that’s — is, a the — a,
are — is). In the second version the correction is
more holistic, even with punctuation (which was
not called for), and the resulting SU is fluent. This
latter type of correction is the one we seek, though
it’s clear from this example that not all corrections
were done in a holistic way. One method to deter-
mine the success of crowdsourcing fluency edits
would be to sample and rate corrections for flu-
ency. We will incorporate this approach into fur-
ther inspection of speech-units and the way they
were corrected in future work.
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Figure 2: Density plot of the difference between corrected SU and original SU in characters, by crowd-

workers’ self-reported confidence level.

Version Speech-unit TER

original I think in a newspaper that’s an option and a the reference from a past employer 0
are very important

corrected.1 | Ithink in a newspaper is an option and a reference from a past employer is very 3/19
important

corrected.2 | Ithink that when advertising in a newspaper that’s an option and also asking for | 10/19
a reference from a past employer is very important

Table 6: Example crowdsourced corrections for a speech-unit from the BULATS corpus.

In Figure 3 we show that for each CEFR level,
firstly the proportion of SUs marked ‘fine’, or
in need of no correction, tends to increase with
increasing proficiency, and secondly mean TER
scores for each SU rise from levels Al to Bl,
and then fall again to C1 and C2. We hypothe-
sise that the reason for this is that learners become
more ‘adventurous’ in the linguistic constructions
they attempt to use as they move from the Al and
A2 proficiency levels to B1 and B2. Thus their
speech-units become in need of more correction,
despite their improving capability with English.
Part of their development into C1 and C2 level
speakers is to become more accurate with the more
complex construction types; hence SUs are in less
need of correction. This is a ‘U-shaped’ develop-
mental trajectory previously observed in language
acquisition (Gershkoff-Stowe and Thelen, 2004).
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4 Related work

Our work relates to previous attempts to collect er-
ror annotations through crowdsourcing (Tetreault
et al., 2010; Madnani et al., 2011), which have
concluded in its favour on the whole. Moreover we
focus on fluent error corrections, as Sakaguchi and
colleagues do (2016). Note also that crowdwork-
ers were engaged in speech transcription, which is
itself an established practice (Snow et al., 2008;
Novotney and Callison-Burch, 2010).

Within second language acquisition research,
we are focused on the fluency part of the well-
established ‘complexity accuracy fluency’ frame-
work (Housen and Kuiken, 2009). In future work
we intend to turn to the complexity and accuracy
dimensions as well. The framework gives us a
useful way to consider automated assessment and
feedback for language learners.
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Figure 3: Proportion of SUs marked ‘fine’ by crowdworkers x Mean TER score for each CEFR level
(width of ‘violins’ indicates density; horizontal lines mark first, second and third quartiles).

5 Conclusion and future work

In this paper we have presented our efforts to
crowdsource fluency corrections of spoken learner
English. We found that crowdworkers were tenta-
tive in applying corrections to SUs, more so for
low CEFRs. When they did attempt to correct
SUs though, we did find an overall decrease in SU
length, an increase in lexical diversity, and TER
scores which suggest U-shaped edit quantities by
proficiency level.

Further evaluation of annotation quality re-
mains to be carried out, including fluency ratings
of the corrected versions. Also in future work
we intend to repeat this work on an open dataset,
such as the CrowdED Corpus (Caines et al., 2016),
so that the resulting annotations can be released
to others. Currently the BULATS corpus is not
openly available.

One option for future annotations is to offer
the original and corrected speech-units in parallel
corpus format for machine translation approaches
to error correction (Brockett et al., 2006; Park
and Levy, 2011; Susanto et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2016; Yuan et al.,
2016), and with automatically aligned error anno-
tations at the token level for classifier and rule-
based approaches — the format used for GEC so
far, as in the FCE and NUCLE datasets (Yan-
nakoudakis et al., 2011; Dahlmeier et al., 2013).

98

This would be in line with the call by Sakaguchi
and colleagues for new annotated corpora for HEC
research (Sakaguchi et al., 2016). We believe that
whole sentence or speech-unit corrections lend
themselves well to the recent emergence of neu-
ral network MT systems for error correction, since
these are essentially sequence-to-sequence trans-
lations (Yuan and Briscoe, 2016). The challenge
would be to build a sufficiently large training cor-
pus for NMT: crowdsourcing would seem to be
a fast and good-enough data collection method.
Moreover, a hybrid MT-classifier system (Ro-
zovskaya and Roth, 2016) may suit the goal of au-
tomated feedback, whereby the learner can be in-
formed of detected errors and how to avoid them.

In any future data collection we need to install
controls against crowdworkers’ tendency to anno-
tate higher proficiency items in preference to lower
proficiency items. For example, we could remove
the facility for skipping items, or there could be
only a limited facility to do so (since we do find
this information useful too). We could also present
more context than the prompt alone — for example,
the preceding and following speech-units. Finally,
we will further investigate correction behaviours:
to what extent crowdworkers followed our request
to consider spoken English as the model, rather
than written norms, and to what extent they aimed
for holistic fluency corrections rather than mini-
mal grammatical edits.
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Abstract

No significant body of research examines writing
achievement and the specific skills and knowledge in
the writing domain for postsecondary (college) stu-
dents in the U.S., even though many at-risk students
lack the prerequisite writing skills required to persist in
their education. This paper addresses this gap through
a novel exploratory study examining how automated
writing evaluation (AWE) can inform our understand-
ing of the relationship between postsecondary writing
skill and broader indicators of college success. The ex-
ploratory study presented in this paper was conducted
using test-taker essays from a standardized writing as-
sessment of postsecondary student learning outcomes.
Findings showed that for the essays, AWE features
were found to be predictors of broader outcomes
measures: college success indicators and learning out-
comes measures. Study findings expose AWE’s poten-
tial to support educational analytics -- i.e., relationships
between writing skill and broader outcomes —moving
AWE beyond writing assessment and instructional use
cases.

1 Introduction

Writing is a challenge, especially for at-risk stu-
dents who may lack the prerequisite writing skills
required to persist in U.S. 4-year postsecondary
(college) institutions (NCES, 2012). Educators
teaching postsecondary courses that require writ-
ing could benefit from a better understanding of

writing achievement and its role in postsecondary
success (college completion). U.S K-12 research
examines writing achievement and the specific
skills and knowledge in the writing domain
(Berninger, Nagy & Beers, 2011; Olinghouse,
Graham, & Gillespie, 2015). No parallel signifi-
cant body of research exists for postsecondary stu-
dents. There has been research related to essay
writing on standardized tests and college success

! https://apstudent.collegeboard.org/home
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indicators for exams, such as the College Board
Advanced Placement' (Bridgeman & Lewis,
1994). However, only the final overall essay score
is evaluated. In this work, we try to drill deeper
into essays to explore if specific features in the
writing of college students is related to measures
of broader outcomes.

Automated writing evaluation (AWE) systems
typically support the measurement of pertinent
writing skills for automated scoring of large-vol-
ume, high-stakes assessments (Attali & Burstein,
2006; Shermis et al, 2015) and online instruction
(Burstein et al, 2004; Foltz et al, 2013; Roscoe et
al, 2014). AWE has been used primarily for on-
demand essay writing on standardized assess-
ments. However, the real-time, dynamic nature of
NLP-based AWE affords the ability to explore
linguistic features and skill relationships across a
range of writing genres in postsecondary educa-
tion, such as, on-demand essay writing tasks, ar-
gumentative essays from the social sciences, and
lab reports in STEM courses (Burstein et al,
2016). Such relationships can provide educational
analytics that could be informative for various
stakeholders, including students, instructors, par-
ents, administrators and policy-makers.

This paper discusses an exploratory secondary
data analysis, using AWE to examine interactions
between writing and broader outcomes measures
of student success. An evaluation was conducted
using test-taker essays from a standardized writing
assessment of postsecondary student learning out-
comes. Findings suggested that AWE features
from the essays were found to be predictors of
broader outcomes measures: college success indi-
cators and learning outcomes measures. Recent

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 101-108
Copenhagen, Denmark, September 8, 2017. (©2017 Association for Computational Linguistics



work has shown similar results, examining rela-
tionships between AWE and read ing skills (Allen
et al, 2016) versus broader outcomes measures
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Figure 1. Construct representation of the
AWE features extracted from pilot study es-
says.

(discussed here).

The work presented here broadens the lens --
exposing AWE’s potential to inform our under-
standing of the relationship between writing and
critical educational outcomes above and beyond
prevalent use cases for assessment and instruction
of writing itself.

2 The Study

An exploratory secondary data analysis was con-
ducted to examine relationships between re-
sponses to a 45-minute, timed standardized writ-
ing assessment of postsecondary student learning.
The writing assessment contains two components:
an on-demand essay task requiring students to
compose an essay in response to a prompt wherein
they must adopt or defend a position or a claim
presented in the prompt; and 15 selected-response
(SR) (multiple choice) items related to one read-
ing passage. The SR portion measures writing do-
main knowledge skills, such as English conven-
tions, vocabulary choice, evaluating evidence, an-
alyzing arguments, understanding the language of
argumentation, evaluating organization, distin-
guishing between valid and invalid arguments,
and evaluating tone. The writing assessment is
one of three component skills assessments from
an outcomes assessment suite. A second critical
thinking component test is also used for this study.
It is also a 45-minute, timed assessment, com-

% https://collegereadiness.collegeboard.org/sat

posed of 27 or 29 selected-response items depend-
ing on the test form (i.e., version of a test). The
pilot study includes 5 forms (versions) for the criz-
ical thinking test. The five forms were developed
under the same test specification and their scores
were linked to each other and can be used inter-
changeably (Liu, et al., 2016).

In this study, we examine relationships between
AWE features found in essay responses of 4-year
postsecondary students who took the writing as-
sessment, and indicators of college success.

2.1 Data

To evaluate the psychometric properties of the
assessment and to gather evidence on the reliabil-
ity and validity of the test prior to its release, the
authors’ organization had previously conducted
an extensive pilot test of the assessment at more
than 33 colleges and universities. Analyses used
all data collected from 929 students (37% first-
year, 29% sophomores, 16% junior, and 18% sen-
iors) enrolled at the institutions; students had
completed one of two pilot forms of the writing
assessment. Of the 929 students, 514 also had
scores from the pilot critical thinking assessment.

In addition to the writing assessment essay
text, the pilot test data includes human ratings for
the essay responses, and selected-response items
scores. We also had access to students’ college
GPA and some external measures such as, the
critical thinking assessment scores, SAT” or
ACT® scores, high school grade point average
(GPA). Although these variables were missing for
subsamples of students.

2.2 Methods

Several hundred AWE features were generated
for the essay writing data. These features were
drawn from a large portfolio of features used for
analysis of student writing (including features
from a commercial essay scoring engine). As this
was an initial exploratory analysis, one of the au-
thors selected an initial, manageable set of 61 con-
struct-relevant features related to subconstructs,
including English writing conventions (e.g., er-
rors in grammar and mechanics), coherence (e.g.,
flow of ideas), organization and development, vo-
cabulary, and topicality. See Figure 1 (above).
The author hypothesized that this 61-feature sub-
set would have strong predictive potential based
on the subconstruct that each feature was intended

3 http://www.act.org/
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Feature Name

Subconstruct Class

NLP-Based Feature / Resource Description

Detection of sentences containing argumentation (Beig-

argumentation argumentation man Klebanov et al, 2017)

Aggregate discourse coherence quality measure (So-
dis cohl coherence masundaran et al, 2014)

Latent semantic analysis values computed for long-dis-
gen max lsa coherence tance sentence pairs (Somasundaran et al, 2014)
dis_coh2, dis_coh3, Three measures related to topic distribution in a text
dis_coh4 coherence (Beigman Klebanov et al, 2013; Burstein et al, 2016)

Noun phrase collocations identified using a rank-ratio

based collocation detection algorithm trained on the
fphajnp collocation Google WeblT n-gram corpus (Futagi et al, 2008)

Aggregate value based on length of essay-based dis-

course element (Attali & Burstein, 2006) derived from a

discourse structure detection method that identifies essay-

based discourse elements (e.g., thesis statement)
logdta discourse (Burstein et al, 2003)

Aggregate value generated for relative grammaticality
grammaticality English conventions (Heilman et al, 2014)

Aggregate value from a set of 9 automatically-detected
logg English conventions grammar error feature types (Attali & Burstein, 2006)

Aggregate value from a set of 12 automatically-detected
nsqm English conventions mechanics error feature types (Attali & Burstein, 2006)

Aggregate value from a set of 10 automatically-detected
nsqu English conventions word usage error feature types (Attali & Burstein, 2006)

Count measures using a manually-compiled list of stative
statives narrativity verbs (i.e., express states vs. action, e.g., feel).

Aggregate scores generated related to use of personal re-
PR1, PR2 personal reflection flection language (Beigman Klebanov et al, 2017)

Noun phrases identified with a hyphenated adjective or a

prepositional phrase modifier using regular expressions
complexnp phrasal complexity defined on constituency parses.

Aggregate value generated based on sentence-type factors
svf sentence variety (Burstein et al, 2013)

Detection of main topics and related words (Beigman
topicdev topic development Klebanov et al , 2013; Burstein et al, 2016)

nwf median

vocabulary sophistica-
tion

Aggregate measure generated related to word frequency
(Attali & Burstein (2006)

wordln 2

vocabulary sophistica-
tion

Aggregate measure generated related to average word
length for all words in a text (Attali & Burstein, 2006)

variants1, variants2

vocabulary usage

Detection of morphologically complex inflectional (vari-
ants1) and derivational (variants2) word forms using an
algorithm that first over-generates variants using rules
and then filters using co-occurrence statistics computed
over Gigaword. (Madnani et al, 2016)

Detection of metaphor (Beigman Klebanov et al (2015);

metaphor vocabulary usage Beigman Klebanov et al (2016)
Count measures based on VADER" sentiment lexicon en-
sentiment vocabulary usage tries.

vocab_richness

vocabulary usage

Aggregate feature composed of a number of text-based
vocabulary-related measures (e.g., morphological com-
plexity, relatedness of words in a text). This work is not
yet published.

colprep

vocabulary usage

Aggregate measure related to collocation and preposition
use (described in Burstein et al, 2013).

Table 1: The 26 Features, Subconstructs & Methods

* https://github.com/cjhutto/vaderSentiment
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to address, and its alignment with the writing as-
sessment construct Before modeling the interac-
tions between the 61 AWE features and other
measures, an analysis was conducted to identify
features that were functionally related or strongly
correlated to remove redundant features. This
analysis identified 35 features that were mono-
tonic functions of other features (e.g., one feature
equaled the log of a second features), very highly
linearly correlated, or have very small variance.
Among features that were functionally related or
highly correlated, the feature most highly corre-
lated with human ratings of the essay were re-
tained. The outcome of this analysis was the set of
26 features listed in Table 1 (below). Only the 26
features in this subset were used for the analysis
reported here.

The analysis consisted of linear regression anal-
yses with the AWE features as the independent (or
predictor) variables and scores on the critical
thinking assessment, SAT or ACT, writing as-
sessment selected-response (SR) items, and col-
lege GPA as the dependent variables. Separate re-
gression analyses were conducted for each de-
pendent variable. For example, there was a model
predicting GPA as a function of argumentation,
another model predicting GPA as function of
dis_cohl, another model predicting GPA as a
function of gen_max_Isa, and so on for each of the
features. This modeling process was repeated for
each of the dependent variables. The goal of the
analysis was to determine how strongly each fea-
ture was related to each outcome. However, since
better writers will probably get better scores on
other tests too, we wanted to know if the features
contained unique information for predicting the
dependent variables, above and beyond how well
the essay was written. That is, we wanted to know
if two students who appear to be comparable writ-
ers based on human scores can be further differ-
entiated by the additional properties of their writ-
ing as captured by AWE. Therefore, for each de-
pendent variable, a series of regression models
were fit that predicted the dependent variable not
only as a function of each of the feature values,
but also included the length of the essay and the
average of the human ratings on a 6-point scale
(where 1 indicates the lowest proficiency and 6,
the highest). The regression models included
these two additional predictors because both are

related to the quality of the essay. Essay length is
generally a good predictor of human ratings of es-
says and related to many AWE features (Cho-
dorow & Burstein, 2004). By including these two
additional predictors in the model, we were better
able to isolate the relationship between the fea-
tures and the dependent variable distinct from
quality of the essay.

3 Results

Tables 2 to 8 (below) present the results of the re-
gression analyses for each of the 6 outcomes. For
presentation purposes, the table for each depend-
ent variable includes only those features where the
coefficient for that feature was significantly
greater than zero with a p-value less than 0.05.
Across all the dependent variables, 25 of the 26
variables appear in the table for one or more de-
pendent variables. Only one feature, metaphor,
did not emerge from the analyses. Given that 26
features were tested for each dependent variable,
there is a considerable chance that p-values below
0.05 were sometimes due to chance and did not
indicate a statistically significant relationship.
Controlling for multiple comparisons would be
required to reduce the probability of spurious p-
values of less than 0.05. P-values were used to re-
duce the size of the tables and focus on features
with the strongest evidence of a relationship with
each dependent variable.

Each row contains a standardized coefficient
from a model that included 3 features: (1) the
AWE feature, (2) the square root of the number of
words (length), and (3) the raw average of 2-3 hu-
man ratings per essay. In addition to the coeffi-
cient for the AWE feature and its standard error,
the table includes the overall R-squared (R?) for
the three independent variables (AWE feature,
length, and average human rating) and the part of
the R-squared attributable to the AWE features
(Inc. R?). The R* measures the variance explained
by the predictor.

All features in the tables explain some amount
of variance showing promise of relationships be-
tween AWE features and college success and
learning outcomes. Results show that for all out-
comes, a breadth of features emerge, covering the
English conventions, coherence or argumenta-
tion, and vocabulary subconstructs. Features
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shown in italics in Tables 2-8 indicate relatively
stronger predictors (i.e., greater explained vari-
ance), using Inc. R* of 0.05 as a “cutoff”. Vocab-
ulary sophistication (“wordln_2") and vocabulary
usage (“vocab_richness”) were the stronger pre-
dictors of the critical thinking assessment scores,
the SAT/ACT Composite Score and SAT Ver-
bal Score. Vocabulary usage (‘“sentiment”)
was a stronger predictor in ACT Science.

4 Discussion and Future Work

This exploratory, secondary data analysis illus-
trates that 1) writing can provide meaningful in-
formation about student knowledge related to
broader outcomes (college success indicators and
learning outcomes measures) and 2) AWE has
greater potential for educational analytics above
and beyond current prevalent uses for writing as-
sessment and instruction. Vocabulary features
were the most consistent and strongest predictors.
This is not surprising since most of the college
success predictors used in this study involved in-
tensive reading, and vocabulary knowledge is
shown to be related to reading comprehension
(Qian & Schedl, 2004; Quinn et al, 2015). The
detailed analyses illustrated in Tables 2 — 8 do
show statistically significant relationships be-
tween the full set of writing skill feature measures
and broader outcomes. The big picture is that this
line of research could inform instructional curric-
ulum, assessment development, and educational
policy vis-a-vis the improvement of college stu-
dent success factors.

The limitations of this project are the small size
of the data set since students were missing some of
the dependent variables, and the examination of
writing data from a single writing genre — i.e., on-
demand essay writing. However, these will be ad-
dressed in next steps, in Fall 2017-Spring 2018.
The authors will conduct a larger study with seven
4-year postsecondary partner institutions. A larger
sample of student writing will be collected from ap-
proximately 2,000 students from the sites. Student
writing data collected will include not only on-de-
mand essay writing, but students will each also pro-
vide multiple authentic writing assignments from
their courses. Both writing and disciplinary courses
will be included in the study. Student success factor

data, such as, SAT and ACT scores, college GPA,
course grades, and course completion, will also be
collected. We will administer the same writing as-
sessment and critical thinking assessment to our
outcomes measures. Using the new data, we will
apply knowledge from this study to continue to
evaluate how AWE can provide analytics related to
broader outcomes measures. Further, this larger
data set will span different genres which will afford
the opportunity to 1) replicate this exploratory
study on the same writing assessment as a baseline,
and 2) apply current and enhanced analyses to au-
thentic writing data collected from college stu-
dents.

AWE has traditionally been used for writing
assessment (automated essay scoring), and writ-
ing instruction (automated feedback about writ-
ing). The work presented in this paper explores
new territory, and brings awareness to the poten-
tial impact of NLP in a bigger educational space —
i.e., to support understanding of relationships be-
tween writing and broader outcomes of student
success.

Std.
'Variable Coeffcient [Error R’ Inc. R?
logg 0.10 0.04 0.22 0.01
nsqu 0.17 0.04 0.24 0.02
nsqm 0.11 0.04 0.22 0.01
svf 0.27 0.06 0.25 0.03
nwf median 0.18 0.04 0.24 0.03
wordln_2 0.25 0.04 0.27 0.06
PR1 -0.08 0.04 0.22 0.01
fphajnp 0.08 0.04 0.22 0.01
complexnp 0.12 0.04 0.23 0.01
variants1 0.23 0.04 0.26 0.04
vocab_richness 0.27 0.05 0.26 0.05
dis_cohl 0.40 0.13 0.23 0.01
sentiment 0.15 0.04 0.23 0.02

Table 2: Critical Thinking Composite
Score; Baseline R* with human rating and
length = 0.21
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Std. Coeffi- |Std. Er-

Variable Coefficient| Error | R |Inc. R? Variable cient ror R? |Inc. R?
nsqu 0.12 0.03 |0.23| 0.01 logg 0.11 0.04| 0.18 0.01
nsqm 0.21 0.03 ]0.25| 0.04 nsqu 0.14 0.04| 0.18 0.02
svf 0.11 0.04 |0.22| 0.01 nsqm 0.15 0.04| 0.18 0.02
wordln 2 0.19 0.03 10.24| 0.03 svf 0.29 0.06] 0.21 0.04
grammaticality 0.12 0.03 |0.22| 0.01 nwf median 0.15 0.04| 0.19 0.02
colprep 0.08 0.03 |0.22| 0.01 wordln_2 0.29 0.04) 0.24 0.07
dis coh3 -0.10 0.03 1022| 0.01 grammaticality 0.11 0.05] 0.17 0.01
dis_coh4 -0.11 | 0.05 [0.22] 0.00 colprep 0.12 0.05| 0.13)  0.01
fphajnp 0.11 0.03 1022] 0.01 argumentation 0.13 0.05] 0.18 0.01
complexnp 0.08 0.03 [0.22| 0.01 PR1 -0.15 0.04 0.19] 0.02
variants2 0.13 0.03 [0.22| 0.01 PR2 -0.12 0.05 0.18 0.0l
vocab_richness 0.13 0.03 [0.22| 0.01 fphajnp 0.11 0.05| 0.17 0.01
dis_cohl 0.23 0.09 |0.22| 0.01 complexnp 0.12 0.05 0.18 0.0l
sentiment 0.06 0.03 ]0.22| 0.00 variants| 0.13 0.05| 0.13)  0.01
statives -0.13 0.03 (023] 0.02 variants2 0.22 0.05] 0.20 0.04
gen _max_lsa5 -0.13 0.06| 0.17 0.01
Table 3: Writing Assessment Selected Re- V?cab—’ ichness 0.33 0.05] 0.23] 0.07
sponse Score; Baseline R? with human rating dis_cohl 0.28 0.13 0.17] 0.01
sentiment 0.12 0.04] 0.18 0.01

and length = 0.21

Std.
Variable Coefficient| Error | R? | Inc. R?
logg 0.09 0.04 [0.17] 0.01
nsqu 0.10 0.04 [0.17] 0.01
nsqm 0.17 0.04 [0.18] 0.03
svf 0.25 0.05 [0.19] 0.03
nwf median 0.14 0.04 |0.18| 0.02
wordln_2 0.25 0.04 [0.21] 0.06
grammaticality 0.08 0.04 |0.16| 0.01
colprep 0.10 0.04 |0.17] 0.01
PR1 -0.12 0.04 [0.17] 0.01
PR2 -0.12 0.04 [0.17] 0.01
fphajnp 0.13 0.04 [0.18] 0.02
complexnp 0.12 0.04 |0.17] 0.01
variants2 0.20 0.04 [0.19] 0.03
gen_max_lsa$ -0.12 0.06 |0.16| 0.01
vocab_richness 0.31 0.04 10.22] 0.06
dis_cohl 0.26 0.12 [0.16 | 0.01
sentiment 0.17 0.04 [0.19] 0.03

Table 4: SAT/ACT Composite Score (ACT
rescaled to the SAT Scale); Baseline R? with
human rating and length = 0.16

Table 5. SAT Verbal Score; Baseline R? with hu-
man rating and length =0.16

Variable Coefficient [Std. Error | R? [Inc. R?
nsqm 0.22 0.05 0.14] 0.04
svf 0.19 0.06 0.12] 0.02
nwf median 0.14 0.05 0.12] 0.02
wordln 2 0.20 0.05 0.14] 0.03
colprep 0.10 0.05 0.11| 0.01
PR1 -0.12 0.05 0.12] 0.01
PR2 -0.13 0.05 0.11] 0.01
fphajnp 0.10 0.05 0.11] 0.01
complexnp 0.11 0.05 0.11| 0.01
variants2 0.15 0.05 0.12] 0.02
gen_max Isa -0.16 0.07 0.11| 0.01
vocab_richness 0.24 0.05 0.14| 0.04
sentiment 0.18 0.04 0.13] 0.03

106

Table 6. SAT Math Score; Baseline R* with hu-
man rating and length = 0.10




ACT English variants| 0.17 0.06 | 0.10 0.02
Std. vocab_richness 0.26 0.07 | 0.12 0.04
Variable Coefficient|Error| R? Inc. R? ]
sentiment 0.23 0.06 | 0.12 0.05
nsqu 0.11 0.05] 0.16 0.01
nsqm 0.15 0.05] 0.17 0.02 Table 7. ACT Subject Test Scores; Baseline R
logdta -0.19 0.06 | 0.18 0.03 with human rating and length: ACT English =
Svf 0.17 0.07 | 0.17 0.02 0.15; ACT Math = 0.11; ACT Reading = 0.13;
' ' ' ' ACT Science = 0.08
wordln 2 0.16 0.06 | 0.18 0.02
dis _coh2 0.21 0.11 ] 0.16 0.01 Std.
argumentation 0.16 007 | 0.17 0.01 'Variable Coefficient |Error| R? | Inc. R?
vocab_richness 0.16 0.06 | 0.17 0.02
sentiment 024 [0.07] 019 | 0.03 R 016 1005 1007 0.02
ACT Math wordln 2 0.13 0.05 10.06| 0.02
Std. o
Variable Coefficient|Errorl R? |Inc. R grammaticality 0.13 0.05 10.06] 0.01
svf 0.18 0.07] 0.12 0.02 argumentation 0.13 0.06 [0.05| 0.01
wordln_ 2 0.15 0.06 | 0.13 0.02 .
= topicdev -0.10 0.05 [0.05| 0.01
complexnp 0.16 0.06 | 0.13 0.02
variants2 0.15 0.06 | 0.12 0.02 vocab_richness 0.12 0.05 [0.05| 0.01
iants|1 . . . . . . .
varafs 0.15 0.06 | 0.12 0.02 Table 8. Cumulative GPA; Baseline R? with hu-
vocab_richness 0.21 0.07] 0.13 0.03 man rating and length = 0.04
dis cohl 0.38 0.17 ] 0.12 0.02
sentiment 0.19 ]0.06| 0.14 | 0.03 Acknowledgements
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Abstract

Characterizing the content of a technical
document in terms of its learning utility can
be useful for applications related to educa-
tion, such as generating reading lists from
large collections of documents. We refer
to this learning utility as the “pedagogical
value” of the document to the learner. While
pedagogical value is an important concept
that has been studied extensively within the
education domain, there has been little work
exploring it from a computational, i.e., natu-
ral language processing (NLP), perspective.
To allow a computational exploration of this
concept, we introduce the notion of “peda-
gogical roles” of documents (e.g., Tutorial
and Survey) as an intermediary component
for the study of pedagogical value. Given
the lack of available corpora for our explo-
ration, we create the first annotated corpus
of pedagogical roles and use it to test base-
line techniques for automatic prediction of
such roles.

1 Introduction

We define “pedagogical value” as the estimate of
how useful a document is to an individual who seeks
to learn about specific concepts described in the
document. A computational task that operational-
izes the concept of pedagogical value is generating
an ordered reading list of documents that a learner
can traverse in order to maximize understanding of
a subject. When a professor manually constructs a
reading list about a specific subject for a student, the
professor incorporates substantial knowledge of the
subject history and interdependencies with other
related subjects. The student’s background and the
relative qualities of documents on similar subjects
are also considered. Techniques for automatically
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generating reading lists should also consider the
extent to which a learner will be able to learn from
a particular document.

Previously, Tang and McCalla (2009) have stud-
ied the “pedagogical value of papers” in the context
of paper recommendation. In their work, they define
the multiple “pedagogical values” of a paper as the
paper’s overall ratings, popularity, degree of peer
recommendation, learner gain in new knowledge,
learner interest, and learner background knowl-
edge. Other efforts on generating reading lists and
document recommendation have focused on mod-
eling concepts represented in documents (Jardine,
2014), modeling concept dependencies (Gordon
et al., 2016), and user modeling (Bollacker et al.,
1999), but there appears to be very limited work on
characterizing the learning utility between a learner
and a document. The abstract nature of pedagogical
value motivates us to identify explicit document
features that are salient to pedagogical value. With
graduate students as our target learners, we start
with a simplified model of novice, intermediate,
and advanced learners, and we focus on identify-
ing pedagogical features of documents that could
benefit different learners.

In our document annotation process, we collected
annotations for the qualitative and largely objec-
tive judgments of categories that documents belong
to: Tutorial, Survey, Software Manual, Resource,
Reference Work, Empirical Results, and Other. We
identify the seven categories based on document
objectives in presenting content, e.g., Tutorials
teach the reader step by step how to do something,
Resource papers point the reader to datasets and
implementations. Motivated by the need to con-
ceptually organize information to be pedagogically
useful, we refer to documents with different objec-
tives as fulfilling different “pedagogical roles.” In
the rest of this paper, we will use the document
category names to refer to the pedagogical roles.

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 109-120
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Identifying important qualitative features of ped-
agogical value, such as the pedagogical role, gives
a greater degree of interoperability and insight into
how we can help students learn more effectively.
Education research explains the distinction between
declarative and functioning knowledge: the former
is knowledge of content and the latter is knowledge
of how to interpret and put the content to work
(Biggs, 2011). To apply content, learners must first
understand the content; this explains why a novice
and an advanced learner trying to learn the same
subject would seek out documents with different
pedagogical roles. Tutorials, Reference Works, and
Survey papers are better introductions for a novice
with no knowledge of a subject. In contrast, an
expert would have enough background knowledge
to dive right into advanced papers presenting state-
of-the-art empirical results. Although pedagogical
roles are not the same as pedagogical value, these
pedagogical features offer some insight as a starting
point for estimating learning utility. For our study,
we collected annotations for over 1000 documents,
which we document and make available for others
to use.!

We also collected annotations for three ordinal-
scale questions of document complexity and quality
as an exercise to gauge the feasibility of the task
despite its subjective nature. However, the resulting
inter-annotator agreement results were too low to
be meaningful. These results stress the importance
of identifying more objective user and document
features relevant to pedagogical value; in this initial
work, we focus on document features.

Our contribution is twofold: We provide the first
annotated corpus of pedagogical roles for the study
of pedagogical value, and we present baseline clas-
sification results using state-of-the-art techniques
for others to work with. Our goal is to establish a
framework that can be extended to other domains,
provide empirical results to validate our dataset and
algorithms, and demonstrate the feasibility of the
proposed role classification task. In the rest of this
paper, we will describe our methods for collecting,
evaluating, and automatically generating annota-
tions in Section 2, the results of our evaluations in
Section 3, related work in Section 4, and concluding
remarks in Section 5.

thttps://doi.org/10.6084/m9.figshare.5202424

2 Methods

2.1 Creating guidelines for annotation

We performed a few rounds of annotation to de-
velop a set of roles that would be adequate and
insightful for an initial investigation. We identified
the following pedagogical roles:

* Survey: Is this document a broad survey? A
broad survey examines or compares across a
broad concept.

* Tutorial: Is this document a tutorial? Tutorials
describe a coherent process about how to use
tools or understand a concept, and teach by
example.

* Resource: Does this document describe the
authors’ implementation of a system, corpus,
or other resource that has been distributed
(e.g., public data sets or tools that have been
released under an open-source license or are
commercially available)?

* Reference Work: Is this document a collection
of authoritative facts intended for others to
refer to? Reports of novel, experimental results
are not authoritative facts; the statement “grass
is green” is. Reference Works describe different
subtopics within a concept.

e Empirical Results: Does this document de-
scribe results of the authors’ experiments?

¢ Software Manual: Is this document a manual
describing how to use different components
of a software?

e Other: Other role. This includes theoretical
papers, papers that present a rebuttal for a
claim, thought experiments, etc.

Additionally, we developed annotation guide-
lines instructing annotators to select all applicable
pedagogical roles for each document. A document
could present results of a novel method and also
direct readers to an implementation of the method,
thus making the paper both an Empirical Results
paper and a Resource paper. Another document
could simultaneously give a step-by-step tutorial
about how to use a system, present specific com-
mands on how to use components of the system,
and provide a link to where readers can download
the system, making the document a Tutorial, Soft-
ware Manual, and Resource. Although a document
could validly belong to multiple pedagogical roles,
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we have carefully gone through several iterations
of pedagogical roles to maximize the differences
between roles. In other words, the distribution of
the number of pedagogical roles per document is
skewed such that most of the documents have one
role. The Other role is an alternative category for
all other possible pedagogical role types; we do
not focus on documents with this role in this work.
We believe most of the Other documents have high
pedagogical value to a small group of experts and
are beyond the scope of this initial investigation. In
addition to these guidelines, we also provided a few
examples of documents of each pedagogical role to
annotators.

2.2 Annotation

The corpus of documents we annotated is drawn
from a collection of pedagogically diverse docu-
ments related to natural language processing. The
collection is based on the ACL Anthology, us-
ing the plain-text documents included in the ACL
Anthology Network corpus (Radev et al., 2009).
The ACL Anthology primarily consists of expert-
level empirical research papers, so the collection
was expanded to include other document types, as
described in Gordon et al. (2017). Although we
generally targeted specific document sources for
specific pedagogical roles, we still found a variety
of pedagogical roles from each source, i.e., not all
documents from Wikipedia are Reference Works,
and not all papers found while searching the web for
“tutorials” are Tuforials. For annotation, we tried
to identify a balanced sample of documents with
different roles in this corpus by using simple regular
expression pattern matching in document titles and
abstracts. For example, to roughly target Software
Manuals, we looked for documents with the phrase
“software manual,” “manual,” or “technical manual”
in the title or abstract.

To choose a reliable group of annotators, we
internally annotated pedagogical roles for a set of
documents and compared it with annotations done
by a group of students pursuing master’s degrees in
computer science. We selected 11 students whose
annotations had the highest correlation with our
annotations. These annotators were instructed to
read the abstract if there was one and to skim the rest
of the document in enough detail such that they were
able to annotate features for the document accurately
and in a timely manner. We met regularly to discuss
and come to a consensus on general document
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characteristics that were confusing to interpret.

We divided the documents for annotation into
subsets of 100 to distribute among annotators so
that each document was annotated by three anno-
tators, and each subset was annotated by the same
three annotators. We also manually filtered through
and internally annotated 155 more supplementary
documents to make up for a lack of documents that
were annotated as Surveys, Resources, and Soft-
ware Manuals. This supplementary set consists of
76 documents from the expanded ACL corpus and
79 additional documents collected from searching
the web for more Surveys, Resources, and Software
Manuals.?

2.3 Automatic prediction of pedagogical roles

We represent each document as a bag of sentence-
embedding clusters. This technique embeds all
sentences into vectors, clusters sentence vectors,
and then represents documents as distributions over
clusters. To evaluate the effectiveness of represent-
ing each document as a bag of sentence-embedding
clusters and performing k-nearest neighbors classi-
fication, we also run two baseline techniques. One
baseline technique is a multi-label centroid-based
algorithm with sentence embeddings that is related
to the single label centroid-based algorithm pre-
sented by Han and Karypis (2000) and the naive
Rocchio (1971) classification algorithm, a popular
method for text classification (Rogati and Yang,
2002). The other baseline technique is a random for-
est classification of TF—IDF scores, which allows
us to evaluate if sentence embeddings are more
useful than word frequencies for this task.

We use sentence embeddings because specific
sentences in documents are key indicators of the
pedagogical roles of the document. As an explicit
example, one might find the following in a Survey
paper: “This paper presents a survey of the field
of machine translation. . . ” A more implicit exam-
ple might be a Resource paper that mentions that
one can find the corpus created by the authors at
a specific link. We want to give much weight to
the sentences that are the best indicators of the
pedagogical roles of the document and leverage this
information to automatically predict the pedagogi-
cal roles of documents. Skip-thought vectors?3 are
able to effectively capture the semantics and syntax
of sentences in several different tasks (Kiros et al.,
mary annotations are included in our publicly

available annotation dataset.
3https://github.com/ryankiros/skip-thoughts



2015). To generate sentence embeddings needed
for the centroid-based algorithm and the bag of sen-
tence embedding clusters, we apply skip-thought
vectors to embed each sentence from our annotated
documents into a 4800-dimensional vector. We use
the pre-trained skip-thought vector model to create
sentence embeddings for each sentence.*

In our techniques, we do not pre-select sentences
to include as features for classifying a document.
We also do not treat sentences differently given
their location in different sections of a document,
e.g., introduction versus conclusion. Our corpus
is composed of research papers, book chapters,
Wikipedia articles, and web documents, so there
is not a standard format that all documents follow.
Our goal is to discover different types of sentences
that could support our defined set of pedagogical
roles as well as point to the existence of other roles.

Random Forest baseline classifier (RF): TF-
IDF scores of words in our annotated documents
are used as features for a random forest classifier.
To calculate the TF-IDF scores, we included words
that were in at least 10% and at most 90% of the
documents. We used five-fold cross-validation to
evaluate the results.>

Multi-label centroid-based algorithm with sen-
tence embeddings (CEN): Each pedagogical
role is represented by an average centroid vector,
which is calculated by adding all sentence vectors
in every document that belongs to the role, and then
dividing the sum by the total number of sentence
vectors added. When classifying a new document,
we assign each sentence vector in the new docu-
ment to a role label based on the nearest average
vector. The role labels that are predicted for more
than a third of the document’s sentences are then
predicted to be the document’s role(s). Although
this baseline method limits each document to two or
fewer role predictions, it works as a rough baseline.
99.1% of the annotated documents have one or two
pedagogical roles, and we assume our sample of
annotated documents is representative of a larger
collection of documents.

Bag of Sentence Embedding Clusters (BoSEC):
Starting with the hypothesis that semantic and syn-
tactic features of sentences are useful indicators of
pedagogical roles, we employ k-means clustering®
“Model parameter details in Supplemental Material A.1.
SModel parameter details in Supplemental Material A.2.

¢http://scikit-learn.org, model parameter details in Supple-
mental Material A.3.
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over sentence vectors to generate a representation
basis (of N clusters) for computing a single N X 1
feature vector per document. Each entry in the
feature vector is the relative frequency of the spe-
cific sentence vector cluster being observed in the
document.

K-Nearest Neighbors with Bag of Sentence Em-
bedding Clusters (KNN+BoSEC): We use k-
nearest neighbors classification to search for docu-
ments which exhibit the most similar distributions
of clusters and predict the pedagogical roles of
documents. To predict the roles of document A,
we look for the three nearest documents in the
N-dimensional vector space as calculated by the
Manhattan distance metric. The majority roles of the
three nearest documents are then predicted to be the
roles of document A. The details of KNN+BoSEC
are shown in Figure 1.

KNN+BoSEC with custom sentence encoder
(KNN+BoSEC+): The content and style of writ-
ing in the scientific papers in our corpus differs
from that of books used to train the pre-trained skip-
thoughts vector model. We also run experiments
using the KNN+BoSEC technique with a custom
sentence embedding model trained on our entire
collection of (annotated and unannotated) NLP doc-
uments. The custom sentence embedding model is
trained using the default parameters described in
the skip-thoughts training code.”

3 Results

3.1 Annotation agreement evaluation

The kappa value, which measures the likelihood
of annotator agreement occurring above chance,
is 0.68 for the pedagogical role annotations. This
kappa value was calculated as an average over the
kappa values for each subset of 100 documents.
Given the difficulty of annotating pedagogical roles,
which was confirmed by annotators, we believe
a kappa of 0.68 indicates substantial agreement
between annotators (Landis and Koch, 1977).
Table 1 shows the details of inter-annotator agree-
ment for annotated pedagogical roles from docu-
ments with only one majority role. The rows are
the majority roles, which we take to be the ground
truth pedagogical roles of documents. The columns
show the third annotator’s annotations; if the third

https://github.com/ryankiros/skip-thoughts; model param-
eter details in Supplemental Material A.4.
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Figure 1: An end-to-end overview of the BOSEC+KNN technique. In (a), we generate skip-thought
sentence vectors for every sentence in all documents. We partition all sentence vectors into clusters in (b).
In (c), we represent each document as a distribution over the clusters formed in (b). (d) shows the KNN
pedagogical role classification of documents based on the majority votes of annotated documents.

annotation matches the majority, then the partic-
ular annotation falls on the diagonal of Table 1.
Although there are 1264 majority pedagogical role
annotations, we calculated the confusion matrix for
1206 roles from documents with only one majority
role each, for ease of interpretation. From the 1206
pedagogical roles, there are 1245 role pairs between
the majority role and the third annotator’s annotated
role(s).

a ~

< § 3 § £ 2 5 3
Sur. 10 1 0 7 4 0 5 27
Tut. 2 44 6 22 6 4 14 98
Res. 0 0 5 1 1 3 5 15
Ref. 36 20 3 151 4 1 28 243
Emp. 13 8 8 15 526 3 56 629
Sof- 0 1 0 0 2 1 2 6
Other | 12 24 6 47 29 2 107 227
Total 73 98 28 243 572 14 217 1245

Table 1: Confusion matrix for annotated pedagogi-
cal roles from documents with only one majority
role. Rows are the majority roles (chosen by two
or three annotators) that we treat as ground truth.
Columns are the third annotator’s corresponding
annotations.

From Table 1, we can see that Survey documents
are sometimes confused with Reference Works, Re-
source papers are sometimes confused with Other
documents, and Software Manuals are rare. We also
see that Other documents have relatively higher
rates of misclassification. These results are con-
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sistent with feedback from annotators. The reason
why Survey documents are sometimes mistaken
for Reference Works is because both examine a
broad number of subjects in a domain; the distinc-
tion we make in our annotation guidelines is that
Reference Works are a collection of established
authoritative facts such as those one might find
in an encyclopedia, whereas Surveys focus on the
discoveries of other publications. When looking
for Resource papers, annotators rely on looking for
few indicator sentences that may be missed with a
more superficial skim of the document. Also, the
Other documents belong to a range of additional
pedagogical roles, though we do not make finer
distinctions here.

For each annotated document, we kept the ped-
agogical roles that had majority annotation agree-
ment across the three annotators who annotated
the document. If a document had no majority la-
bels, the document was filtered out of the annotated
document set. This filtered document set of 1235
documents with 1264 annotated pedagogical roles
is the one we use along with a supplementary set
for all pedagogical role prediction techniques.

Other [ 71226
Software Manual [__] 90

Empirical Results |
Reference Work [ ]| 247
Resource [__] 89
Tutorial [ ] 115
Survey [ ] 65

| 657

Figure 2: Distribution of all pedagogical role anno-
tations in the full annotated corpus used for training
classifiers



We noticed alack of Surveys, Resources, and Soft-
ware Manuals, so we internally annotated another
supplementary set of 155 documents consisting
mostly of documents of the underrepresented roles.
The full annotated corpus we use for classification
has the distribution of roles shown in Figure 2; this
full corpus includes the filtered set of 1235 docu-
ments annotated by three annotators each and 155
internally annotated documents, for a total of 1489
pedagogical role annotations over 1390 documents.
Given the corpora we selected our set of documents
to annotate from, it is not surprising that most of the
documents are Empirical Results, Reference Works,
Tutorials, or Other. 94% of the annotated docu-
ments have just one pedagogical role, and 99.1%
have one or two pedagogical roles.® The top three
most common combinations of roles for a document
are Resource and Empirical Results; Resource and
Software Manual; Tutorial, Resource, and Software
Manual.® Many documents with multiple peda-
gogical roles are Resource documents because the
authors make their work publicly available.

3.2 Pedagogical role classification evaluation

In Table 2, we see that for both random forest
classification of TF-IDF scores (RF) and sen-
tence embedding methods (CEN, KNN+BoSEC,
KNN+BoSEC+), the more samples there are for a
pedagogical role, the higher the scores are for the
role. The scores for Other documents are an antic-
ipated exception to the trend, because we do not
make more fine-grained distinctions between other
pedagogical roles in this work. Software Manuals
are also an exception to this trend, as their scores
are relatively high for the number of samples; this
is because Software Manuals are typically written
in a very distinct style. CEN generally performs
poorly across roles, doing worse than the baseline
random forest classification with TF-IDF. This sug-
gests that word frequency is more informative about
the pedagogical roles of a document than a single
representative vector per role.

With the exception of Software Manuals, RF
is able to predict roles with more samples (Refer-
ence Work, Empirical Results, Other) with higher
precision compared to roles with fewer samples
(Survey, Tutorial, Resource). KNN+BoSEC and
KNN+BoSEC+ have comparable precision for roles
with more samples, but have significantly higher
precision for roles with fewer samples. Compared

8See Figure 3 in Supplemental Material for more details.
9See Figure 4 in Supplemental Material for more details.
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to RF, KNN+BoSEC and KNN+BoSEC+ also have
higher recall across all roles. KNN+BoSEC+ has
the highest F; scores for all pedagogical roles. We
attribute the fact that KNN+BoSEC+ is generally
able to do better than KNN+BoSEC to using a
custom sentence encoder trained on scientific docu-
ments.

Given that we use keyphrases to find documents
that likely belong to specific pedagogical roles, we
also want to see if we could achieve performance
similar to that of our sentence embedding-based
methods by simply classifying documents based on
keyphrases. We manually curate a list of keyphrases
for two pedagogical roles: “software manual,” “man-
ual,” and “technical manual” for Software Manuals,
and “tutorial” for Tutorials. We then classify a docu-
ment as a certain role if any of the role’s keyphrases
are present in the first five sentences of the docu-
ment, where the title counts as the first sentence.
Classifying Software Manuals with this method
has a precision of 0.15, a recall of 0.09, and an F;
score of 0.11. KNN+BoSEC+ dramatically outper-
forms this method with the specified keyphrases
for Software manuals. Classifying Tutorials with
this method has a precision of 0.60, a recall of
0.50, and an F; score of 0.55. While the keyphrase
classification results for Tutorials are closer to the
corresponding KNN+BoSEC+ results, we think
that the KNN+BoSEC+ results would also improve
if it had access to the list of keyphrases as features,
though we leave that for future experimentation.
These initial keyphrase classification experiments
suggest that sentence-embedding-based methods
are generally more effective and robust than hand-
crafting keyphrases for each pedagogical role.

The confusion matrix in Table 3 allows us to
make judgments about documents of different peda-
gogical roles, as predicted by KNN+BoSEC+. The
rows are the ground truth roles, and the columns
are the predicted roles. We can see that Surveys, Re-
sources, and Other documents are often mistaken to
be documents with Empirical Results. Additionally,
there are relatively more instances of Surveys, Re-
sources, and Other documents where the classifier
is unable to make a prediction. Overall, these results
suggest that the misclassifications are an effect of
an unbalanced dataset with many more samples of
Empirical Results, rather than an inherent lack of
distinctness between documents of different roles.

Through a qualitative analysis of sentences from
the clusters most frequently associated with each
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Table 2: Precision, recall, and F; scores by pedagogical roles for all methods. Support is the actual number
of documents with each role. avg / total computes weighted averages of scores across all roles. All values

are averaged over a five-fold cross validation.
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Sof. 10 1.6 06 0.2 0 98 0 04| 126
Oth. |34 0.6 0.6 32 8 0 218 7.6| 452
Tot. |7.8 148 44 438 128.8 10.8 32.8 22 |2652

Table 3: Ground truth pedagogical roles (rows) ver-
sus predicted roles (columns) using KNN+BoSEC+.
We calculate the confusion matrix for documents
with only one ground truth role. All values are
averaged over a five-fold cross validation.

pedagogical role, we observe that example sen-
tences from different roles align with our intuitions
of what exemplary sentences from different roles
should be. The Survey sentences describe progress
in different areas of research; the Tutorial sentences
explain details of specific concepts and methods;
the Software Manual sentences give information
about how to use a tool. ' Sentences from the most

19For more details, see Table 4 in Supplemental Material.

frequent clusters of a role do not explicitly mention
the roles of the paper, e.g., “This paper presents
a tutorial. . . ” This phenomenon makes sense for
two reasons. One reason is that the majority of
documents do not explicitly say what kind of docu-
ment they are. The second reason is that even when
documents do explicitly state their role, the actual
content of the document may disagree with the
declared role. For example, some papers are writ-
ten to accompany tutorials presented at workshops.
The papers will explicitly declare themselves to be
tutorials, but the paper will only include an abstract
and not the tutorial itself. Following our annotation
guidelines, we do not label these documents as 7uto-
rials. This implicit characterization of a document’s
pedagogical roles through sentences means that a
method that merely searches for explicit mentions
of keywords or declaration of the document’s roles
would not be an effective approach to this prob-
lem. Thus, these example sentences qualitatively
validate our embedding and clustering approach to
pedagogical role classification.

4 Related Work

To the best of our knowledge, there is not much
prior work that is directly related to investigating
relevant pedagogical features of documents through
pedagogical roles. There are some document recom-
mendation systems that try to find documents that
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are both conceptually relevant to a user’s query and
pertinent to the user’s interest, level of background
knowledge, etc. For example, Semantic Scholar!!
allows users to filter an automatically generated
reading list by “overviews,” which are analogous to
our definition of Surveys. PageRank accounts for
popularity when identifying documents of interest
(Page et al., 1999). Tang and McCalla (2004) con-
sider the user’s background knowledge, interest to-
wards specific topics, and motivation when making
recommendations. Gori and Pucci (2006) present a
research paper recommender system based on the
random walk algorithm and a small set of papers
that users mark as relevant. Santos and Boticario
(2010) emphasize that recommendation systems in
the e-learning domain should be “guided by educa-
tional objectives” and define a semantic model for
recommendation objects.

Previous efforts at investigating the value of doc-
uments include evaluating the reading difficulty of
documents, citation graphs, and surveys, though
none really address the problem of estimating the
pedagogical value of a document to a learner while
focusing on the interpretability of the results. The
interpretability of results is especially important
in education because educators need to be able to
provide clear feedback to students. In automatic
essay scoring, researchers look at features such as
word count, semantic and syntactic coherence, sen-
tence length, vocabulary complexity, and the use
of certain phrases that facilitate the flow of ideas,
e.g., “first of all” (Burstein et al., 2004; Shermis and
Burstein, 2013). These features are a starting point
to estimate the value of a document, but to estimate
pedagogical value, we must consider if and how
these features would affect different learners. Other
directions of research use the influence of a paper
within a citation graph as a proxy for the value
of the paper, following the reasoning that good
quality papers would be more important “nodes” in
a citation graph (Ekstrand et al., 2010); however,
documents that are important “nodes” in the graph
do not necessarily have high pedagogical value
for all learners. Tang and McCalla (2009) present
surveys to students as an annotation method to es-
timate the value of the paper to the learner. They
annotate individual features of job-relatedness, in-
terestingness, usefulness, etc., using ordinal-scale
values, and study the partial correlations between
features to analyze the composition of features that

Uhttps://www.semanticscholar.org
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contribute to the pedagogical value of a document.
Our approach is different in that (a) we develop an
intermediate representation of pedagogical value
that can be largely objectively annotated, (b) we
evaluate correlation between annotators and not
between features, and (c) we additionally present
baseline results of pedagogical role prediction.

The classification task described in this work
is also related to text classification, a task with a
long history in NLP. Sebastiani (2002) presents a
detailed survey of tasks and techniques used in text
classification up until the early 2000s. Joachims
(1998) presents experimental results that justify the
use of Support Vector Machines (SVMs) for text
classification. Soucy and Mineau (2001) use TF-
IDF scores and a KNN model to perform different
text categorization tasks.

5 Conclusion

In this paper, we have described (a) our creation of
the first annotated corpus of pedagogical roles for
the study of pedagogical value and (b) our use of
sentence embeddings and clustering techniques to
develop a baseline for pedagogical role classifica-
tion. The inter-annotator agreement for the annota-
tion of pedagogical roles is substantial and thus a
good basis to develop pedagogical role classification
techniques and intuitions about pedagogical value
upon. Analyses of our bag of sentence-embedding
clusters technique support our intuition that certain
sentences in a document are strong indicators of the
pedagogical roles of the document. The next steps
are to expand the set of roles as needed and apply
our techniques to other domains in order to work
towards a general approach to estimating pedagog-
ical value. We believe it is important to make our
corpus and annotations public, as feedback from
other researchers will help improve the quality and
scope of our corpus as we expand it.
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A Supplemental Material

A.1 Skip-thought vector parameters

Each sentence vector has 4800 dimensions, with
the first 2400 dimensions as the uni-skip model,



and the latter 2400 dimensions as the bi-skip model.
The model has the following parameters: recurrent
matrices initialized with orthogonal initialization,
non-recurrent matrices initialized from a uniform
distribution in [-0.1, 0.1], mini-batches of size 128,
gradients clipped when the norm of the parameter
vector is greater than 10, and the Adam algorithm
for optimization.

A.2 Random forest classification parameters

For the random forest classifier, we used the Gini
impurity function to estimate the quality of splits.
When looking for the best split, the classifier consid-
ers the square root of the total number of features.
The maximum depth of the tree is 75, and the classi-
fier splits on a minimum of 5 samples at the internal
nodes. We use 10 trees and a minimum of 1 sample
at each leaf node.

A.3 Mini-batch K-means parameters

In this clustering technique, random subsets of the
feature vectors are used in each iteration. We train
the model with 300 clusters, early stopping if there
is no improvement in the last 50 mini batches, a
mini batch size of 4800, and the fraction of the
maximum number of counts for a cluster center to
be reassigned is 0.0001. We had experimented with
different cluster sizes, and found 300 clusters to
be the right size to maintain coherency within and
distinction across clusters.

A.4 Custom skip-thought vector model
parameters

Specifically, the RNN word embeddings have 620
dimensions, and we use a uni-skip model with a
hidden state size of 2400. Both the encoder and
the decoder are GRUs. The size of the decoder
vocabulary is 20000, and the maximum length of a
sentence is 30 words; additional words in sentences
are ignored. Our custom model is trained for 5
epochs, has a gradient clipping value of 5, has a
batch size of 64, and uses the Adam optimization
algorithm.
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Figure 3: Distribution of number of pedagogical roles per document in full annotated corpus

Resource; Empirical Results
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Figure 4: Distribution of pedagogical roles for documents in full annotated corpus with more than one role
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Pedagogical role  Cluster ID Example sentence

Survey 250 This view has been worked out in the text generation and dialog
community more than in the text understanding community (Mann
and Thompson, 1987; Hovy, 1993; Moore, 1994).

123 Confronted with the claim that Game Theory should be the the-
oretical backbone to NLG, some people might respond that no
new backbone is needed, because the theory of formal languages,
conjoined with a properly expressive variant of Symbolic Logic,
provides sufficient backbone already.

Tutorial 209 As you guessed from my explanations of different notations,
different regex engine designers unfortunately have different ideas
about the syntax to use.

95 This information is incorporated in the tri-factorization model via
a squared loss term, where the notation Tr (4) means trace of the
matrix A.
Resource 147 >>> windowdiff(sl, s1, 3)
255 ..print('', repr(corpus.fileids())[:60])

Reference Work 155 The greater the resumption of the activity (i.e., mismatch nega-
tivity), the more different the neurological processing of the new
item.

86 A trajectory of an object is determined by its different centers of

gravity relative to an underlying coordinate system.

Empirical Results 183 5.3 Using Multiple Knowledge Sources
62 The NCC open track is shown in the following table 2.

Software Manual 147 >>> clf. fit(X, Y)
152 An example of this approach can be found in the /verbi folder in
the Italian MOR grammar.
Other 279 The problem in the cases (3) and (4) is how and why the hearer

fails to derive implicatures.

157 Proofs of the form suppose-absurd F D are called proofs by
contradiction.

Table 4: Example sentences from the clusters most frequently associated with each pedagogical role. The
clusters representing mostly punctuation, numbers, or incoherent strings were not included in calculating
most frequently associated clusters.
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Abstract

Given the lack of large user-evaluated cor-
pora in disability-related NLP research
(e.g. text simplification or readability as-
sessment for people with cognitive dis-
abilities), the question of choosing suit-
able training data for NLP models is not
straightforward. The use of large generic
corpora may be problematic because such
data may not reflect the needs of the target
population. At the same time, the avail-
able user-evaluated corpora are not large
enough to be used as training data. In
this paper we explore a third approach, in
which a large generic corpus is combined
with a smaller population-specific corpus
to train a classifier which is evaluated us-
ing two sets of unseen user-evaluated data.
One of these sets, the ASD Comprehen-
sion corpus, is developed for the purposes
of this study and made freely available.
We explore the effects of the size and type
of the training data used on the perfor-
mance of the classifiers, and the effects of
the type of the unseen test datasets on the
classification performance.

1 Introduction

When developing educational tools and applica-
tions for students with cognitive disabilities, it is
necessary to match the readability of the educa-
tional materials to the abilities of the students and
to adapt the text content to their needs. Both text
adaptation and readability research for people with
cognitive disabilities are thus dependent on evalu-
ation involving target users. However, there are
two main difficulties in collecting data from users
with cognitive disabilities: i) experiments involv-
ing those users are expensive to perform and ii)
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the task of text evaluation is challenging for target
users because of their cognitive disability.

Following from the first difficulty, user-
evaluated data is scarce and the majority of NLP
research for disabled groups is done by exploit-
ing ratings or simplification provided by teachers
and experts (Inui et al., 2001; Dell’Orletta et al.,
2011; Jordanova et al., 2013). Examples of such
a corpora are the FIRST corpus (Jordanova et al.,
2013), which contains 31 original articles and ver-
sions of the articles that had been manually simpli-
fied for people with autism, and a corpus of man-
ually simplified sentences for congenitally deaf
Japanese readers (Inui et al., 2001). Henceforth
in this paper, we refer to such manually simpli-
fied corpora as population-specific corpora. These
corpora have not been evaluated by end users with
disabilities.

As a result of the second difficulty, the fact
that people with cognitive disabilities find text
evaluation challenging, the size of user-evaluated
datasets is rather limited. For example, to the
best of our knowledge, there is currently only one
readability corpus evaluated by people with intel-
lectual disability, called LocalNews (Feng, 2009).
This corpus contains 11 original and 11 simplified
news stories. In this paper we present another cor-
pus evaluated by people with autism containing a
total of 27 documents. Henceforth in the paper,
we refer to these type of corpora as user-evaluated
corpora.

Given the lack of large population-specific or
user-evaluated corpora in disability-related re-
search, the question of choosing suitable train-
ing data for NLP models is not straightforward.
While the use of large generic corpora as train-
ing data may be inadequate as such data may not
reflect the needs of the target population, the use
of population-specific and user-evaluated corpora
as training data is problematic due to the scarcity

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 121-132
Copenhagen, Denmark, September 8, 2017. (©2017 Association for Computational Linguistics



of such data. In this paper we explore a third ap-
proach, in which a large generic corpus is com-
bined with a smaller population-specific corpus to
train

a system to predict the difficulty of text for peo-
ple with autism. We compare the performance of
this approach to: i) an approach exploiting only
the large generic corpus and ii) an approach ex-
ploiting only the small population-specific corpus.
We also compare the performance of the classifi-
cation models derived from two different machine
learning algorithms. All classifiers trained on the
different corpora are then evaluated on two small
sets of user-evaluated corpora (unseen data), one
of which was developed for the purpose of this
study (Section 3).

Contributions We developed the ASD Com-
prehension Corpus containing 27 educational
articles evaluated by readers with autism and
classified as easy and difficult based on partici-
pants’ answers to comprehension questions. The
texts and the answers of each participant for
each question are currently available at: https:
//github.com/victoria—-ianeva/
ASD-Comprehension-Corpus'. Further,
we explore i) the effects of the size and type of
the training data on the external validity of the
classifiers and ii) the effects of the type of unseen
test datasets (only original versus original + sim-
plified articles) on the classification performance.
The system used in these experiments is available
at: http://rgcl.wlv.ac.uk/demos/
autor_readability

The rest of this paper is organised as follows.
The next section presents related work relevant to
this research, while Section 3 describes the pro-
cess for the development of the ASD Comprehen-
sion corpus. Section 4 describes the corpora used
in the study. Section 5 presents the derivation of
the classification models, and Section 6 presents
a discussion of the main findings, which are sum-
marised in Section 7.

IThe repository also contains the answers of participants
from a control group (without autism), which were not ex-
plored in this article but may be useful to the community for
investigating between-group differences. For more informa-
tion about the control group see Yaneva (2016).
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2 Related Work

Previous work from the fields of psycholinguis-
tics, pertaining to language and autism, readability
assessment, and domain adaptation are relevant to
the research presented in our current paper.

2.1 Aautism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurode-
velopmental condition affecting communication
and social interaction. The reading difficulties of
some people with ASD include, but are not lim-
ited to, difficulties resolving ambiguity in mean-
ing (Happé and Frith, 2006; Happe, 1997; Frith
and Snowling, 1983; O’Connor and Klein, 2004),
difficulties comprehending abstract words (Happé,
1995), difficulties in the syntactic processing of
long sentences (Whyte et al., 2014), difficulties
identifying the referents of pronouns (O’Connor
and Klein, 2004), difficulties in figurative lan-
guage comprehension (MacKay and Shaw, 2004),
and difficulties in making pragmatic inferences
(Norbury, 2014). Adults with autism have also
been shown to process images inserted in easy-to-
read documents differently from non-autistic con-
trol participants (Yaneva et al., 2015).

2.2 Readability Assessment

Readability is a construct which has been defined
as the ease of comprehension because of the style
of writing (Harris and Hodges, 1995). Histori-
cally, the readability of texts has been estimated
via formulae exploiting shallow features such as
word and sentence length (Dubay, 2004); cog-
nitive models exploiting features such as age of
acquisition of words and text cohesion (McNa-
mara et al., 2014) and, more recently, thanks to
advances in Natural Language Processing (NLP),
readability has also been estimated via computa-
tional models (Collins-Thompson, 2014; Francois,
2015). Advances in the fields of NLP and Artifi-
cial Intelligence have enabled both the faster com-
putation of existing statistical features and the de-
velopment of new NLP-enhanced features (e.g.,
average parse-tree height, average distance be-
tween pronouns and their anaphors, etc.) which
can be used in more complex methods of assess-
ment based on machine learning. An example of a
readability model targeted to a specific application
of readability assessment are the unigram models
by Si and Callan (2001), which have been found
particularly suitable for assessment of Web con-



tent, where the presence of links, email addresses
and other elements biases the traditional formulae.

In terms of readability assessment for readers
with cognitive disabilities, previous research has
shown that readability features such as entity den-
sity per sentence and lexical chains (synonymy
or hyponymy relations between nouns) are useful
for estimating the readability of texts for readers
with mild intellectual disability (Feng et al., 2010).
This is due to the fact that these readers strug-
gle to remember relations that hold within- and
between-sentences (Feng et al., 2010). Similarly,
features such as word length or word frequency are
more relevant for readability assessment for peo-
ple with dyslexia because they struggle with de-
coding particular letter and syllable combinations
(Rello et al., 2012). In the case of autism, an im-
portant issue has been the lack of corpora whose
reading difficulty levels have been evaluated by
people with autism. For this reason most read-
ability research for this population has so far fo-
cused on texts simplified by experts (Stajner et al.,
2014). User-evaluated texts were used for the first
time in a study, where the discriminatory power of
a number of features was evaluated on a prelimi-
nary dataset of 16 texts considered easy or difficult
to comprehend by people with autism (Yaneva and
Evans, 2015).

2.3 Domain adaptation

Supervised machine learning and statistical meth-
ods like the ones used in this paper benefit from
the availability of large amounts of training data.
However, in many cases it is not easy to obtain
enough training data for specific domains or ap-
plications. As a result it is not uncommon that re-
searchers train on data from one domain and test
on data from a different one. As would be ex-
pected, this usually leads to lower levels of per-
formance. The field of domain adaptation is ad-
dressing this problem by proposing methods that
can perform well even when the training and test-
ing domains are different. In many cases this is
achieved by exploiting a small training corpus of
the same domain as the test documents. Domain
adaptation has been used for a variety of tasks
in NLP, including statistical machine translation
(Axelrod et al., 2011), sentiment analysis (Blitzer
et al., 2007; Glorot et al., 2011) and text classifi-
cation (Xue et al., 2008).

Recent studies in the field of readability and lan-
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guage proficiency have used a similar approach
to the one proposed in this paper. For example,
Pilan et al. (2016) tackle the problem of data spar-
sity when classifying language proficiency levels
of learner-written output by incorporating knowl-
edge in the trained model from another domain
consisting of input texts written by teaching pro-
fessionals for learners. Their results indicated
that the weighted combination of the two types of
data performed best, even when compared to sys-
tems based on considerably larger amounts of in-
domain data. In this paper we go a step further by
applying this approach to readability classification
for people with cognitive disabilities.

3 Evaluation of Text Passages by
Readers with Autism

We present a collection of 27 individual
documents for which the readability was
evaluated by 27 different people with a for-
mal diagnosis of autism. The collection is
henceforth referred to as the ASD Compre-
hension corpus and is available at: https:
//github.com/victoria-ianeva/
ASD-Comprehension—-Corpus. Participants
were asked to read text passages and answer three
multiple choice questions (MCQs) per passage.
Evaluation of the difficulty of the texts was then
based on their answers to the questions’

Participants The evaluation of the texts was
performed in three cycles of data collection and in-
volved 27 different participants with autism. Texts
1-9 and 21-27 were evaluated by Group 1, con-
sisting of 20 adult participants (13 male, 7 female)
with mean age in years p = 30.75 and standard
deviation 0 = 8.23, while years spent in educa-
tion, as a factor influencing reading skills, were
W 15.31, with 0 = 2.9. Texts 10-17 were
evaluated by Group 2, consisting of 18 adult par-
ticipants (11 male and 7 female) with mean age
p = 36.83, 0 = 10.8 and years spent in educa-
tion p = 16, o = 3.33. Group 3 evaluated texts
18-20 and consisted of 18 adults (12 male and 6
female) with mean age 1 = 37.22, 0 = 10.3 and
years spent in education p = 16, o = 3.33. All
participants had a confirmed diagnosis of autism

2While reading the texts and answering the questions, the
eye movements of the participants were recorded using an
eye tracker; however, the recorded gaze data was not used in
this study, hence we do not report details about the gaze data
except when describing the data collection procedure. More
details can be found in Yaneva (2016).



and were recruited through 4 local charity organi-
sations. None of the 27 participants had other con-
ditions affecting reading (e.g. dyslexia, intellec-
tual disability, aphasia etc.). All participants were
native speakers of English.

Materials A total of 27 text passages of varying
complexity were collected from the Web. The reg-
isters were miscellaneous, covering educational (7
documents), news (10 documents) and general ar-
ticles (3 documents), as well as easy-to-read texts
(7 documents). The average number of words
per text was ;4 = 156 with standard deviation
o = 49.94. The texts covered a range of readabil-
ity levels, where the average was p = 65.07 with
o = 13.71 according to the Flesch Reading Ease
(FRE) score (Flesch, 1949), which is expressed on
a scale from O to 100 (the higher the score, the
easier the text).

A limitation of the study is the small size of the
corpus, which was necessary in order to avoid fa-
tigue in the participants and to comply with eth-
ical considerations. By comparison, LocalNews
(Feng, 2009), which is the only other corpus for
English whose readability has been evaluated by
people with cognitive disabilities contains 11 orig-
inal and 11 simplified texts.

Design of the Multiple-Choice Questions
Since people with ASD are generally known to
understand many parts of what they read literally
(Happé and Frith, 2006; Happe, 1997; Frith and
Snowling, 1983; O’Connor and Klein, 2004),
it is of interest to examine different types of
comprehension of the texts in the ASD corpus.
Impairment in specific types of reading com-
prehension merits the exploration of readability
features related to those specific types. Table
1 shows the main types of comprehension we
examine in our study following a taxonomy
formulated by Day and Park (2005). The table
also shows the relationship between the types of
comprehension examined and the reading profile
of people with autism.

These types of reading comprehension were ex-
amined through the inclusion of three multiple-
choice questions per text passage, each of which
contained three possible answers. The example
below is a question examining the ability to make
inferences:

Black peppered moths became more numerous in
urban areas because:

a) They were mutants

c) They were camouflaged due to the airborne
pollution

d) The airborne pollution blackened the white
moths with soot

Apparatus and Procedure All participants
were verbally instructed about the purpose and
procedure of the experiment and given a partici-
pant information sheet. Once they were familiar
with the implications of the research, they signed
a consent form, verbal instruction was reinforced
and demographic data about age, education and
diagnosis was collected. Eye tracking data was
recorded’, hence the eye tracker was calibrated by
each participant before the start of the experiment.
Texts were presented on a 19” LCD monitor. In or-
der to maximise the internal validity of the experi-
ment, the texts were presented in random order to
each participant. This controlled for factors such
as fatigue or participants becoming accustomed to
the types of questions asked. The order of ques-
tions after each text was also randomised, so that
it would not influence the answers given by the
participants. The effects of memory were con-
trolled by having the relevant passage constantly
displayed on the screen. Participants could there-
fore refer to it whenever they were not sure about
the information it contained. While the effects
of background knowledge could not be eliminated
entirely, the selection of texts was made in such
a way as to ensure that this effect would be min-
imised as far as possible. The participants read all
texts and answered all questions, taking as many
breaks as they requested. At the end of the experi-
ment, participants were debriefed.

Development of the Gold Standard for ASD
The 27 texts from the ASD corpus were used for
evaluation of the document-level classifiers. They
were divided into classes of easy and difficult texts
based on the answers to the multiple choice ques-
tions (MCQs). Each text was evaluated by three
MCQs and each correct answer was given 1 point,
while each incorrect answer was awarded O points.
Thus, if a participant had answered two out of
three questions correctly for a given text, then that
text had an answering score of two for this par-
ticipant. After that, all answering scores for the
participants were summed for each text. The texts

3The recorded eye tracking data is not examined in this
study.

124



Comprehension Characteristics (Day and Park, 2005)

Relation to ASD

Literal Understanding of the straightforward meaning Readers with ASD have predominantly literal

of the text: facts, dates, vocabulary, etc understanding of language (MacKay and Shaw,
2004).

Reorganisation The ability to combine explicitly given informa-  Since this type of question is based on literal
tion from different parts of the text: “Maria  understanding it could provide insights exclu-
Kim was born in 1945”; “Maria Kim died in  sively into the role of context, the use of which
1990”. How old was Maria Kim when she is challenging for people with ASD (O’Connor
died?”. and Klein, 2004).

Inference The ability to use two or more pieces of infor-  Types of inferences challenging for ASD: Infer-

mation to arrive at a third piece of information
that is implicit: “He rushed off, leaving his bike
unchained” => He left his bicycle vulnerable

ring given or presupposed knowledge as well as
new or implied knowledge derived from mental
state words, bridging inferences, figurative lan-

to theft.

guage.

Table 1: Types of comprehension examined and their relation to ASD

were then ranked and partitioned at a threshold
into two groups. Application of a Shapiro-Wilk
test showed that the data was non-normally dis-
tributed and the two groups were thus compared
using the non-parametric Wilcoxon Signed Rank
test. The results indicated that the two groups of
texts were significantly different from one another
(z —6.091, p < 0.0001). Thus 18 texts were
classified as easy and 9 texts were classified as dif-
ficult.

4 Corpora

This section describes the corpora used for train-
ing and evaluation of the readability classifiers.
We train classifiers on three corpora, presented be-
low: i) the WeeBit corpus (Vajjala and Meur-
ers, 2012), a comparatively large generic corpus
used in readability research; ii) the FIRST cor-
pus, a small corpus containing original and man-
ually simplified texts, a subset of which have been
evaluated in terms of readability in experiments in-
volving 100 people with autism (Jordanova et al.,
2013) and finally, iii) a combination of the two.
After that we tested our classifiers by applying
them to previously unseen user-evaluated data.
These data consist of two corpora, the readabil-
ity of which has been evaluated by people with
autism (The ASD Comprehension corpus, pre-
sented above), and by people with intellectual dis-
ability (LocalNews corpus (Feng et al., 2009)).

4.1 The WeeBit Corpus

The WeeBit corpus (Vajjala and Meurers, 2012)
contains educational documents obtained from
the Weekly Reader* and BBC-BiteSize® web-

*http://www.weeklyreader.com/
>http://www.bbc.co.uk/education
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sites and comprises two sub-corpora of the same
names. The Weekly Reader is an educational web-
newspaper containing fiction, news and science ar-
ticles. The WeeklyReader is intended for children
aged 7-8 (Level 2), 8-9 (Level 3), 9-10 (Level 4)
and 9-12 (Senior level). BBC-BiteSize is also an
educational site containing articles at 4 levels cor-
responding to educational key stages (KS) for chil-
dren between ages 5-7 (KS1), 7-11 (KS2), 11-14
(KS3) and 14-16 (GCSE). The combined WeeBit
corpus comprises 5 readability levels correspond-
ing to the Weekly Reader‘s Level 2, Level 3 and
Level 4 and BBC-BiteSize KS4 and GCSE levels.
The corpus contains 615 documents per level. The
average document length measured in number of
sentences is 23.4 sentences at the lowest level and
27.8 sentences at the highest level.

The WeeBit corpus was the most appropriate to
use for the purpose of our work due to the fact that
it contains educational and generally informative
articles and due to its large size relative to other
readability corpora for English. Examples of other
corpora include Encyclopedia Britannica (Barzi-
lay and Elhadad, 2003) (40 documents), Literacy-
works (Petersen and Ostendorf, 2007) (around 200
documents) or the WeeklyReader (Allen, 2009)
on its own. An alternative was to use Wikipedia
and Simple English Wikipedia® as they contain
a very large number of articles; however, claims
that Simple English Wikipedia articles are more
accessible than English Wikipedia articles have
been disputed (Xu et al., 2015; §tajner etal., 2012;
Yaneva, 2015).

As the primary purpose of our work is to build
two-level readability classifiers, we normalized
the WeeBit corpus to include texts of only two

Shttp://simple.wikipedia.org/wiki/Main Page



readability levels: easy and difficult. Thus, the dif-
ficult texts in our corpus were the ones with class
labels BitGCSE and BitKS3 (age 11-16) and the
easy documents were the ones with class labels
WRLevel2 and WRLevel3 (age 9 -11). Texts from
Weekly Reader Level4d were excluded from the
dataset, as they were intended for students aged
9-12, which overlaps with Weekly Reader Level3
(9-10), BitKS2 (7-11), and BitKS3 (11-14). Thus,
the remaining data consisted of 1,610 documents
divided into two equally sized classes of easy and
difficult documents.

4.2 The FIRST corpus

The FIRST corpus consists of 25 documents of
the registers of popular science and literature (13
texts) and newspaper articles (12 texts) (Jordanova
et al., 2013). These texts were presented in both
their original and simplified forms, so that the cor-
pus contains 25 paired original and simplified doc-
uments (50 documents in total). The simplification
was performed by 5 experts working with autistic
people, who were given ASD-specific text simpli-
fication guidelines, specified in (Jordanova et al.,
2013), which contains full details of the simplifi-
cation procedure and the characteristics of the cor-
pus. In addition to the 50 texts contained in that
corpus, original and simplified versions of 6 ad-
ditional texts were produced in accordance with
the specified guidelines. These 12 texts were then
evaluated on a sample of 100 adults with autism
as part of the evaluation method in the EC-funded
FIRST project.” Statistically significant differ-
ences in the levels of comprehension for texts
from the two classes are reported (Jordanova et al.,
2013). These texts were added to the FIRST cor-
pus, which thus contains 31 original and 31 simpli-
fied versions of documents, of which 6 documents
per class were evaluated by people with autism.

4.3 LocalNews Corpus

Similar to the ASD Comprehension corpus, the
LocalNews corpus (Feng et al., 2009) is used as
test data for evaluating the classifiers. The Local-
News corpus consists of 11 original and 11 simpli-
fied news stories and is, to the best of our knowl-
edge, the only other resource in English, for which
text complexity has been evaluated by people with
intellectual disability. The articles were first man-
ually simplified by humans, a process in which

"FIRST project. [online] available at: http://www.first-
asd.eu/[Last accessed: 19/05/2017]
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long and complex sentences were split and im-
portant information contained in complex prepo-
sitional phrases was integrated in separate sen-
tences. Lexical simplification included the substi-
tution of rare words with more frequent ones and
the deletion of sentences and phrases not closely
related to the meaning of the text. The texts were
then evaluated by 19 adults with mild intellectual
disability, who showed significant differences in
their comprehension scores for the two classes of
documents (Feng et al., 2009).

5 Model Training and Evaluation

This section presents the experiments comparing
the performance of the different classifiers.

5.1 Algorithms

The document-level classifier was built using su-
pervised learning algorithms implemented in the
Weka toolkit (Frank and Witten, 1998). We evalu-
ated a number of algorithms in the WEKA toolkit
and selected the two which performed best when
evaluated using 10-fold cross validation over the
WeeBit corpus (Random Forests) and the FIRST
corpus (Bayes Net). The Random Forest algo-
rithm (Breiman, 2001) is a decision tree algorithm
which uses multiple random trees to vote for an
overall classification of the given input. The Bayes
Net classifier is the implementation of a Bayesian
Network classifier (Heckerman et al., 1995) avail-
able in Weka. Bayesian networks are probabilis-
tic graphical models which were shown to be very
successful in domain adaptation problems (for ex-
ample Finkel and Manning (2009)). For both
learning algorithms we used the default values for
their parameters as provided by Weka. Although
there is scope for tuning of these parameters, we
did not have access to enough data to explore this
direction.

5.2 Baseline

We use the Flesch-Kincaid Grade Level readabil-
ity formula (Kincaid et al., 1981) as a baseline for
document classification due to the fact that it is one
of the best-performing predictors of text difficulty,
and has been used as a baseline in other readabil-
ity estimation models (Vajjala Balakrishna, 2015).
The baseline values are computed by using the
score of the formula as a single feature in the clas-
sification model.



Random Forests Bayes Net

Feature Description W | F WF | W | F | WF
1. Long words Proportion of words with 3 or more syllables — | + — — = _
2. Average word length Average number of syllables, all words - |+ — — | = —
3. Possible senses Sum of all senses for all words in the text — | + — — | = —
4. Polysemous words Words with more than one sense in WordNet — | + — — | = —
5. Polysemous type ratio Ratio polysemous word types / all word types — | + + + | — +
6. Type-token ratio Total number of types/number of tokens — | = _ — | = —
7. Vocabulary variation Word types/ common words not in the text — | = — — | = —
8. Numerical expressions Number of numerical expressions — | + — — | = _
9. Infrequent words Not in 5,000 most freq. words in English — | + — — | = —
10. Total number of words Total number of words in the text - | - — — | = —
11. Dolch-Fry Index Fry 1000 Instant Word List/Dolch Word List — - | -

12. Number of passive verbs Number of passive verbs — |+ — — = —
13. Agentless passive density | Incidence score of passive voice — | = — — | = —
14. Negations Number of negations + [+ + + |+ +
15. Negation density Incidence score of negations + | - + + | =1 =
16. Long sentences Proportion of sentences longer than 15 words + | + + + | - +
17. Words per sentence Total words / total sentences - | + + + | + —
18. Average sentence length Sentence length in words - | + + + [+ 1 +
19. Number of sentences Total number of sentences + — - | + —
20. Paragraph index 10 x total paragraphs / total words — | + — — | = _
21. Semicolons Number of semicolons - |+ - - | +

22. Unusual punctuation Number of occurences of &, %, + | + + + | = —
23. Comma index 10 x total commas / total words - |+ — - | +

24. Pronoun Score Occurence of pron. per 1,000 words — + — — — —
25. Definite description score | Occurence of def. descr. per 1,000 words — | + — — | - —
26. Illative conjunctions Number of illative conjunctions - | + + + +
27. Comparative conjunctions | Number of comparative conjunctions - | + — — | - —
28. Adversative conjunctions | Number of adversative conjunctions - |+ + + —
29. Word frequency Average frequency of words — | + — — = —
30. Age of Acquisition (aver.) | AOA norms from the MRC database + — + + — +
31. Familiarity (average) Familiarity norms from the MRC database — | + — — —
32. Concreteness (average) Concreteness norms from the MRC database — | + — — | = —
33. Imagability (average) Imagability norms from the MRC database - |+ + + —
34. 1st pronominal reference Number of 1st pronominal ref. — | = — —_ = _
35. 2nd pronominal ref. Number of 2nd pronominal reference + | - + + | = +
36. ARI ARI readability formula (Smith et al., 1989) — | + — — T+ 1 =
37. Coleman-Liau Coleman-Liau formula (Coleman, 1971) — |+ — — | = —
38. Fog Index Fog Index formula (Gunning, 1952) + | + + + | + +
39. Lix Lix readability formula (Anderson, 1983) — | - + + | - —
40. SMOG SMOG formula (McLaughlin, 1969) — | + — — | = —
41. FRE Flesch Reading Ease (Flesch, 1948) — | + — — | = —
42. FKGL Flesch-Kincaid GL (Kincaid et al., 1981) - | = — — | + —
43. FIRST readability index FIRST readability ind. (Jordanova et al., 2013) | — | + — — | = —

Table 2: A list of features, their description and their selection for the Random Forests and BayesNet
classifiers, where ‘W’ stands for WeeBit, ‘F’ stands for FIRST and ‘WF’ stands for WeeBit + FIRST

5.3 Features and feature selection

A total of 43 features were used in the experi-
ments. Table 2 presents the features, their descrip-
tions, and an indication of whether or not each
individual feature was selected for use in the fi-
nal model of the different readability classifiers.
The features used in this study included lexico-
semantic (numbers 1 - 14), syntactic (numbers 15-
22), cohesion (numbers 23 - 27), and cognitively-
motivated features (numbers 28 - 34), as well as 8
readability formulae (numbers 35 - 43) (Table 2).
The cohesion and cognitively motivated features
were inspired by those used in the Coh-Metrix
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tool (McNamara et al.,, 2014). The source for
cognitively-motivated features were the word lists
in the MRC Psycholinguistic database (Coltheart,
1981), in which each word has an assigned score
based on human rankings. The number of personal
words in a text is hypothesised to improve ease
of comprehension (Freyhoff et al., 1998), which
is why evaluation of the number of first and sec-
ond person pronominal references were included
as features in the classification model.

Initially, the full-feature sets were used to ob-
tain the baseline models, which were subsequently
optimised using the attribute selection filter for su-



Table 3: F Score Results for 10-fold cross validation

Random Forests Bayes Net
Baseline | All features | Selected features || Baseline | All features | Selected features
WeeBit 0.78 0.988 0.984 0.838 0.968 0.978
FIRST 0.651 0.794 0.825 0.778 0.810 0.841
WeeBit+FIRST 0.77 0.957 0.973 0.831 0.953 0.966

Table 4: F Score Results for the ASD Comprehension corpus and the LocalNews corpus

ASD Comprehension Random Forests Bayes Net
Baseline | All features | Selected features || Baseline | All features | Selected features
WeeBit 0.673 0.927 0.820 0.667 0.746 0.820
FIRST 0.747 0.782 0.782 0.817 0.782 0.784
WeeBit+FIRST 0.746 0.817 0.855 0.667 0.746 0.892
LocalNews Random Forests Bayes Net
Baseline | All features | Selected features || Baseline | All features | Selected features
WeeBit 0.818 0.861 0.954 0.817 0.908 0.954
FIRST 0.676 0.76 0.705 0.705 0.705 0.760
WeeBit+FIRST 0.818 0.861 0.908 0.817 0.908 1

pervised learning which is distributed with Weka
(Frank and Witten, 1998) and through iterative
elimination of redundant features. This was done
at the stage of model evaluation through ten-fold
cross validation. The last six columns of Table
2 indicate the lists of selected features for each
model. It can be argued that the Random Forest
model is already performing a certain degree of
feature selection and therefore it may be not nec-
essary to carry out this task on the experiments
involving Random Forest. However, analysis of
the Random Trees generated by the algorithm re-
vealed that they contain a larger number of fea-
tures than those selected by our feature selection
step. In addition, by performing feature selection
we wanted to learn which linguistic features are
good indicators of text complexity.

5.4 Evaluation

First, all classifiers were evaluated using 10-fold
cross-validation, using the WeeBit, FIRST and
WeeBit + FIRST corpora as training sets (Table
3). After that each classifier was tested on previ-
ously unseen user-evaluated data. The two sets of
unseen data are the ASD Comprehension corpus
described in Section 3 and the LocalNews corpus
described in Section 4.3. Results for the evalua-
tion on unseen data are presented in Table 4.

For Random Forests we notice that the model
trained on the WeeBit corpus performs best when
classifying texts from the ASD Comprehension
corpus (F' = 0.927) and from the LocalNews cor-
pus (F' = 0.954). However, when using the model
trained on the Bayes Net algorithm, we see that
best external validity for both the ASD Compre-
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hension corpus (£' = 0.892) and the LocalNews
corpus (F' = 1) is achieved by using the combined
WeeBit + FIRST training set.

6 Discussion

In terms of the effects of the size and type of train-
ing data used, the results indicate that, in isolation,
smaller, population-specific corpora (e.g. FIRST)
are not sufficient to achieve optimal classification
accuracy; however, in certain cases such as the
classification of the LocalNews texts, they do have
the potential to boost the performance of a classi-
fication model when combined with larger generic
corpora (F' = 1) . Nevertheless, this improvement
is subject to choosing a classification algorithm
that has optimal performance when trained on the
smaller corpus. It is important to note that the
most accurate classification of the ASD Compre-
hension corpus was achieved by training the Ran-
dom Forests classifier on the WeeBit corpus alone
(F = 0.927). Hence, the infusion of population-
specific and generic corpora is only useful in cer-
tain cases, as discussed below. This is in line
with results in other fields. For example, Blitzer
etal. (2007) investigate domain adaptation for sen-
timent analysis. Given a pair of source and target
domains, they show how it is possible to improve
the performance of a sentiment classifier on the
target domain when it is trained on data from the
source domain with the help of a small annotated
corpus from the target domain. However, they
show that it is necessary to consider the distance
between the two domains as not any pair will lead
to good results. For future research, we will con-



sider how it is possible to define a distance metric
that can prove useful in our context.

Regarding the effect of the type of the unseen
data, we notice that, surprisingly, the pairs of orig-
inal and simplified articles contained in the Lo-
calNews corpus were predicted 100% correctly by
the classifier trained on the combination of texts
from WeeBit + FIRST. A possible reason for this
is that the introduction of the FIRST corpus to-
gether with the larger WeeBit one enables the clas-
sifier to capture certain simplification operations
(e.g. sentence splitting and lexical simplification)
that are common in both LocalNews and FIRST.
Achieving such a high score could also have been
complemented by the fact that the genre of the
documents contained in the LocalNews corpus is
closer to the textual genre of the ones of both the
WeeBit and of the FIRST corpora. However, this
result was only achieved when combining FIRST
with the larger WeeBit corpus and was not other-
wise replicated by a classifier trained only on the
FIRST data. This implies that relatively large data
sets are still a prerequisite for the accurate classi-
fication of pairs of original and simplified texts. In
both cases, when using Random Forests and Bayes
Net, a better classification accuracy was achieved
for LocalNews (F' = 0.954 and F' = 1, respec-
tively) than for the ASD Comprehension corpus
(F' = 0.927 and F' = 0.892, respectively). This
suggests that corpora containing pairs of texts in
their original and simplified forms are generally
easier to classify than corpora containing only of
texts in their original form. This finding has im-
plications for general readability and text simplifi-
cation research where pairs of texts in their origi-
nal and manually simplified forms are commonly
used for evaluation purposes. In other words, eval-
uating on such corpora may result in overly opti-
mistic classification results which are less likely to
be replicated in a “real-world scenario” with natu-
rally written texts.

The experiments presented above have several
limitations. First, the small size of the corpora (a
key problem in disability-related research which
we target in this article) means that the texts used
in this study do not account for the great hetero-
geneity of natural language. In an attempt to com-
pensate for the small number of texts, we have
tried to include documents from miscellaneous
registers and with varying levels of readability.
Second, both the ASD Comprehension corpus and
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the LocalNews corpus were evaluated by a rela-
tively small number of participants, which is why
individual differences in comprehension may have
larger effects on the definition of the gold standard
compared to generic readability studies. Never-
theless, as mentioned at the beginning of this ar-
ticle, collecting data from readers with cognitive
disabilities is a much needed but challenging task,
and the corpora used in this study are currently the
only ones of their kind. We contribute to future
research in this area by making available the ASD
Comprehension corpus.

7 Conclusion

This paper discussed the effects of algorithm se-
lection, training corpora and evaluation corpora
for readability research for people with cognitive
disabilities, with a view to addressing the prob-
lem of the scarcity of user-evaluated data in this
setting. First, we presented a collection of 27 in-
dividual documents, the readability of which was
evaluated by readers with Autism Spectrum Dis-
order. We then showed that the corpora used for
algorithm selection have an effect on the classi-
fication performance of the models and that com-
bining large generic readability corpora with small
population-specific ones has the potential to boost
the classification performance. Finally, we discuss
the effects of the type of evaluation data (original
articles versus pairs of original and simplified ar-
ticles) on the classification accuracy and we show
that original and simplified documents are easier
to classify, and that the combination of generic and
population-specific corpora is particularly useful
for the classification of such text pairs.
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Abstract

Flashcard systems are effective tools for
learning words but have their limitations
in teaching word usage. To overcome
this problem, we propose a novel flashcard
system that shows a new example sentence
on each repetition. This extension requires
high-quality example sentences, automati-
cally extracted from a huge corpus. To do
this, we use a Determinantal Point Process
which scales well to large data and allows
to naturally represent sentence similarity
and quality as features. Our human evalu-
ation experiment on Japanese language in-
dicates that the proposed method success-
fully extracted high-quality example sen-
tences.

1 Introduction

Learning vocabulary is a crucial step in learning
foreign languages and it requires substantial time
and effort. Word learning is often done using
flashcards: a way of organizing information into
question-answer pairs. An example of a flash-
card for the Japanese word “fifi”” is shown on Fig-
ure 1 (a, b). Flashcard systems frequently use
Spaced Repetition technique to optimize the learn-
ing process. The technique is based on the obser-
vation that people tend to remember things more
effectively if they study in short periods spread
over time (spaced repetition practice) opposed to
massed practice (i.e. cramming) (Pavlik and An-
derson, 2008; Cepeda et al., 20006). Anki! is one
of the most well known open source Spaced Rep-
etition System (SRS).

One major drawback of building a vocabulary
with flashcards is that most of the time cards look
like the one displayed on Figure 1 (top): flashcards

'"http://ankisrs.net
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Flashcards, as usually seen

. S

nE
A persimmon

AN

BORIELHRSELL,
A client next table eats
persimmons often.

Our vision
P BOFREC | | HOLER
A persimmon ﬁﬁ'Bngo H(T
BORIETRSEL, EBRLLY

A client next table eats
persimmons often.
MOfnldH < TEBRLL,

Answer card First repetiton Second repetiton

Figure 1: Flashcards for the word “ifi”

often lack usage context information. A question
card is usually a word alone, an answer card could
contain a fixed single example sentence present.
The example does not change from repetition to
repetition, and as a result does not show the full
spectrum of word usage. However, humans do not
use isolated words for communicating. Words are
always surrounded by other words, forming word
usages. Learning these word usages is as impor-
tant as learning words themselves.

To enhance the learning experience, we propose
a novel framework of learning words using flash-
cards. Instead of showing only a single field like
reading or writing of a flashcard in the question
card similarly to the Figure 1 (top), we propose to
use example sentences in both types of cards, see
Figure 1 (bottom). Moreover, we want to show
a new example sentence on each repetition as the
question. This approach gives users an opportu-
nity to learn correct word usages together with the
words themselves. Obviously, implementing it re-
quires a huge number of example sentences.

Because of this, we focus on automatic ex-
traction of high-quality example sentences to be

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 133-142
Copenhagen, Denmark, September 8, 2017. (©2017 Association for Computational Linguistics



used in a flashcard system as questions. Collect-
ing an enormous number of high-quality example
sentences manually does not scale well. Words
can have multiple senses and different usage pat-
terns. A database containing dozens of sentences
for each sense of each word would need to contain
millions of different sentences. For a set of exam-
ple sentences, we say that they are of high-quality
if the sentences have the following properties.

o (Intrinsic) Value: Each individual example
sentence should not be bad, for example un-
grammatical, a fragment or unrelated to tar-
get word. Additionally, the sentences should
not be too difficult for learners to understand
them.

Diversity: Inside a set, the sentences should
cover different usage patterns, and word
senses.

In addition we would like our method to support
rare words and rare word senses.

For the task of example extraction, we are given
a huge monolingual text corpora and a target word
or a phrase to output a set of high-quality example
sentences.

We propose a system architecture consisting of
two components: a search engine which indexes a
huge raw corpus and can produce a relatively high
number of example sentence candidates, and the
selection part, which takes the list of candidates
and selects only a few of them. The search system
is designed in a way so the selected sentences are
syntactically rich near the target word (the target
word has parents/children).

The DPP allows us to naturally represent data in
terms of scalar quality and vector similarity. Ad-
ditionally, the DPP has several interesting prop-
erties. For example, it is possible to compute a
marginal probability of drawing a subset of items
from a DPP efficiently. Marginal here means
a probability of inclusion of a given set in any
subset drawn from the DPP. Furthermore, it is
proven that this marginal probability measure is
submodular. Because of this, it is possible to
build a greedy algorithm with reasonable guaran-
tees, which selects items one by one, using the
marginal probability measure as a weight. Also,
the DPP is computationally and memory efficient.
The computation of marginal probabilities can be
performed linearly in respect to number of sen-
tence candidates. This makes it possible to use
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Figure 2: Word to token conversion for index-
ing a sentence. Tokens contain lexical information
(black), POS tags (green) and conjugation forms
(magenta). Dependency information is common
for a set of tokens spawned from a single word.
This information consists of word position and de-
pendency position.

the DPP with tens thousands of candidates in near-
realtime scenarios.

We have performed a human evaluation experi-
ment which has shown that our method was pre-
ferred by Japanese learners and a teacher com-
pared to two baselines.

2 Dependency Aware Search Engine

We want example sentences to have different pos-
sible usages of a target word. For example, verbs
should have multiple arguments with different
roles and in general it is better to have the vicinity
of a target word syntactically rich. We use depen-
dency information for approximating this informa-
tion. For accessing syntactic information, we au-
tomatically tokenize raw text, extract lemmas, per-
form POS tagging and parse sentences into depen-
dency trees.

To select syntactically rich sentences on a scale
of a huge corpus, we have developed a distributed
Apache Lucene-based search engine (Tolmachev
et al., 2016) which allows to query not only on
keywords as most systems do, but on dependency
relations and grammatical information as well. We
use this search engine to retrieve a relatively large
set of example sentence candidates.

Search engines usually build a reverse index
based on tokens, which are computed from the
original document. We encode seed tokens for our
engine as concatenation of lemma form and conju-
gation form tags, which are derived from the orig-
inal text. For example, the verb - 7z (kaetta —
“to leave” in past form) would be represented as
“I 5 +PAST”. Each token also stores the position
of its parent.

The next step generates rewritten tokens from
the seed tokens until no more new tokens can be
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Figure 3: Example sentence selection. The objective is to select “best” and non-similar example sen-
tences from the input list. Target word is marked red.

created using rewriting rules. Rewriting is done
by replacing content word lexical information with
part of speech information or removing some parts
of tokens. For example, case markers of nouns are
removed for some rules.

This representation allows to easily match same
forms of different words while getting the benefits
of reverse index in terms of performance. A list
of created tokens for a raw sentence is shown in
Figure 2. This example spawns three tokens for
each of its word.

For selecting candidates we use queries which
match a target word with up to 3 children or par-
ents. The exact types of parents of children depend
on POS of the target word. The number 3 was cho-
sen to have balance with different arguments and
to keep the syntactic vicinity of the target word di-
verse between the example sentence candidates.

3 Example sentence selection

After we have a relatively large list of example
sentence candidates, we select a few of them as
example sentences. The outline of the selection
part is shown in Figure 3. In this section we de-
scribe the ideas behind the DPP and the way how
we compute individual features.

3.1 Determinantal Point Process

In this section we provide a very basic explana-
tion of the DPP inner workings. We invite inter-
ested readers to refer the original paper (Kulesza
and Taskar, 2012) which gives a comprehensive
overview of the DPP. In the supplementary ma-
terial we show a toy task of greedily selecting a
diverse subset of points from a plane to give an
insight into how the DPP works.

Suppose we have a ground set ) = {1...N} of
N items (in our case items are example sentence
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candidates from the search engine). In this stage
we want to select asubset Y C YVs.t. |Y| = k. In
its basic form, the DPP defines the probability of
drawing a subset Y from a ground set as

Pr(Y) o< det(Ly) (1)

Here Ly denotes restriction of matrix L to the el-
ements of Y, Ly = [L;;] : i,j € Y. L gener-
ally can be any semi-positive definite matrix, but
for our task we compose it from two types of fea-
tures: a quality scalar g; and a similarity unit vec-
tor ¢;. Elements of L becomes a cosine similarity
between the similarity features scaled by the qual-
ity features

Lij = qi¢! djq;. (2)

The intuition behind the DPP as follows: because
the right part of (1) contains determinant, when
off-diagonal elements of Ly get larger (meaning
the cosine similarity of similarity features is large),
then the determinant value, or in the other words,
the probability of drawing Y, gets lower. At the
same time, the DPP prefers elements with large
values of quality features.

The DPP has a very interesting property. It is
easy to compute marginal probabilities of inclu-
sion of a set A in all subsets of the ground set ):

~ Yyv.acycydet(Ly)
Pracy) = Y v.ycydet(Ly)

K 4 is restriction of K with the elements of the
set A (similar to (1)). K itself is called marginal
kernel of the DPP and it can be computed as K =
L(L + I)~!, where I is an identity matrix.

det(KA).

Selecting diverse items

Because the elements of K can be used to com-
pute the marginal probability of selecting a subset



of items from the ground set, it is possible to use
the marginal probabilities as a weight for a greedy
selection algorithm.

In the beginning we have an empty set A = ().
Then we repeatedly add an item ¢ into the set
A st. i = argmax; det(K 4;) until the set A
reaches the required size. Please note that this al-
gorithm does not find a MAP answer, that problem
is shown to be NP-complete.

Computational complexity

Dealing with L and K directly requires O(N?)
floating point operations and O(N?) memory,
which can be unwieldy for sufficiently large V.

Fortunately, if L is formulated as (2), it is possi-
ble to work around these requirements. Let B be a
feature matrix with rows B; = ¢;¢;, so L = BT B.
Instead of computing N x N matrix L, we com-
pute a D x D matrix C = BBT. Note that if we
have an eigendecomposition L = Zi:[:l Anvpvl,
we can get the marginal kernel K by rescaling
eigenvalues of L:

N
K-y
n=1

Remember that non-zero eigenvalues of L and C
are the same and their eigenvectors are related as
well. Namely, the eigendecomposition of L is also

A B4,

where 0, are eigenvectors of C. Using this fact,
we can compute the elements of marginal kernel
K directly from the eigendecomposition of C' and
the feature matrix B:

D

Kij=>_

n=1

A T
. :_ 1 Vnn-

1 D

9
n=1

(B} 0)(B] )
A+ 1

Computation of a single element of K takes
O(D?) floating point operations. For each step
of the selection algorithm, we need to compute N
new elements of K and compute N determinants
of |A| x |A| size. In addition we need to compute
an eigendecomposition of D. This leads to a total
complexity of O(D3+N D?k+Nk3) for selecting
k items using the DPP, which is linear of V.

3.2 Similarity Features

We construct similarity feature vector as a
weighted stacking of three individual feature parts

¢i lex . wgsiema : 7“])

f([wis™; was

synt
i
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and a parameter r which makes all sentences simi-
lar to each other, following the text summarization
task in (Kulesza and Taskar, 2012). We setr = 0.7
in our experiments.

Three similarity feature parts are lexical, syn-
tactic and semantic similarity. Feature weights
w; allow us to prioritize similarity feature compo-
nents. Lexical and syntactic similarity features are
created as count-based vectors and have large di-
mensionality. Transformation f here is a compres-
sion into a 600-dimensional vector using Gaussian
random projections as recommended by Kulesza
and Taskar (2012) to make the dimensionality of
®i, D, small.

Lexical similarity features measure word over-
lap between two sentences, syntactic features mea-
sure structural (POS, grammar and dependency)
similarity between two sentences and semantic
features measure sense similarity of two sen-
tences. Lexical similarity uses tf weighting inside
example sentence candidate batch when inclusion
of a content word is given a weight of 1.0; non-
content words are given a weight of 0.1.

A syntactic similarity for two sentences should
be higher if they have similar syntactic structure
near the target word, meaning that it was used in
a similar syntactic way. In other words, depen-
dency structure, POS tags and grammatical words
should be similar near the target word. For in-
stance, let’s consider sentences: ‘“He is a fast run-
ner”, “She is a slow runner” and “John isn’t a good
runner”. These three sentences have small content
word overlap, but have exactly the same syntactic
structure.

The idea for the syntactic similarity method is
based on efficient calculation of graph similarity
using graphlets. Graphlets are parts of graph, and
it is shown by (Shervashidze et al., 2009) that they
can be used for the fast approximate computation
of graph similarity.

The main idea is to generate subtrees up to a cer-
tain size, by growing them from the target word
and use those subtrees as features in the vector
space. Overall, the syntactic similarity model can
be thought of as a bag-of-subtrees model. De-
pendency trees in Japanese is build of bunsetsu
— a unit which consist of a lemma with attached
functional morphemes. Subtrees are treated as
unordered because bunsetsu in Japanese can be
moved on the same dependency level.

In the first step, the parse tree is stripped from



lexical information for open parts of speech by re-
placing them with part of speech tags. Function
words are left as they were.

Secondly, a set of bunsetsu subtrees up to size of
3 is generated from the stripped tree. The genera-
tion starts from the bunsetsu containing the target
word and continues until no new subtrees can be
created.

Finally, the feature space is expanded by deriv-
ing new subtrees. Bunsetsu can contain compound
nouns like “ZEH” (a right to vote) or “FE#A E
I7'%” (to place on top of something) which are
analyzed to consist of two lexical units. Gram-
matically, they are not much different from single
unit words. This step ensures that sentences con-
taining both several-unit and single-unit words are
still going to be structurally similar.

A semantic similarity score should be higher if
the target word is used in the same or a close sense.
For computing semantic similarity from a context
we use prototype projections (Tsubaki et al., 2013)
on word2vec word representations (Mikolov et al.,
2013).

Prototype projections assume that for triples of
(A, relation, B) there exist prototypes in the form
of frequently occurring and semantically related
groups words at the end of each relation. For ex-
ample, it is possible to run company, business or
marathon. The computed representation makes it
possible to distinguish between the distant senses.
For a given triple (e.g run, object, marathon),
you compute frequently occurring words of run
and marathon over the same relation and compute
SVD in each group. The top n right singular vec-
tors in each end of the relation form a prototype
subspace, and the original vector is projected into
it.

For the actual feature we use a sum of prototype
projections over all possible arguments of a target
word. For instance, we use all present Japanese
case relations if the target word is a verb, case re-
lation and genitive case for nouns, and dependen-
cies for adverbs and adjectives. For the each end
of a relation use top 200 words to compute SVDs.

3.3 Quality Features

Quality features represent an intrinsic value of
individual sentences as examples of word usage.
Our quality feature is defined as a product of four

components: g; = qfseqfsyq?qf.
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Centrality

¢5* and ¢;” are semantic and syntactic central-
ity, respectively. We want example sentences to
be representative of usage patterns and meaning.
Centrality captures that idea. It is computed us-
ing arespective similarity feature component (s:ym
and s;*™) as a cosine similarity to a nearest cen-
troid of a K-means++ clustering. We take £ = 30

for semantic and k£ = 10 for syntactic centralities.

Relative difficulty

The next quality feature is relative difficulty. It
is estimated from the difficulty of content words.
Sentence difficulty d; is computed from the word
difficulty d,,, using the formula

ds:< )

We used the fourth power to give the sum a light
softmax effect: smaller values should have less
effect on the final result, but the sentence length
should still be a certain factor in the difficulty
score. Word difficulties are estimated using web
corpus word frequencies and Japanese Language
Proficiency Test (JLPT) word lists.

Frequency component of word difficulty is
computed as dcd = |log, (1 4+ wy/500) |. Words
which should be known for JLPT N5 were given
the difficulty d’-FT 1, words for N1 were as-
signed d'-PT = 5 respectively with other values in
between. The final word difficulty score is com-
puted as d,, = min(d{ﬂeq, dLPT),

Sentence difficulty is then converted into the
quality feature component using a piecewise lin-
ear function ¢! T'(ds + biasg), which is de-
fined as T [0,0.6,1,0.9,0.7,0.6,0.2,0] at
[—00,—1,0,3,5,6,8,00]. The function is rather
adhoc. It has a maximum of 1 at 0 and decreases
to the left and right. We wanted to have positive
and negative parts to decrease with the different
rate. A bias value bias; can shift the area of ac-
ceptable difficulties for a learner. For example, a
bias value of bias; = —3 would make the qual-
ity to be near 1 for the sentences which have the
words with the difficulty at most for JLPT N3.

D du,

w;ES

Goodness

The last part is goodness feature ql-g which is 1 by
default and assigns a low score to garbage sen-
tences which are present in the web corpus. It also
assigns low score to sentence fragments (some



sentences from raw corpus start with case parti-
cles which in Japanese always comes after a noun)
or clearly sentences which are useless for example
sentences, for instance ones that contain random
digits or alphabet.

4 Related Work

There exist human-curated databases of example
sentences. Dictionaries contain example sentences
which explain word usage, but usually those are
fragments and not full sentences. Also, dictionary
content usually has copyright restrictions. The
Tatoeba Project” is a wiki-style database of exam-
ple sentences maintained by human volunteers un-
der open license. However, most of the sentences
focus on relatively easy words and many of the
sentences are very similar to each other.

Automated extraction of example sentences
from a corpora has also been proposed. GDEX
(Kilgarriff et al., 2008) describes semi-automated
example extraction. The objective is to select ex-
ample sentences for English learners and define a
suitable example sentence as: (a) typical, show-
ing frequent and dispersed patterns of usage, (b)
informative, helping to educate the definition, (c)
readable, meaning intelligible to learners, avoid-
ing difficult words, anaphora and other structures
that makes it difficult to understand a sentence
without access to wider context. Sentence length,
word frequency, information about the presence
of pronouns and some other heuristics were used
to judge the quality of sentences. Subsequently,
the final example sentences for the dictionary were
manually selected by editors.

There are numerous works which approach the
problem of selecting example sentences mostly
as a word sense disambiguation (WSD) problem
(de Melo and Weikum, 2009; Shinnou and Sasaki,
2008; Kathuria and Shirai, 2012). Specifically,
de Melo and Weikum (2009) proposed the use
of parallel corpora to extract disambiguated sen-
tences from an aligned subtitle database. One
more important feature of that work is a concern
about diversity of example sentences. They gen-
erate a set of 1,2,3-grams for each example sen-
tence and use them for scoring example sentences,
setting to zero scores for n-gram for the selected
sentences. This approach used aligned corpora for
WSD, which usually are small or belong to a spe-
cific domain, whereas example sentences should

http://tatoeba.org/eng/
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be from different domains and cover rare words.
Also, the work does not consider sentence diffi-
culty. In the evaluation by language learners we
found out that sentence difficulty is a major factor
for example sentence quality.

Kathuria and Shirai (2012) explore the use of
disambiguated example sentences in a reading as-
sistant system for Japanese learners. They cre-
ate a system that assists reading by showing dis-
ambiguated example sentences that have the same
sense as the word in the text.

Huang et al. (2016) have used neural network
models to show example sentences which would
help disambiguate close synonyms. However, this
work does not try to extract globally diverse ex-
ample sentences which cover the usage of a target
word.

The DPP itself (Kulesza and Taskar, 2012) was
used for document summarization by selecting
sentences from a text and showing a diverse im-
age search result tasks. We use several tricks from
the former application.

5 Evaluation

Evaluating the suitability of example sentences for
learning a foreign language is difficult. Firstly,
it is not possible to assess the diversity of a sen-
tence set when showing them to evaluators one
by one. Also, the automatic evaluation of exam-
ple sentences is possible if the problem is formu-
lated such that the only criterion is that example
sentences should be present for every sense of a
word. However, such evaluation does not deter-
mine whether the example sentences are actually
useful for learners.

5.1 Experiment Setup

We perform an evaluation experiment with
Japanese language learners and a native teacher
with two distinct main goals: to assess the per-
formance of the example extraction system and to
validate the assumptions on the meaning of the
“quality” of example sentences. We use a web
corpus with 0.8B sentences lexically analyzed by
JUMAN and parsed by KNP.

The first goal is achieved by having participants
vote on lists of example sentences and select their
preferred lists. We deliberately use lists for the
evaluation instead of showing single examples to
make the spectrum of possible example sentences
visible for each method. Showing sentences one



by one would make it difficult to compare the di-
versity of different lists.

For the second goal, the evaluation was per-
formed in the form of an interview. Participants
were asked why they have or have not chosen spe-
cific lists of example sentences after the initial
preference selection.

Three methods were used in the evaluation: the
proposed one and two baselines. The proposed
method is labeled DPP in the evaluation results.
We have used a difficulty bias value biasq = —3
to make the sentence difficulty appropriate for the
learners around JLPT N3 level.

The first baseline was a method by de Melo
and Weikum (2009). However, because our set-
ting uses only monolingual corpora, only lexical
centrality and diversity parts were used from this
method. The method received the same set of ex-
ample sentences as the DPP, namely search results
biased towards syntactically rich sentences near a
target word. The method is referred as DeMelo.

The second baseline was a simple uniform ran-
dom sampling without replacement. The data,
again, was a list of example sentence candidates
from the search system, not raw examples. This
method is referred as Rand.

For the experiment we have used 14 Japanese
words. Each chosen word has more than one sense
and different usages. Words were also chosen to
be relatively easy, to be likely familiar to language
learners of lower intermediate level.

For each of the words, top 10k search results
from the search engine were extracted as example
sentence candidates. Each of the words had more
than 10k containing sentences. After that, 12 sen-
tences were extracted by each method from each
list. That yields a total of 14 x 12 x 3 sentences
which were presented to participants of the exper-
iment.

The first part of the evaluation experiment used
Japanese language learners as participants. For
each word, participants were presented three lists
of example sentences produced by three methods.
The lists were placed side by side in a random
order to force participants to read sentence lists
in a different order every time. Participants were
asked to select a list which was more useful from
their point for putting sentences on flashcards. Af-
ter a participant would select a personally prefer-
able list, anonymized names for methods were dis-
played and the participant was asked to explain the
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# FC Level Rand DeMelo DPP
1 NI 7 4 3
2 N1 8 0 6
3 N1 4 7 3
4 * NI 2 3 9
5 * NI 3 2 9
6 * N2 5 3 6
7 N2 4 6 4
8 N2 5 2 7
9 * N2 3 4 7
10 * N3 0 1 13
11 * N4 3 1 10
Total 44 33 77
Percentage 29% 21% 50%

Table 1: Learners’ votes on the best example lists.
Bold numbers are the majority for a person. FC
means the experience of using flashcards. Level is
approximate JLPT-style Japanese language profi-
ciency from N5 (lowest) to N1 (highest).

reasons behind the selection.

The second part experiment was performed by
showing the same example sentence lists to a na-
tive Japanese language teacher. In addition to se-
lecting the best list, a teacher was asked to rank
from 1 to 5 how appropriate the list was for stu-
dents of approximately N3 and N2 JLPT levels.
N3 is similar to intermediate and N2 to upper-
intermediate levels in English. Similarly to the
learners’ case, no explicit criteria were given. Un-
fortunately, because of time limitations only one
teacher have participated in the second part of the
evaluation.

5.2 Results

The first part of the evaluation was performed with
11 learners. The evaluation took about 1.5 hours
per learner in average. Vote counts for users and
aggregated counts are shown in the Table 1. DPP
got about a half of all votes, which is a positive as-
pect of the proposed method. It also got a majority
for every participant who had the experience of us-
ing flashcards or spaced repetition systems. This
shows that these example sentences are going to
be useful inside the flashcards.

For the initial selection, the teacher commented
that the best list was selected as if examples were
for learners of N3 level. The votes on the initial
selection were 0, 4, 10 for Rand, DeMelo and DPP



respectively. Average lists ranks were 3.36, 3.79,
4.64 for N3 and 3.86, 4.21 and 4.36 for N2 learner
levels.

Evaluation by the teacher assigns the DPP sys-
tem as the best for N3 learners both by votes and
by average rank. For N2 learners a score for DPP
was lower, at the same time the score for DeMelo
has raised. Score for Rand was the lowest.

The teacher explained the reason for selection
as the following. Non-target words in a sentence
should not be too difficult. A sentence should not
depend on outer context like as if it was inside
the conversation or about current affairs. The sen-
tences should be short and the usages of the tar-
get words should be common. This criteria are
strongly aligned with the objectives DPP uses for
sentence extraction, which seems to be the reason
for its high appraisal by the teacher.

If examples would be selected for N2-like learn-
ers, a sentence should include more diverse struc-
tures and usage. However, some high-level stu-
dents had a different point of view.

There were cases when learners discarded a list
because of a sentence they did not like or selected
a list because of a sentence they liked very much.
We tried to analyze the patterns of such sentences
with a possibility for the further improvement of
example sentence extraction.

6 Discussion

During the evaluation experiment, participants
were asked to explain their choices about lists and
criteria they were using.

Generally, list diversity was regarded as one
of the main criteria for the selection. Seman-
tic and lexical diversity was the mainly referred
part. However, grammatical diversity was named
as well. By grammatical diversity participants
meant, usually, usage of words in different gram-
matical forms. Other themes that frequently came
into criteria for the selection were sentence dif-
ficulty and how interesting were the sentences.
Each of the points is discussed in greater detail be-
low.

Diversity Diversity was the main idea behind
the work for the present study and it was validated
by answers of the participants. Most of them have
stated that non-similarity of a sentence list was one
of the main criteria for the selection.

All three used methods were specialized to pro-
duce non-similar sentences. DeMelo explicitly
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tries to select sentences with frequent words and
penalize such words in next selections. Diversity
of sentences using random sampling depends on
the distribution in the candidate set.

For DPP, features were explicitly crafted to deal
with semantic and syntactic similarity in addition
to lexical similarity. Based on the results, there
were cases where DPP was better in terms of di-
versity and the cases when it was worse.

One example of good performance in this re-
gard was the word “JF” (an egg). In addition to the
usual meaning of an egg in a sentence like “£ 1
X% < DINZE 5 BEDH D £9 (You would
need to break a lot of eggs to make that), DPP also

displayed several sentences for the usage like “[%
fifi D B Z BIF5H38E % > T\ 5 (There are a lot of
expectations in the future doctors) with the mean-
ing of “future profession”. Other methods did not
produce example sentences with this sense.

A similar, but mixed result is sentences for the
word “8H” (a head). DPP selected 6 sentences that
have the regular meaning of the word as “head”
like “f% 201X BEDIHIZF % H21F 57 (She puts a
hand on my head). However, the other 6 had the
meaning of beginning of a time period like in the
sentence “5HEDUHIZ x> 72 5 E T9 ([This is]
a photo I've taken in the beginning of this year).

Difficulty Sentence difficulty was also one cri-
terion experiment participants used for selecting
lists. The initial assumption for the creation of the
system is that example sentences should be easy to
understand and as short as possible. We designed
an algorithm which selects example sentences for
flashcard questions and thought that it was good to
minimize question reading time.

The feedback of participants on this topic was
divided. Learners of lower proficiency levels have
agreed with our vision, while learners of higher
proficiency levels have shown preference for more
difficult example sentences. For the last user
group, there were several opinions that example
sentences selected by DPP were plain as if they
come from a textbook. In comparison to that such
learners preferred, more difficult, natural (in con-
trast to artificially created examples), and interest-
ing example sentences.

We believe that this effect can be explained with
learners’ familiarity with the target word of ex-
ample sentence. If a learner is not familiar with
the target word, then the other words are expected
to serve mostly as explanation for the target’s



meaning and the sentence itself should be easier.
If a learner is generally familiar with the word,
that context given by an example sentence helps
learner to learn and remember usage situations of
the target. Sentences in this period of the familiar-
ity could be harder.

It seems that we should talk not about good ex-
ample sentences in general, but about good ex-
ample sentences for a learner at some point in a
learning process. Static example lists are not go-
ing to solve this problem efficiently, but an educa-
tional tool like an SRS can. It has access not only
to learner’s general knowledge level, but for the
learning process data for individual words as well.
Using this information about learners, an example
extraction system can provide the best examples
learner needs at that point of time.

Interestingness Another criteria that was used
by learners for selecting sentences was if the sen-
tences were interesting. During the evaluation,
there were the cases when the choice between lists
was made on a single interesting sentence, disre-
garding the fact that the list have contained mostly
inferior and low-quality sentences like complete
fragments. There were 3 main types of such sen-
tences.

The first type had sentences, interesting or un-
usual for a certain participant. We could not gen-
eralize this category further.

The second type was sentences having a story.
For example, “ER3 75\ DI, #iHFH7 X 7T
oo Ty, SHMBERTETHHR>TH
& £ U & 57 (Image quality is bad because it was
taken by a mobile phone. Let’s take a good picture
next time.) vs “HRAENR 720 L6 H I K
L £H¥ AN 54” (Idon’t want to buy it since the
image quality is bad). These two sentences have
the same word usage of “dirty” (image is dirty =
image quality is bad). However the first one has a
cause-effect relation and was more liked because
of that.

The third type as sentences displaying a vivid
image. For instance, “|H Y/ #OFH MR T LA A —
VY OFNFHMIT THIERIEE D > 72 (A fa-
mous Soviet astronaut Gagarin have said: “The
Earth is blue”).

Interesting content usually occurs only in rela-
tively lengthy sentences containing many different
words. Because of the conservative difficulty set-
tings we used for the experiment, the DPP method
was heavily biased against such sentences. Inter-
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estingness is difficult to define and measure, but
we believe that it is worth investigating in the fu-
ture.

7 Conclusion and Future Work

We have implemented an example extraction sys-
tem for usage in a flashcard system for Japanese
language learners. It uses Determinantal Point
Process — a method for modeling diverse datasets
as a framework which allows to select non-similar
and high quality sentences at the same time.

While the example extraction system is devel-
oped for Japanese, but the underlying methods
have little Japanese specific parts. The system it-
self is unsupervised and has only a tokenizer, mor-
phologic analyzer and dependency parser as soft-
ware dependencies. All other data can be created
from a raw corpus analyzed by these three tools.

Experiments have shown that the proposed
DPP-based method is useful for extracting exam-
ple sentences. However the content and difficulty
of example sentences are a non-trivial problem and
it would be promising to consider ways to further
improve the content and quality of example sen-
tences. We also want to perform evaluation exper-
iments using an actual SRS (Tolmachev and Kuro-
hashi, 2017).
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Abstract

This paper reports the first study on auto-
matic generation of distractors for fill-in-
the-blank items for learning Chinese vo-
cabulary. We investigate the quality of dis-
tractors generated by a number of criteria,
including part-of-speech, difficulty level,
spelling, word co-occurrence and seman-
tic similarity. Evaluations show that a se-
mantic similarity measure, based on the
word2vec model, yields distractors that
are significantly more plausible than those
generated by baseline methods.

1 Introduction

The fill-in-the-blank item is a common form of
exercise in computer-assisted language learning
(CALL) systems. Also known as a cloze or gap-
fill item, a fill-in-the-blank item is constructed on
the basis of a carrier sentence. One word in the
sentence — called the target word, or key 