
Diagnosing Meaning
Errors in ICALL

Stacey Bailey
Detmar Meurers

Introduction
Why meaning errors?

Loosely restricted reading
comprehension: An example

Our learner corpus

Basic idea behind approach

The CAM Design
General Architecture

NLP tools

Error Diagnosis

Results
Detection and Diagnosis
Accuracy

Balancing the Test Set

Related Work

Conclusion

References
Appendix

Diagnosing meaning errors in short answers
to reading comprehension questions

Stacey Bailey
The Ohio State University

Detmar Meurers
Universität Tübingen
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Why care about meaning errors?

I Meaningful interaction in the foreign language is crucial
for language learning.

I To be able to offer a wider range of activities, ICALL
systems must be able to evaluate aspects of meaning.

Tightly Restricted Responses Loosely Restricted Responses

Decontextualized 
grammar fill-in-
the-blanks

Short-answer reading 
comprehension 
questions

Essays on 
individualized 
topics

The Middle Ground

I Loosely restricted reading comprehension (RC)
questions are a good test case:

I Common activity in real-life foreign language teaching.
I Responses can exhibit variation on lexical,

morphological, syntactic, semantic levels.
I It is possible to specify target answers.
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Loosely restricted reading comprehension
An example

Question: What are the methods of propaganda mentioned in the
article?

Target: The methods include use of labels, visual images, and
beautiful or famous people promoting the idea or product. Also
used is linking the product to concepts that are admired or desired
and to create the impression that everyone supports the product
or idea.

Sample Learner Responses:

I A number of methods of propaganda are used in the media.

I Bositive or negative labels.

I Giving positive or negative labels. Using visual images.
Having a beautiful or famous person to promote. Creating the
impression that everyone supports the product or idea.
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Our learner corpus
I Learner corpus: 566 responses to RC questions from

intermediate English as a Second Language students.
I Development set:

I 311 responses from 11 students to 47 questions
I Test set:

I 255 responses from 15 students to 28 questions

I Teachers/graders provided target answers, keywords.

I Two graders annotated the data:
I detection (binary): correct vs. incorrect meaning
I diagnosis (5 codes): correct; missing concept, extra

concept, blend, non-answer

Eliminated responses which graders did not agree on
I 48 in development set (15%) and 31 in test set (12%)

I On average, 2.7 form errors per sentence.

I Learner responses vary significantly; no full string or
bag-of-word overlap with targets in test set.
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Basic Idea: Comparing Responses and Targets

I Comparison at token, chunk and relation levels:

I Related research approaches similar tasks with many of
the same techniques. This research includes

I Automatic grading (e.g., Leacock 2004; Marı́n 2004)
I Paraphrase recognition (e.g., Brockett and Dolan 2005;

Hatzivassiloglou et al. 1999)
I Machine translation evaluation (e.g., Banerjee and

Lavie 2005; Lin and Och 2004)
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Content Assessment Module (CAM) Design

CAM compares target and learner responses in three phases:

1. Annotation uses NLP tools to enrich the learner and
target responses, as well as the question text, with
linguistic information, such as lemmas.

2. Alignment maps concepts in the learner response to
concepts in the target response using the annotated
information.

3. Diagnosis analyzes the alignment to label the learner
response with a target modification diagnosis code.
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The CAM Design
General Architecture

Annotation Alignment Diagnosis

Punctuation

Input

Learner 
Response

Target 
Response(s)

Question

Output

Source Text

Activity Model

Settings

Sentence Detection

Tokenization

Lemmatization

POS Tagging

Chunking

Dependency Parsing

Spelling Correction

Similarity Scoring

Pronoun Resolution

Type Recognition

Analysis Filter

Givenness

Pre-Alignment Filters

Token-level 
Alignment

Chunk-level 
Alignment

Relation-level 
Alignment

Error
Reporting

Detection
Classification

Diagnosis
Classification
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The CAM Design
NLP tools

Annotation Task Language Processing Tool
Sentence Detection, MontyLingua (Liu 2004)
Tokenization,
Lemmatization
Lemmatization PC-KIMMO (Antworth 1993)
Spell Checking Edit distance (Levenshtein 1966),

SCOWL word list (Atkinson 2004)
Part-of-speech Tagging TreeTagger (Schmid 1994)
Noun Phrase Chunking CASS (Abney 1996)
Lexical Relations WordNet (Miller 1995)
Similarity Scores PMI-IR (Turney 2001;

Mihalcea et al. 2006)
Dependency Relations Stanford Parser

(Klein and Manning 2003)
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Error Diagnosis

I Diagnosis is based on 14 features:
# of Overlapping Matches:

I keyword (head)
I target/learner token
I target/learner chunk
I target/learner triple

Semantic error detection

Nature of Matches:
I % token matches
I % lemma matches
I % synonym matches
I % similarity matches
I % sem. type matches
I match variety

I We combined the evidence using
I manual rules
→ did not generalize well from development to test set

I machine learning (TiMBL, Daelemans et al. 2007),
using majority voting on all distance measures
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Results

Detection Accuracy
Random Baseline 50%
Development Set (leave-one-out testing) 87%
Test Set 88%

Diagnosis with 5 codes Accuracy
Development Set 87%
Test Set 87%

Form errors don’t negatively impact results:
I 68% of correctly diagnosed items had form errors.
I 53% of incorrectly diagnosed ones did as well.

10 / 14

Diagnosing Meaning
Errors in ICALL

Stacey Bailey
Detmar Meurers

Introduction
Why meaning errors?

Loosely restricted reading
comprehension: An example

Our learner corpus

Basic idea behind approach

The CAM Design
General Architecture

NLP tools

Error Diagnosis

Results
Detection and Diagnosis
Accuracy

Balancing the Test Set

Related Work

Conclusion

References
Appendix

Results
Evaluation on a Balanced Set

I The development and test sets contain a high
proportion of correct answers.

I 71% of the development set and 84% of the test set
were marked as correct by the human graders.

I We sampled a balanced set (50% correct answers),
using all incorrect plus randomly selected correct ones.

I balanced development set: 152 pairs
I balanced test set: 72 pairs

I Accuracy results on balanced sets:
I 50% random baseline
I 78% on development set (leave-one-out testing)
I 67% on test set
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Related Work

I No directly comparable systems, but, e.g., results are
competitive with accuracy reported for automatic
scoring for native speaker short answers (Leacock 2004).

I ICALL systems typically
I support exercise types that limit acceptable response

variation and thus the need for sophisticated content
assessment.
e.g., German Tutor (Heift 2001), BANZAI (Nagata 2002)

I restrict the topic domain and the nature of the input to
be able to include deep content analysis.
e.g., MILT (Kaplan et al. 1998), Herr Kommissar (DeSmedt 1995)

I Still other approaches focus on essays scoring
e.g., E-rater (Burstein and Chodorow 1999), AutoTutor

(Wiemer-Hastings et al. 1999)
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Conclusion

I A range of activities in current foreign language teaching
practice support meaningful, contextualized interaction.

I Taking loosely restricted reading comprehension
questions as an example, we showed that content
assessment for such activities is feasible using shallow
content-analysis techniques.

I Machine learning can benefit shallow content
assessment even for the small data sets typically
available in ICALL research.

I Diagnosis results are comparable to detection results,
but a larger corpus is needed for more detailed analysis.
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Manual and Machine Learning Results

Detection Accuracy
Baseline (random) 50%
Development Set: Manual CAM 81%
Development Set: CAM 87%
Test Set: Manual CAM 63%
Test Set: CAM 88%

Diagnosis with 5 codes Accuracy
Development Set 87%
Test Set 87%
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