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Abstract—Newly emerging nonvolatile alternatives to DRAM
raise the possibility that applications might compute directly
on long-lived data, rather than serializing them to and from
a file system or database. To ensure crash consistency, such
data must, like a file system or database, provide failure-atomic
transactional semantics. Several persistent software transactional
memory (STM) systems have been devised to provide these
semantics, but only one—the OneFile system of Ramalhete et
al.—is nonblocking. Nonblocking progress is desirable to avoid
both performance anomalies due to process preemption or
failures and deadlock due to priority inversion. Unfortunately,
OneFile achieves nonblocking progress at the cost of 2× space
overhead, sacrificing much of the cost and density benefit of
nonvolatile memory relative to DRAM. OneFile also requires
extensive and intrusive changes to data declarations, and works
only on a machine with double-width compare-and-swap (CAS)
or load-linked/store-conditional (LL/SC) instructions.

To address these limitations, we introduce QSTM, a non-
blocking persistent STM that requires neither the modification
of target data structures nor the availability of a wide CAS
instruction. We describe our system, give arguments for safety
and liveness, and compare performance to that of the Mnemosyne
and OneFile persistent STM systems. We argue that modest
performance costs (within a factor of 2 of OneFile in almost all
cases) are easily justified by dramatically lower space overhead
and higher programmer convenience.

Index Terms—transactional memory, non-volatile memory,
lock-free algorithm

I. INTRODUCTION

For more than 40 years, computer memory has consisted
primarily of DRAM, but the technology is nearing the end of
its evolutionary life. Over the course of the coming decade,
many uses of DRAM are expected to migrate to various
new technologies, including phase-change memory (PCM) [4],
[35], resistive RAM (ReRAM, a.k.a. memristors) [52], and
spin-transfer torque magnetic memory (STT-MRAM) [2]. In
addition to improving both density and power consumption,
these newer alternatives are also nonvolatile—they keep their
contents when the power is turned off. Nonvolatility raises
the intriguing possibility that instead of being read from and
written to a file system or database, long-lived data might
“simply remain in memory” across program runs and even
system crashes.

This work was supported in part by NSF grants CCF-1422649, CCF-
1717712, and CNS-1900803, and by a Google Faculty Research award.

The principal obstacle to realizing this possibility is that
coherence is traditionally implemented on top of a system’s
caches, while memory resides below. Caches write their con-
tents back to memory at unpredictable times. Unless a program
takes explicit remedial action, the contents of memory in the
wake of a crash are likely to be inconsistent, and thus unusable.

To enable such remedial action, computer architects are
beginning to offer programmers fast and fine-grained control
over the ordering and timing of writes-back from volatile
caches into nonvolatile main memory; the semantics of this
ordering comprise the memory persistency model [46] analo-
gous to traditional memory consistency [1]. Various schemes
and their hardware include epoch persistence [35], buffered
epoch persistence [32], [46], explicit epoch persistence [31],
DPO [34], and HOPS [42].

On top of these persistency models, several research groups
have built high performance software for persistent applica-
tions. Such software is generally designed to provide durable
linearizability, a safety criterion that requires atomic opera-
tions to be reflected in persistent memory (in linearization
order) prior to returning to their callers [16], [31]. (In some
cases, a more relaxed, buffered variant of this criterion may
be used instead.) Example uses of persistence include con-
current data structures [8], [43], [44], [50] transactional key-
value stores [33], [36], [56], [61], and the metadata of file
systems [10], [59], [60] and databases [12], [47], [58]. Like
many traditional concurrent data structures, these examples
have been crafted by hand to maximize performance. Their
crash consistency, in particular, is ensured through careful,
parsimonious use of write-back and fencing instructions.

In contrast with these high-performance and specialized
applications, a growing body of work, including that reported
here, is designed to allow existing concurrent data structures—
and collections of such structures—to be easily adapted to
persistence, thereby avoiding the need to serialize to and from
block-structured storage. Some of this general-purpose work is
based on locks, with failure atomicity guaranteed for outermost
critical sections. Atlas [7] uses UNDO logging at the level
of individual loads and stores. NVthreads [25] uses REDO
logging via page-level copy-on-write. JUSTDO [29] logs the
program counter prior to each persistent store, and uses the
code of the original application to push each critical section
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through to completion during crash recovery. iDO [37] extends
JUSTDO by leveraging compiler support to log only at the
boundaries of idempotent instruction sequences. Extensions to
some of these systems explore how to compose operations
on hand-optimized persistent data structures, allowing them
to be incorporated into larger failure atomic sections. For
data structures that provide detectable execution [16], query-
based logging [28], [30] allows UNDO and JUSTDO systems to
support this composition in a manner analogous to “boosting”
in software transactional memory [21], [23].

Other general-purpose systems assume a transactional pro-
gramming model, with speculatively concurrent execution of
programmer-specified atomic blocks. Mnemosyne [57], NV-
Heaps [9], SoftWrAP [17], NVML [49], OneFile [48], and
Romulus [11] extend the isolation + consistency semantics of
transactional memory with (failure) atomicity and durabil-
ity, providing the full ACID guarantees [18] for fine-grain
memory transactions. Mnemosyne emphasizes performance;
its use of REDO logs postpones the need to flush data to
persistence until a transaction commits, and its use of fine-
grain locking (hash function-identified ownership records)
leads to high concurrency for non-conflicting transactions.
SoftWrAP, also a REDO system, uses shadow paging and
Intel’s now deprecated pcommit instruction [27] to efficiently
batch updates from DRAM to NVM. NV-heaps, an UNDO
log system, emphasizes programmer convenience, providing
garbage collection and strong type checking to help avoid
pitfalls unique to persistence—e.g., pointers to transient data
inadvertently stored in persistent memory. PMDK (formerly
NVML), Intel’s persistent memory transaction system [26],
[55], uses UNDO logging on persistent objects and implements
several highly optimized procedures that bypass transactional
tracking for common functions.

With the exception of OneFile, all of these systems are
blocking: a preempted thread (or a crashed process in a
multiprogrammed system) can stall the progress of all other
users, and deadlock can occur if persistent data is accessed
by threads or event handlers that may experience priority
inversion. Several non-persistent STM systems have provided
nonblocking progress—most with an object-based API [15],
[24], [39], [40], [53]; a few with a word based API [19], [38].
To the best of our knowledge, OneFile is the only previous
nonblocking persistent STM.

To ensure that transactions persist in the same order they
occur at run time, OneFile serializes all update transactions,
but allows any thread to help the current active transaction to
complete. Completion entails writing modified values back to
their “natural” locations in memory. To avoid the possibility
that a slow helper will overwrite a newer value with a now-
stale update, OneFile adds an extra word of metadata adjacent
to every word of real data, and uses the x86 instruction set’s
double-width (128-bit) compare-and-swap (CAS) instruction
to update the data and metadata together, atomically. To allo-
cate the metadata, OneFile requires the programmer to rewrite
all shared data declarations, using a special macro for each
field. In principle, this burden could be delegated to a compiler,

but the 2× space overhead would remain and, as observed by
the OneFile authors, compiler independence is highly desirable
from the perspective of portability and system administration.
We also note that interleaved metadata would be impractical
on ARM or Power processors, where the CAS-like load-linked
and store conditional instructions are limited to 64 bits. Fine-
grain interleaving would require every 64-bit datum to be split
in half, and software emulation of a double-width CAS would
impose an unacceptable performance penalty on the critical
path of persistent operations.

To address the limitations of past work, we introduce the
QSTM transactional system. QSTM prioritizes ease of use
for legacy applications, providing nonblocking persistence for
unmodified data structures with minimal programmer effort,
space overhead, and hardware dependences. It draws partial
inspiration from the RingSTM of Spear et al. [51], but replaces
that system’s array-based REDO log with the lock-free persis-
tent queue of Friedman et al. [16]. By allowing the queue to
describe the writes of an arbitrary number of committed-but-
not-yet-completed transactions, QSTM eliminates OneFile’s
need for nonblocking helping, interspersed data/metadata, and
double-width CAS instructions. It also eliminates the need for
the programmer or compiler to rewrite data declarations. To
manage dynamically allocated data, it leverages our prior work
on the Ralloc [5] nonblocking memory allocator.

QSTM design details appear in Section II. Section III
presents informal proofs of durable linearizability and lock
freedom. Section IV compares the performance of QSTM to
that of Mnemosyne and OneFile, revealing that serial bottle-
necks limit the scalability of both nonblocking systems. Both,
however, are tolerant of frequent preemption, making them
attractive for low-contention but latency-intolerant applications
that access persistent data on a multiprogrammed system.
OneFile is faster by 1.5–2×, but QSTM avoids its 2× space
overhead and intrusive source-code changes. Given its pairing
with Ralloc, QSTM may also be attractive for data shared
between processes with independent failure modes (we discuss
this possibility in Section II). Section V concludes and outlines
goals for future work.

II. DESIGN

QSTM is based on a simplified version of the persistent
lock-free queue of Friedman et al. [16]. It also employs the
Ralloc nonblocking persistent allocator [5], making it fully
nonblocking. Its design was inspired by RingSTM [51], which
we briefly describe here first.

RingSTM uses a globally shared ring buffer to log
committed transactions. Each buffer entry contains a unique
timestamp, a status (either complete or writing), and a Bloom
filter representing the locations written by the corresponding
transaction. Each ongoing transaction maintains a read filter
and a write filter, but only the write filter is written into the ring
buffer. Transactions validate by comparing their own read filter
to the write filter of each transaction that has committed since
the validating transaction started. If the filters intersect then
the transaction must abort. The validation step is performed
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Fig. 1. QSTM Global Queue

during each transactional read operation and is repeated one
more time before attempting to commit.

Before a RingSTM transaction validates for commit, it reads
the current value of the global ring index. After validating, it
performs an atomic compare-and-swap (CAS) to increment the
index. If the CAS succeeds, then the transaction has reserved
the corresponding buffer entry. If the CAS fails then it means
that another transaction committed first and is is necessary to
validate against it before making another attempt. All other
threads must wait for the successful thread to populate the
reserved entry before they can attempt to commit. This makes
RingSTM fundamentally blocking.

QSTM introduces significant changes in order to achieve
lock freedom and to accommodate a different underlying log.
In particular, QSTM’s detailed write sets must be persistent
and reachable from redo log entries in order to enable crash
recovery and nonblocking progress. A diagram of the global
queue used in QSTM can be seen in Figure 1. We explain the
design of this structure below. Declarations and pseudocode
for QSTM appear in Figures 2, 3, and 4.

In RingSTM, transaction log entries are populated after they
have been reserved by some thread using CAS. This is not
acceptable in a nonblocking system, since other threads are
forced to wait until the reserving thread finishes writing to
the entry. In QSTM, a transaction record, represented in a
queue element, is fully initialized and persisted before being
atomically enqueued. After the record is in the queue, other
threads can commit without waiting for the prior committing
thread to do anything more.

In RingSTM, each thread is responsible for completing its
own writes after successfully committing a transaction into
the ring. The same holds by default in QSTM. If a thread is
preempted before it has completed its writes, however, all other
write completion will be delayed until it is able to proceed.
In practice, this is unlikely to be a significant problem in
multi-threaded applications, which can generally assume that
the underlying scheduler is fair. Crucially, even with such
preemption, other threads can continue to commit transactions,
reading values directly from write sets where appropriate.

1: class TRANSACTION

2: QueueEntry *my txn // queue entry for this transaction
3: filter rf // read filter
4: int start // logical start timestamp
5: end class
6: QueueEntry *head // global queue head
7: QueueEntry *tail // global queue tail
8: QueueEntry *complete // last known complete entry
9: class QUEUEENTRY

10: int ts = 0 // commit timestamp
11: filter wf // global copy of local write filter
12: int st = writing // writing or complete
13: writeset *wset // pointer to write set
14: entry *next = NULL // pointer to next entry
15: end class
16: class WRITESET

17: addrs[ ] // dynamic array of addresses to write
18: vals[ ] // dynamic array of values to write
19: end class

Fig. 2. QSTM Structures

Note also that in QSTM it is possible for multiple threads
to complete the writes of committed transactions concurrently,
so long as those writes are to separate locations (otherwise
conflicting writes might be performed out of order).

In addition to the usual head and tail queue pointers,
QSTM maintains a complete pointer that refers to the most
recent queue entry that is known to be marked complete. The
complete pointer is used in tm start, check, and read in order
to eliminate the need for backward traversals of the redo log
when validating.

Garbage Collection: We employ a periodic worker task
that is occasionally triggered at the end of a successful call
to tm commit to perform garbage collection of queue entries.
The worker task is performed by the thread that has just
committed. The worker reclaims any queue entries that are
marked complete and are not reserved, first dequeueing them
and persisting the new head. All threads maintain a global
reservation indicating the oldest queue entry that they might
need to read in the future. The worker will free an entry only if
it is older than the oldest reservation and is marked complete.



1: function TM BEGIN

2: my txn = new QueueEntry
3: my txn→wset = new Writeset
4: read tail to start
5: end function
6: function TM READ(void* addr)
7: success = False
8: read *addr to memval
9: if intersect(rf, my txn→wf) then

10: if my txn→wset.addrs contains addr then
11: return val from my txn→wset.vals
12: end if
13: end if
14: for all QueueEntry q from min(complete,start) to tail do
15: if q.wf.contains(addr) then
16: if q→wset contains addr then
17: success = True
18: read newestval from q.wset
19: end if
20: end if
21: if intersect(rf, q.wf) and q.ts > start.ts then
22: abort()
23: end if
24: end for
25: rf.add(addr)
26: if success then
27: return newestval
28: else
29: return memval
30: end if
31: end function
32: function TM WRITE(void* addr, void* val)
33: my txn→wset.add(addr, val)
34: my txn→wf.add(addr, val)
35: end function
36: function TM END

37: if empty(my txn→wset) then
38: return
39: end if
40: PERSIST(my txn→wset)
41: PERSIST(my txn)
42: repeat
43: read tail to oldtail
44: if oldtail→next == NULL then
45: check()
46: read oldtail→next.ts to my txn→ts
47: success = CAS(oldtail→next, NULL, my txn)
48: else
49: PERSIST(oldtail→next)
50: CAS(tail, oldtail, oldtail→next)
51: end if
52: until success
53: PERSIST(oldtail→next)
54: wb worker()
55: if (my txn → ts - head→ts) > Q SIZE LIMIT then
56: gc worker()
57: end if
58: end function

Fig. 3. QSTM main methods

1: function CHECK

2: read tail to curr tail
3: if curr tail→ts==start→ts then
4: return;
5: end if
6: for all Q doueueEntry q from start to curr tail
7: if intersect(rf, q.wf) then
8: abort()
9: end if

10: end for
11: read q to start
12: end function
13: function GC WORKER

14: for all QueueEntry q from head to complete do
15: if !reserved(q) then
16: dequeue(q)
17: free(q→wset)
18: free(q)
19: end if
20: end for
21: end function
22: function WB WORKER

23: for all QueueEntry q from complete→next to tail do
24: read complete to oldcomplete
25: if CAS(q.st, Not Writing, Writing) then
26: q→wset.do writes()
27: q.st = Complete
28: CAS(complete, oldcomplete, q)
29: else
30: return
31: end if
32: end for
33: end function

Fig. 4. QSTM helper functions

We were able to use a somewhat simplified version of the
Friedman et al. lock-free queue. Because we don’t actually
need the content of dequeued entries, we can prune old nodes
by CAS-ing head to the next node and then freeing the dummy
node. (This also differs from the typical dequeue operation
used in a Michael & Scott queue [41].) This method of
dequeueing has the added advantage of allowing us to remove
multiple elements with a single CAS.

Post-crash Recovery: After a crash, it is necessary only
to recover the head pointer and any entries that can be reached
from it (in addition to any persistent memory required by the
application, but this is application-specific). All other memory
formerly used by QSTM can be reclaimed. The writes from
reachable entries must be completed and persisted. After that
the queue can be reinitialized to contain a single dummy entry
and execution can resume.

Cross-application Persistence: Longer term, we envision
QSTM being used for data that is shared among mutually
untrusting applications, with mutual isolation provided by a
protected library mechanism. Our Hodor system, for exam-
ple [22], ensures that shared data can be accessed only when
executing trusted library code, and guarantees that library calls
will execute to completion prior to preemption or process
termination.



On a Hodor system, a QSTM thread can be confident of
completing only a bounded number of writes—call it k—in a
given library call. Between calls, it is vulnerable to preemption
or to termination due to an error in another application thread.
QSTM therefore allows any thread to complete the writes and
persistence operations of any transaction. To facilitate this,
each queue entry contains a pointer to the corresponding write
set, each write set has a lock, and each write set entry indicates
whether its datum has been written back to its natural location.
A thread that wishes to complete the writes (e.g., because they
stand in the way of completing its own subsequent writes)
performs a Hodor call that attempts to acquire the lock and
complete the next k writes. It releases the lock before returning
from the library call.

Note that this “helping” mechanism is not required for
nonblocking progress. Rather, it ensures, given Hodor’s guar-
antee of library call completion, that the space consumed by
yet-to-be-completed writes will never grow without bound.
It is also simple and fast, and requires no changes to user
data structures. A multi-word CAS operation (KCAS) could in
principle be used to complete a write and mark it as completed
in the write set, thereby avoiding the need to lock write sets
and ensuring that the queue remains bounded at all times.
This strategy, however, would impose significant overhead,
and would requires a reserved bit in every word of user
data [14], [45]. The nonblocking OneFile system [48] avoids
the extra overhead, but as noted in Section I it requires a full
word of metadata adjacent to every data word, doubling space
consumption.

III. PROOFS

In this section we provide arguments for several properties
of QSTM.

Theorem 3.1: QSTM, seen as a single concurrent object, is
linearizable.

Proof: In QSTM, the logical value of a memory location
is the value found in a write set belonging to a transaction
record nearest to the tail of the queue, if any such entry is in
the queue. Otherwise the logical value is the value present in
main memory at the specified location. A QSTM transaction
must read only the current logical values of all locations that it
reads and atomically update the logical values of all locations
that it writes.

A transaction record becomes visible to other threads only
when the corresponding transaction record is made reachable
in the queue by an atomic CAS. It is sufficient to show that
if this is successful then the committing transaction can be
linearized after the transaction that precedes it in the queue,
so that the queue always represents a correct linearization of
all transactions contained therein.

Every time some transaction T performs a read of an
address to which it has not written, it traverses the queue to
ensure that no other transaction has committed a write that
causes a conflict. If such a write has been committed then
T will abort. Otherwise, the read is guaranteed to return the
newest value for the address being read, even if the writes

have not yet been completed (that is, even if the most recent
committed transaction to have written to that address is not
yet in the complete state).

The check method validates against all queue entries against
which the calling transaction has not yet validated. The read
method contains similar checks, but also searches each non-
complete entry for writes to the address that is being read.
When validating, the transaction will abort if any value that has
been read in the past has been modified since. This is sufficient
to ensure that a transaction that may have read inconsistent
values will not continue execution.

When a transaction attempts to commit, check is called
prior to each CAS attempt but after determining the pointer
on which to perform the CAS. This ensures that if the CAS
succeeds, then the newly added transaction can be correctly
linearized immediately following the transaction that precedes
it in the queue. The successful CAS is the linearization point of
the transaction. Thus, the queue will always represent a valid
linearization of the transactions whose records it contains, and
QSTM is linearizable.

Theorem 3.2: QSTM is durably linearizable.
Proof: We are aware of two published definitions for

durable linearizability. Friedman et al. [16] showed that the
two definitions are equivalent. The earlier definition by Izraele-
vitz et al. [31] is couched in terms of well-formed abstract
histories, which are sequences of events that may include
invocations and responses of object methods as well as full-
system crashes. The more recent definition by Friedman et
al. instead states that each operation must persist between its
invocation and response, and that for any execution on an
object, there must exist a linearization of that execution that
matches the persistence order. The definition of Friedman et al.
does not extend easily to buffered durable linearizability [31],
but it is more convenient for the unbuffered case, so we use
it in our proof.

We are concerned only with tm end, as it is the only QSTM
call that affects persistent data. To show that QSTM is durably
linearizable, it suffices to show that for any multithreaded exe-
cution E: (1) The persist point of each operation (transaction)
is between the invocation and response (of tm end); (2) There
exists a linearization of E whose order of operations matches
the persistence order of the operations in E.

The first property is straightforward. We first assume that
any queue entries added during prior calls to tm end persisted
in queue order, meaning that all reachable queue entries
(including the pointers that link them) are persistent. A trans-
action record becomes persistent upon the PERSIST of the
next pointer of the prior transaction (line 53 in Listing 3),
since the transaction record itself will already have persisted
by this time as shown in lines 40 and 41 in Listing 3. Thus the
record can be fully recovered as long as the pointer persisted
before the crash. This is guaranteed to occur before the end
of tm end, satisfying the first property.

The second property is also straightforward. We again
assume that any queue entries added by prior calls to tm end
already persisted in queue order. As lines 49 and 50 in



Listing 3 show, tm end always persists the newest next pointer
before it “fixes” the outdated tail pointer, which is always
done before any thread attempts to CAS another entry into
the queue (all threads ensure that the tail is fully updated
before attempting a CAS). Hence the persistence order of
queue entries will always be the same as the queue order,
which we have already shown is a valid linearization.

Theorem 3.3: QSTM is lock free.
Proof: To show that QSTM is lock free, it suffices to

show (in the absence of recursion) that each loop can execute
an unbounded number of times only if some other thread
completes an operation. We will show that this is true for
each loop in QSTM.

The outermost loop in a transaction is the transaction itself.
That is, if a transaction aborts, it returns to the point where
tm begin was called and retries the transaction from there. The
only places where an abort can occur are: (1) when check is
called from tm end or (2) during validation in tm read. In
both cases the transaction checks whether the read filter of
the current transaction intersects with the write filter of any
transactions that have committed since the call to tm begin.
If no other transactions have successfully committed, the
transaction will not abort.

Another loop in the algorithm is the CAS retry loop in
tm end. This loop continues until either the transaction record
is successfully enqueued or until the transaction aborts due to
a conflict. Since the CAS will fail only if some other thread
succeeds, this is lock free.

All other loops in QSTM are used to traverse the queue and
will always traverse a finite number of entries since they read
the timestamps at both ends of their traversal before starting.
Thus, QSTM is lock free.

IV. PERFORMANCE RESULTS

We describe two sets of experiments. The first set com-
pares QSTM to an earlier persistent STM, Mnemosyne [57].
Mnemosyne is performance-oriented but blocking; its through-
put provides a useful baseline against which to compare
nonblocking alternatives. Our second set of experiments com-
pares QSTM to OneFile [48]—to our knowledge the only
other persistent STM that provides nonblocking progress. We
have made the QSTM sources available at https://github.com/
beadleha/qstm.

A. Mnemosyne Comparison
Mnemosyne is based on the TinySTM system of Felber

et al. [13]. As noted in Section I, it tracks conflicts at the
granularity of individual words and uses a REDO log to avoid
the need to fence each individual log entry. As noted in
Section II, QSTM employs the Ralloc [5] persistent memory
allocator in order to keep the overall system nonblocking.
With Mnemosyne we used the Makalu [3] persistent mem-
ory allocator, which substantially outperforms the original
built-in allocator. Rather than use Mnemosyne’s compiler-
based transaction annotations, we made direct calls to the
Mnemosyne API in order to ensure that transaction boundaries
were identical in both systems.

Hardware Platform: These tests were run on a machine
equipped with two Intel Xeon E7-2699 (2.2 GHz) CPUs, each
with 18 cores and two hyperthreads per core, for a total of 72
hardware threads. The machine was equipped with 20 GB of
memory. Binaries were compiled with gcc 6.3.1.

Although we have access to a machine equipped with
persistent memory, we were unable to collect meaningful
results for Mnemosyne on that machine due to highly un-
usual performance variation which was only present with
Mnemosyne. However we were able to use the NVM-equipped
machine for the comparison to OneFile below.

Benchmark Suite: We ran Mnemosyne comparisons on
the Vacation and Intruder applications from the STAMP
suite [6], together with several microbenchmarks: a stack, a
queue, an ordered list, and a hash map.

For Vacation, we ran tests of 1,000,000 transactions, with
five queries per transaction, 16,384 relations, 90 percent of
relations queried, and 98 percent user transactions. We en-
countered an unusual problem when running the benchmark
with Mnemosyne [57] and using the Makalu [3] allocator.
The alignment of allocated structures resulted in a high rate
of conflicts because the addresses were not being effectively
hashed across the entire range of locks (orecs) in Mnemosyne.
This problem did not occur with the default Mnemosyne
allocator, nor did it occur with any of the other benchmarks.
We solved the problem by making a minor adjustment to
Mnemosyne’s hash function for this benchmark.

For Intruder, we used 10 percent traffic flows with injected
attacks, 128 packets per flow, and 100,000 traffic flows.

The stack microbenchmark is a transactional variation on
the linked Treiber Stack [54]. Each transaction is either a pop
or a push. We read the address of the head node’s successor
and switch the head pointer to it in a pop; we switch the head
pointer to a newly created node whose successor is the old
head node in a push. A pop operation frees the removed entry
and a push operation allocates a new entry. Transactions on
this data structure have high contention in comparison to the
other three because every transaction must modify the head
pointer.

The queue microbenchmark is a transactional variation on
the M&S queue [41]. Each transaction is either an enqueue or
a dequeue. We switch the tail (and the tail node’s successor)
to the new node in an enqueue; we read the address of the
next node and switch the head to it in a dequeue. Neither
operation traverses the queue, operating only on the head or
tail.

The ordered list microbenchmark is singly linked, and is
based on Harris’s nonblocking algorithm [20]. Each transac-
tion is either a remove or an insert. In a remove, we traverse
the list until we find an equal or greater key, and remove the
corresponding entry before freeing it; in an insert, we traverse
the list and find the right place to replace or insert a node. If
the node does not exist, a new one is allocated.

The map microbenchmark is a fixed-size hash map that uses
the ordered list implementation for each bucket. In our test,
we hash the key to find the right bucket and do a transactional



remove or insert. Transactions on this data structure have
very low contention with a low rate of true conflicts between
transactions.

Methodology: In all tests, we pinned the first 18 threads
to different cores on one processor, then pinned the next 18
threads to the hyperthreads on the same processor, and then
repeated this pattern on the second processor for the following
36 threads.

We ran several variations of each test. For QSTM we
employed a “default” Bloom filter size of 2048 bytes, and
then repeated the test with the filter sizes hand-tuned for
best performance at 8 threads. We believe hand tuning to
be a modest but reasonable burden; at the same time, all of
our tests exhibited reasonable performance with the default
size. One could also imagine dynamically tuning the filter
size. Transitions from one size to another could be handled
by aborting all ongoing transactions, clearing the queue, and
resuming with the new size, or by maintaining up to two filters
in each queue entry so that both sizes would be present when
a size transition is taking place (the threads would need to
maintain both sizes until no ongoing transaction was using
only the old size).

To assess the impact of nonblocking progress, we also
ran “preemption tests” in which there were 144 compute-
intensive threads (two per hardware context) running at the
same time as the benchmark. These additional threads were
not pinned to any particular cores, although the benchmark
threads were. This test demonstrates that preempted threads
can never prevent their running peers from making progress.
On the compute-intensive “competitor” threads, we ran a
simple prime number generator. These competitor threads were
killed and restarted prior to each trial.

The QSTM garbage collection worker interval was set to
50,000 transactions, but our implementation attempts to de-
queue and reuse entries one by one to reduce allocator calls, so
this threshold will rarely be reached under normal conditions.
In our implementation a thread attempts to complete writes
using the wb worker routine after every successful commit,
but the worker ends immediately if another thread holds the
lock for the write set that it intends to complete writes from.

We ran each of these tests for 5 seconds and recorded the
number of operations per second. All reported statistics reflect
the average of three runs.

The stack, queue, and hash map benchmarks used a key
range of 100,000. The list benchmark used a smaller key
range of 10,000 due to the need to traverse the list in each
transaction. In all four micro benchmarks, the structure was
pre-filled to 50% of the key range.

Discussion: Results for all six benchmarks are shown in
Fig. 5. The plots are organized to allow visual comparison
of the non-preemption and preemption versions of each mi-
crobenchmark. The first and third rows of the figure contain
the non-preemption plots; the second and fourth contain the
preemption plots. The QSTM data labels indicate the Bloom
filter size. For example, QSTM-128 indicates that a 128 byte
filter size was used. For each of the six benchmarks, the same

scale was used for both the normal and preemptive graphs
to allow for easier visual assessment of effect of increased
CPU contention (however different benchmarks use different
scales).

Most of the tests clearly show the limitations of QSTM’s
global log. Some QSTM tests continued to gain throughput
until 16 threads but it is clear that QSTM is best suited to small
machines or to applications with limited contention. QSTM
also struggles with large transactions due to the large Bloom
filters needed to make false conflicts infrequent.

QSTM performed well on the linked list benchmark. This
is because a QSTM transaction only aborts if some other
transaction succeeded after the start of the aborting transaction,
so despite the large number of aborts, some transaction always
succeeds. The list benchmark requires each transaction to
traverse the list to find the correct location to insert or remove
a node, and if any locations read during the traversal are
modified by another transaction, at least one transaction must
abort. Also note that hand-tuning the Bloom filter size failed
to improve on our default value, so the plots for the list
microbenchmark show only two lines.

The limited scaling of QSTM is most evident in the hash
map microbenchmark. QSTM fails to gain any throughput
after 8 threads while Mnemosyne scales well up until some
of the threads are assigned to the second socket.

The preemption tests illustrate the benefits of nonblocking
progress. When application threads are frequently preempted,
Mnemosyne experiences a dramatic loss in performance be-
cause locks might be held by a preempted thread. In QSTM
all other threads can continue to make progress regardless of
when a thread is preempted. Note also that QSTM throughput
continues to increase well beyond the optimal number of
threads seen in the non-preemptive tests. This is because each
thread is running for only a fraction of the time, putting a
reduced amount of traffic through the queue.

B. OneFile Comparison

We also ran tests to compare performance to OneFile [48].
OneFile uses a global sequence counter and augments each
data word with an adjacent reserved word to track modifi-
cations. When a data word is to be modified, the adjacent
reserved word must also be changed in the same operation,
requiring the use of a double-width CAS instruction. OneFile
includes both wait-free and lock-free variants.

These tests used a different machine, equipped with two
Intel Xeon Gold 6230 (2.1 GHz) CPUs, each with 20 cores
and two hyperthreads per core, for a total of 80 hardware
threads. The machine was also equipped with 1.536 TB of Intel
Optane NVM and 384 GB of DRAM. Binaries were compiled
with gcc 9.2.1.

OneFile allows transactions to construct write sets in par-
allel, but forces them to commit one at a time, and to help
complete the writes of predecessors before proceeding. To
support this helping mechanism, the programmer must rewrite
the declarations of all shared data structures, and must specify
every transaction as a lambda expression. The need for such
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Fig. 5. QSTM vs Mnemosyne (transactions per second).

changes made it difficult to retrofit multiple microbenchmarks.
Instead, we relied on the hash map microbenchmark included
in the OneFile distribution, with minor modifications. In the
original version, writers used two separate transactions to
delete and replace a key while in our version these are
done within a single transaction. The percentage of writer

transactions was varied among 100%, 50%, and 10%. We
also ran a version in which writers replaced ten keys in each
transaction to observe the effects of larger transactions. QSTM
used a 128-byte Bloom filter, as in the Mnemosyne hash map
tests.
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Fig. 6. QSTM vs OneFile (transactions per second).

Discussion: Results appear in Fig. 6. In the first row of
plots, each write transaction replaces one key; in the second
row, each write transaction replaces ten keys. Within each row
the ratio of read and write transactions is varied as indicated in
the figure captions. OneFile-LF and OneFile-WF correspond
to the lock-free and wait-free variants of OneFile as described
in the original paper.

OneFile achieves higher throughput than QSTM. This is
due to high contention on QSTM’s global queue and to
the smaller number of steps required to commit a OneFile
transaction. The data structures needed for a QSTM transaction
also impose a nontrivial amount of memory churn. OneFile,
which permanently reserves space for versioning information
inside the target data structures, has comparatively simple
global metadata.

OneFile’s performance, however, comes with several
costs—notably memory overhead. Per-word metadata doubles
the size of all persistent data structures. The mechanisms used
to declare this metadata introduce significant awkwardness;
they also make OneFile problematic for applications written
in C, or in any language that makes assumptions about data
alignment. Individual variables within classes or structs must
be derived from a special template and can be no larger than
one machine word. If the application would normally use
larger variables then they must be split into multiple pieces.
OneFile’s wait-free variant requires that any thread be able
to run the entirety of a committing transaction—specified as
a lambda expression—on behalf of some other committing
thread; this complicates the task of retrofitting existing data

structures, in which transactions may cross function bound-
aries and use thread-local transient variables. As a result of
these restrictions, we found it prohibitively challenging to
adapt the applications from our Mnemosyne comparison to use
OneFile instead. In the end we simply gave up, and adapted
OneFile’s benchmark to use QSTM.

We believe that QSTM will represent an acceptable tradeoff
in cases where it is difficult or impractical to modify the
data structure types used in a legacy program when making it
persistent, or on architectures (e.g., ARM or Power) that lack
a double-width CAS or store-conditional instruction.

V. CONCLUSIONS AND FUTURE WORK

We have presented QSTM, a nonblocking persistent soft-
ware transactional memory. Paired with the Ralloc [5] non-
blocking persistent memory allocator, QSTM provides a com-
plete solution for nonblocking management of persistent “in
memory” structures. We are exploring ways in which to
mitigate the unbounded memory usage that is possible when
a thread is preempted while performing writes. One idea is
to use a protected library such as Hodor [22] to guarantee
completion of QSTM function calls. This would have the
added safety benefit of ensuring that the persistent region is
accessed only through QSTM.

QSTM provides nonblocking progress without the need to
modify the layout of legacy data structures. Given OneFile’s
use of an extra word for every data word, QSTM consumes
only 50% as much space, allowing it to utilize the full capacity
of NVM when retrofitting applications that previously used
block storage. QSTM’s avoidance of double-wide CAS also



suggests that it would be easier than OneFile to adapt to
architectures other than the x86, and its avoidance of templated
data structure modification suggests it would be easier to adapt
to languages other than C++. In both systems, scalability
is limited by a fundamental serial bottleneck. More scalable
alternatives will likely need to employ an object-oriented [15],
[24], [39], [40], [53] or orec-based [19], [38] based approach.
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