
Resizable durable data structures on nonvolatile memory require an 
allocator that manages the persistent memory region.  However, this poses 
additional challenges compared to transient allocators:

1. Consistency of allocator’s metadata after a crash (failure atomicity).

2. Memory leaks due to failures between allocation and attachment, or 
between detachment and deallocation:

3. Pointer reusability across executions.
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An allocator is recoverable if, in the wake of a crash, it is able to bring its 
metadata to a state in which all and only the “in use” blocks are allocated.  
In use blocks are defined as those that are:

• Malloc-to-ed but not yet free-from-ed, or

• Reachable from persistent roots via tracing.

Observation: Given a proper tracing mechanism, almost any transient 
allocator can be made recoverable by identifying the in-use blocks during 
recovery and reconstructing the allocator’s transient metadata.

Allocator methods must also be failure-atomic, either via logging or by 
adding appropriate flushes and fences to nonblocking code.

Node* t = list->tail();

t->next = malloc(sz); // sz == sizeof(Node)

Crash

Failure-induced Memory Leaks

State-of-the-art persistent allocators typically rely on one of two strategies 
to handle failure-induced memory leaks:

1. Failure-atomic malloc-to and free-from operations, which effectively 
makes (de-)allocations durably linearizable (and thus expensive).

2. Traditional malloc and free,
with offline tracing 
garbage collection (GC) 
from persistent roots.

root 1 root 2 … root 1024
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Ralloc is the first nonblocking, recoverable allocator. ꟸ Based on the 
(transient) LRMalloc,1 it retains the traditional malloc/free interface and 
adds three key innovations:

1. Minimum run-time overhead by persisting just enough information to 
permit GC and metadata reconstruction after a crash. 

2. Filter functions to avoid false positives in conservative GC for type-
unsafe languages (e.g., C++).  These enumerate internal pointers for a 
given type of block:

3. Position-independent pointers to allow persistent memory regions to 
be mapped at an arbitrary address.

ꟸ Source code available at https://github.com/qtcwt/ralloc
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Environment: Two Intel Xeon Silver 4114 CPUs (total of 20 physical cores / 40 hyper-threads) and emulated persistent memory on DRAM.

t->next = malloc(sz) malloc_to(t->next, sz)
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*An off-holder 4 holds the offset to the target 
from the pointer itself.

class TreeNode
{

… // content fields
TreeNode* left, *right;

}

void filter(TreeNode* ptr) 
{

visit(ptr->left);
visit(ptr->right);

}

(a) Threadtest5 (lower is better) (b) Larson5 (higher is better) (c) Memcached6 (higher is better)
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Figure 1. Example of a Memory Region

Figure 2. Example of Off-holders


