
Resizable durable data structures on nonvolatile memory require an
allocator that manages the persistent memory region. However, this poses
additional challenges compared to transient allocators:

1. Consistency of allocator’s metadata after a crash (failure atomicity).

2. Memory leaks due to failures between allocation and attachment, or
between detachment and deallocation:

3. Pointer reusability across executions.

Challenges Ralloc

Experiments

Comparison to State of the Art

Understanding and Optimizing Persistent Memory Allocation

Wentao Cai, Haosen Wen, H. Alan Beadle, Mohammad Hedayati, Michael L. Scott

University of Rochester

Recoverability

PMDK2 Makalu3 Ralloc

Memory
Leaks

malloc-to & free-from
malloc & free w/
Conservative GC

malloc & free
w/ Conservative GC &

Optional Filter Function

Atomicity Logging Undo Logging Reconstruction

Pointers
Position Independent
ID + Offset (128 bits)

Fixed Mapping
Address

Position Independent
Off-holder* (64 bits)

Liveness Lock-based Lock-based Lock-free

An allocator is recoverable if, in the wake of a crash, it is able to bring its
metadata to a state in which all and only the “in use” blocks are allocated.
In use blocks are defined as those that are:

• Malloc-to-ed but not yet free-from-ed, or

• Reachable from persistent roots via tracing.

Observation: Given a proper tracing mechanism, almost any transient
allocator can be made recoverable by identifying the in-use blocks during
recovery and reconstructing the allocator’s transient metadata.

Allocator methods must also be failure-atomic, either via logging or by
adding appropriate flushes and fences to nonblocking code.

Node* t = list->tail();

t->next = malloc(sz); // sz == sizeof(Node)

Crash

Failure-induced Memory Leaks

State-of-the-art persistent allocators typically rely on one of two strategies
to handle failure-induced memory leaks:

1. Failure-atomic malloc-to and free-from operations, which effectively
makes (de-)allocations durably linearizable (and thus expensive).

2. Traditional malloc and free,
with offline tracing
garbage collection (GC)
from persistent roots.

root 1 root 2 … root 1024

(real data)

Ralloc is the first nonblocking, recoverable allocator. ꟸ Based on the
(transient) LRMalloc,1 it retains the traditional malloc/free interface and
adds three key innovations:

1. Minimum run-time overhead by persisting just enough information to
permit GC and metadata reconstruction after a crash.

2. Filter functions to avoid false positives in conservative GC for type-
unsafe languages (e.g., C++). These enumerate internal pointers for a
given type of block:

3. Position-independent pointers to allow persistent memory regions to
be mapped at an arbitrary address.

ꟸ Source code available at https://github.com/qtcwt/ralloc

References
[1] R. Leite and R. Rocha. LRMalloc: A Modern and Competitive Lock-Free Dynamic Memory Allocator. In VECPAR, São Pedro, Brazil, Sept. 2018.
[2] A. Rudoff and M. Slusarz. Persistent memory development kit, Sept. 2014. http://pmem.io/pmdk/.
[3] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recoverable allocation of non-volatile memory. In OOPSLA, Amsterdam, The Netherlands, Oct. 2016.
[4] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu. Efficient support of position independence on non-volatile memory. In MICRO, Cambridge, MA, Oct. 2017.
[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A scalable memory allocator for multithreaded applications. In ASPLOS, Cambridge, MA, Nov. 2000.
[6] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An analysis of persistent memory use with WHISPER. In ASPLOS, Xi’an, China, 2017.

Environment: Two Intel Xeon Silver 4114 CPUs (total of 20 physical cores / 40 hyper-threads) and emulated persistent memory on DRAM.

t->next = malloc(sz) malloc_to(t->next, sz)

address value

0x70 0x30

0xA0

*An off-holder 4 holds the offset to the target
from the pointer itself.

class TreeNode
{

… // content fields
TreeNode* left, *right;

}

void filter(TreeNode* ptr)
{

visit(ptr->left);
visit(ptr->right);

}

(a) Threadtest5 (lower is better) (b) Larson5 (higher is better) (c) Memcached6 (higher is better)

This work was supported in part by NSF grants CCF-1422649, CCF-1717712, and
CNS-1900803, and by a Google Faculty Research award.

Figure 1. Example of a Memory Region

Figure 2. Example of Off-holders

