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Abstract 
The prevalent state of the art in spoken language understanding 
by spoken dialog systems is both modular and pipelined. It is 
modular in the sense that incoming utterances are processed by 
independent modules that handle different aspects of the signal, 
such as acoustics, syntax, semantics, and intention / goal 
recognition. It is pipelined in the sense that each module 
completes its work for an entire utterance prior to handing off 
the utterance to the next module.  However, a growing body of 
evidence from the human language understanding literature 
suggests that humans do not process language in a modular, 
pipelined way. Rather, they process speech by rapidly 
integrating constraints from multiple sources of knowledge and 
multiple linguistic levels incrementally, as the utterance 
unfolds.  In this paper we describe ongoing work aimed at 
developing an architecture that will allow machines to 
understand spoken language in a similar way.  This 
revolutionary approach is promising for two reasons: 1) It more 
accurately reflects contemporary models of human language 
understanding, and 2) it results in technical improvements 
including increased parsing performance. 

1. Introduction 
Computational Natural Language Understanding is an 
interesting area to study because, despite decades of research, it 
is one of the many areas of Artificial Intelligence that remains 
difficult for computers, yet easy for people. The major reason 
that language understanding is so difficult for computers to 
understand is that ambiguity is rampant; each input is locally 
consistent with multiple interpretations, and each of those 
interpretations, in turn, is locally consistent with a number of 
potential inputs. This ambiguity occurs simultaneously at all 
levels of processing. For instance, the speech signal itself is 
locally consistent with multiple word sequences and each of 
these word sequences is locally consistent with multiple 
possible speech inputs. Likewise, each word sequence is locally 
consistent with multiple syntactic structures, each of which is 
locally consistent with other possible word sequences. In order 
to manage this tremendous complexity in real-time, it is 
necessary to make some simplifying assumptions about how the 
large problem of Natural Language Understanding can be 
broken down into smaller, more tractable, sub-problems, and 
about how each of those sub-problems might be solved. Spoken 
Dialogue System researchers, specifically, have tended to make 
the following two simplifying assumptions: 

 
Standard Simplifying Assumption 1: Speech and linguistic 
information can be treated as independent of other inputs and 
knowledge sources. 
Standard Simplifying Assumption 2: Speech / Language 
processing can be divided into a small number of levels, each of 
which depends only on the final utterance-level output of the 
previous level. 
 
These simplifying assumptions were once consistent with 
linguistic and psycholinguistic models of how humans 
understand language. However, a growing body of evidence 
suggests that humans process spoken language incrementally. 
New models been developed to account for this data, and the 
common simplifying assumptions outlined above are not 
consistent with these models. In the next section we give a brief 
overview of the data and models of human language processing. 

1.1. Incremental Human Language Understanding 

In recent years, psycholinguists have begun to use more fine-
grained tools and metrics to investigate language. This change 
has made it possible for researchers to investigate spoken 
language in more or less natural contexts (Tanenhaus et al., 
1995).  This body of research has demonstrated that as an 
utterance unfolds, listeners take advantage of both linguistic and 
extra-linguistic information to arrive at interpretations more 
quickly than they could with language alone. For instance, 
listeners have been shown to use visual information about the 
scene (Tanenhaus et al., 1995), the goals and perspectives of 
their partners (Hanna & Tanenhaus, 2003), and spatial / 
embodied constraints about how objects in the world can be 
manipulated (Chambers et al., 2004.) during language 
understanding to restrict the set of potential interpretations that 
are explored. Similarly, information from different levels of 
processing such as phonology, lexicon, syntax, semantics and 
discourse / reference can be combined by listeners to constrain 
the set of potential interpretations that are explored (Altmann & 
Kamide, 1999; Tanenhaus et al., 1995).   

1.2. Incremental Computer Language Understanding 

In the previous section we described the current understanding 
of how humans process spoken language – incrementally, 
rapidly integrating information from multiple sources and 
multiple levels to arrive at partial / local interpretations. Our 
goal is to develop an architecture that will allow machines to 
process spoken language in a similar way.  However, to the 



extent possible we would like to leverage existing technologies 
and modules. Thus, we propose replacing the common 
simplifying assumptions described previously with the 
following ones, which are more consistent with incremental 
models of human language understanding: 
 
• Proposed Simplifying Assumption 1: Speech and 

linguistic information can be treated as independent of 
other inputs and knowledge sources with one exception -- 
dynamically updated non-linguistic knowledge and 
information can be used to improve search during speech / 
linguistic processing. 

• Proposed Simplifying Assumption 2: Speech / Language 
processing can be divided into a small number of levels, 
that operate on partial information in parallel. The levels 
can be treated as independent of one another with one 
exception – dynamically updated outputs of other levels 
can be used to improve search within a given level.  

 
We have implemented a system that is based on the TRIPS 
architecture (Allen et al. 2001), which has been modified to 
make use of the proposed simplifying assumptions.  In the 
remainder of this paper we describe the architecture in detail, 
and demonstrate that the new incremental architecture provides 
technical advantages in addition to the theoretical advances 
discussed above. 

Figure 1 Fruit carts domain – example screen. 

2.  Human-Human Conversation 
in a Testbed for Incremental Understanding 

In this section we describe the human-human conversational 
data that we collected which led us to our redesign for 
incremental understanding.  

For the work described in this paper, we utilized the Fruit 
Carts domain, a testbed we’ve developed in order to explore 
issues of incremental understanding. The domain itself is 
described in detail elsewhere; here we summarize key aspects.  
Subjects are given a map showing a number of shapes placed on 
the map, with varying colors, locations, angles, and contents.  
Their task is to describe how to replicate this map, giving 
instructions either to another person (for human-human dialog) 
or to a computer (for human-computer dialog).  The main screen 

is shown in Figure 1.  (The subjects have access to a “key” 
which has names for the regions.)  Possible actions include 
selecting a shape, moving it to a region, painting it, turning it, 
and filling it with other objects (the fruit). 

We used human-human conversations collected in this 
domain to form the basis for formalizing various aspects of 
incremental understanding, and for gauging the behavior of the 
spoken dialog system that we built to operate in this domain. 

3. Incremental understanding system, 
with interleaved results 

We now describe how the TRIPS architecture, which is a state-
of-the-art spoken dialog system that has been used in a variety 
of experimental domains including emergency management, 
equipment purchasing, and learning-from-instruction, has been 
redesigned to accommodate incremental understanding. In this 
section, we discuss each major component of the system in turn:  
speech recognition, segmenter, parser, VP advisor, input 
manager (IM), behavioral agent (BA), simulator, sequencer, 
GUI, and eyetracker. Along the way we describe technical 
improvements where relevant, throughout. 

3.1. Speech recognition and segmentation 

We used the human-human conversations described above to 
construct a specialized statistical language model for this 
domain using the techniques described by Galescu, Ringger, 
and Allen (1998). This language model was used as one of the 
inputs to an automatic speech recognizer from the Sphinx 
family: Sphinx 2, Sphinx 3, or Sphinx 4 depending on the 
system configuration (Lamere et al. 2003, Mosur et al. n.d., 
Huang et al. 1993, Lee 1989).  The results from the speech 
recognizer are fed to the parser and to a separate segmentation 
module (the Segmenter) which uses a small top-down fragment 
grammar to incrementally make predictions about the presence 
of interaction-relevant fragments such as verb phrase prefixes 
(“we need to move”) and referring expressions (“a large 
triangle”). The Segmenter passes its advice on to the Parser and 
also (for referring expressions) to the GUI, in order to allow the 
highlighting of possible referents on the screen. 

3.2. Parser 

From the output of the speech recognizer, the parser produces 
semantic representations with enough detail for analysis by the 
system reasoners. The grammar and lexicon used in the system 
are part of the TRIPS generic language processing front-end, 
which is used across multiple domains. Porting these 
components to a new domain requires adding lexical items and 
increasing grammatical coverage as needed. Lexicon and 
grammar development for the incremental understanding 
domain is driven by transcripts from recorded experimental 
sessions involving people interacting with the system. Domain 
specific interpretations for the parser output are obtained via a 
set of transformation rules (Dzikovska, Allen & Swift, 2003) 
which we constructed for this domain. These transformation 
rules are also used to boost in-domain word senses so that they 
will be tried first during parsing. 

To evaluate parser performance in incremental 
understanding mode compared to standard utterance by 
utterance interpretation we developed a gold standard corpus of 



parsed output for a sample dialogue. For each utterance the gold 
standard includes complete and correct syntactic analysis, word 
sense disambiguation, semantic role assignment and surface 
speech act analysis, as well as timing results and number of 
constituents produced during the parse. The high level of 
ambiguity in this domain often presents the parser with multiple 
possible interpretations, and the correct one is not always the 
first choice of the parser in standard mode. 

We have also developed a parsed corpus based on 
transcripts from experimental sessions to use as training data for 
new system components such as the VP advisor.  

3.3. Interpretation Manager 

The Interpretation Manager (IM) takes syntactic analysis from 
the parser and constructs semantic interpretations.  The IM also 
mediates between the Parser and advice agents such as the VP 
Advisor and the Simulator/KB, as described below. 

3.4. VP Advisor 

Even though the fruitcarts experiment allows users to use free 
style language, the set of actions that can be performed on 
objects provide us with a well defined constructions we can 
exploit. In examining the data collected we can summarize the 
following library of actions with all of their possible thematic 
roles expressed at one time or another. 

Table 1. Actions and their prototypical arguments. 

Action arguments 
Move Verb-object-distance-heading-location 
Rotate Verb-object-angle-heading 
Select Verb-object 
Paint Verb-object-color 

 
The action library lists all verb arguments that were seen on 

corpus. However, due to common elliptical constructions in 
speech dialogue (Fernandez, Ginzburg, and Lappin 2004), 
examples of all cases where there was a missing verb or any 
verb argument were seen. Nevertheless, certain constructions 
were more likely than others, knowledge, which might help the 
parser arrive at a more accurate analysis with less effort. 

To this end an initial set of six dialogues were manually 
annotated with verb and verb argument type labels. Then 
statistics that measured how often a verb argument appears 
given the verb were collected. Table 2 is an example for the 
statistics found for the action MOVE.  

Table 2. Statistics for MOVE action. 

args Probs 
-ver-obj-loc 0.658 
-ver-obj-hea 0.109 

-ver-obj 0.061 
-ver-obj-dis 0.049 

-ver-loc 0.037 
-ver 0.037 

-ver-obj-dis-hea 0.036 
 
For example the most likely MOVE action is performed by 

giving the verb, object and location which is intuitively correct. 

However this only occurs 66% of the time; MOVE actions are 
also done by stating a location only. The object is presumably 
already in the context by a previous SELECT action. This is the 
case of object elision. 

The mechanism works as follows: when the parser is 
constructing a VP, it asks the VP advisor how likely the 
construction under consideration is in this domain. This advice 
is taking place after the logical form of the utterance has been 
translated into our domain specific semantics. Therefore we can 
think of the advice as a way to encode semantic restrictions for 
each verb. The parser then modifies the probability of the 
constituent in the chart and puts it back into the agenda. 

Experimental results show us that on average the number of 
constituents built by the parser decreases with the VP advice. 
The best result can be seen on sentences as complicated as the 
following: “take the box in morningside and put it into pine tree 
mountain on the bottom of the flag”; here, the number of 
constituents were decreased by as much as 19%. On less 
complex sentences such as "and then change it to brown" there 
is no difference in number of constituents since the parser 
already finds a spanning parse efficiently. 

3.5. Simulator / Real-World Knowledge Base 

One of the additional sources of knowledge that can be brought 
to bear on the process of incremental understanding is 
knowledge about what is present in the visual world.  To 
explore the potential of this type of information, we began by 
parsing the sentence “put the square near the flag in the park” 
with the standard version of the parser, operating without 
incremental understanding. Now, for a non-incremental parser 
this sentence is inherently ambiguous, so the choice of a most 
likely parse is somewhat arbitrary; in the event, the parser 
selected “the square” as the direct object of the verb, and during 
the course of the parse built 197 total constituents. 
(Measurements of parsing efficiency are always tricky, but 
since both versions of the parser use identical grammars, the 
number of constituents built should serve as a reasonable 
measure for our purposes.) Then we created a simple knowledge 
base, KB-selected, which features a selected square, and a flag 
in a park, but no square near a flag. This set of knowledge 
clearly favors the interpretation selected by the non-incremental 
parser above. The incremental parser output the desired 
interpretation as its most likely parse, but only built 121 
constituents; an efficiency improvement of almost 40%. 

Operating in incremental mode doesn’t just improve the 
efficiency of the parser, but its accuracy as well. A different 
initial knowledge base, KB-near, features a square near a flag, 
but no flag in a park, and has no square selected. This KB 
favors an interpretation in which “the square near the flag” is 
the direct object. The non-incremental parser cannot make this 
distinction, even in principle, and so to capture the multiple 
possible interpretations, each preferable in a different context, it 
is necessary for the parser to feed forward a number of complete 
parses at the completion of its processing. 

A incremental understanding parser, however, has at its 
disposal, incrementally and immediately, the same knowledge 
that would be used to disambiguate the complete parses in a 
non-incremental system. Purely by changing the knowledge 
base to KB-near and allowing the reference feedback to be 
incorporated into the parse, the incremental system finds the 



correct parse as its most likely candidate, while building only 
131 constituents. KB-park is a third knowledge base which has 
neither a selected square nor a square near a flag, but does 
feature a square that is near a flag which is in a park. With this 
KB, the favored NP is “the square near the flag in the park”. 
However, restrictions on the verb “put” require the parse to 
have both a direct and indirect object, and the parser thus 
returns to the same interpretation it favored in the absence of 
any information from the KB. Interestingly, this entire process 
requires the construction of only 165 constituents; that is, even 
when the KB leads the parse somewhat astray, the incorporation 
of the domain knowledge still improves on the base parser’s 
efficiency of 197 constituents.  Finally, we tested the sentence 
“put the square near the flag in the park in the forest”. The non-
incremental parser found “in the forest” as the indirect object, 
building 396 constituents in the process. Using KB-park, 
however, the incremental parser arrived at the same 
interpretation in only 196 constituents. 

As well as the proof-in-principle sentences interpreted in 
context, we have run the system on the transcript of a complete 
dialogue from the corpus that we collected for this domain: 
 
1 okay so 
2 we’re going to put a large triangle with nothing into morningside 
3 we’re going to make it blue 
4 and rotate it to the left forty five degrees 
5 take one tomato and put it in the center of that triangle 
6 take two avocados and put it in the bottom of that triangle 
7 and move that entire set a little bit to the left and down 
8 mmkay 
9 now take a small square with a heart on the corner 
10 put it onto the flag area in central park 
11 rotate it a little more than forty five degrees to the left 
12 now make it brown 
13 and put a tomato in the center of it 
14 yeah that’s good 
15 and we’ll take a square with a diamond on the corner 
16 small 
17 put it in oceanview terrace 
18 rotate it to the right forty five degrees 
19 make it orange 
20 take two grapefruit and put them inside that square 
21 now take a triangle with the star in the center 
22 small 
23 put it in oceanview just to the left of oceanview terrace 
24 and rotate it left ninety degrees 
25 okay 
26 and put two cucumbers in that triangle 
27 and make the color of the triangle purple 
 

The experiment proceeded in much the same manner as the 
proof-in-principle, with candidate NPs being sent forward 
through the Interpretation Manager to the Knowledge Base, 
which provided feedback on whether the NP was a reasonable 
candidate, taking into account both domain-specific knowledge 
and the current state of the world. Because the user’s utterances 
had to be interpreted relative to the state of the world that the 
user had been aware of during dialogue collection, a series of 
knowledge base updates were performed between sentences to 
ensure that the KB was an accurate reflection of what the user 
had seen. 

The results of the experiment are as follows: Overall, the 
incremental understanding parser only had to build 75% as 
many constituents as the standard parser in order to find its first 

complete parse of each utterance. Stoness et al. (2005) provides 
further detail for the interested reader. 

3.6. Behavioral Agent; Output Components 

The Behavioral Agent produces a decision about what to do, 
based on input from the Interpretation Manager. These decisions 
are passed on to a string of components (Simulator, Sequencer, 
and GUI) which in the end results in an action, such as 
highlighting an object or moving it to a new location. 

4. Related Work and Conclusion 
Higashinaka et al. (2002) describe work on a process they term 
Incremental Sentence Sequence Search (ISSS), where both 
sentences and sentence fragments are used to update the dialog 
state.  ISSS constructs multiple dialog states which can be 
decided upon as needed after any desired interval of speech.  In 
a sense this can be viewed as a late binding process, whereas 
our work generally takes an earlier binding approach where 
information is brought to bear on the search as soon as possible.  
(In principle either system could no doubt be configured to 
perform late binding or early binding as desired, depending on 
configuration desired.) 

Rose et al. (2002) describe briefly a reworking of a chart 
parser to handle incremental typed input, where “as the text is 
progressively revised, only minimal changes are made to the 
chart” – their primary finding was that incrementally parsing 
incoming text allows for the parsing time to be folded into the 
time it takes to type, which can be substantial especially for 
longer user responses.  Our current work operates on spoken 
input as well as typed input and makes extensive use of the 
visual context and of pragmatic constraints in order to help with 
the parsing process.   

The most closely related work to this paper is probably that 
of DeVault and Stone (2003), where they describe techniques 
for incremental interpretation that involve annotating edges in a 
parser’s chart with the constraints of various types that must be 
fulfilled in order to the edge to be valid.  This architecture has a 
clean and appealing simplicity to it, but seems to impose a 
degree of uniformity on the sort of information and reasoning 
processes that can be brought to bear on the parsing process.  
Our approach is more agnostic: advice to the parser is 
represented as modifications to the chart, and can thus be in any 
framework appropriate to the source.   

In conclusion, we have presented a system architecture for 
incremental understanding of human speech, during human-
computer spoken dialog. In addition, we have demonstrated a 
number of technical improvements that arise from the 
incremental understanding process. Incremental understanding 
is proving to be an exciting and productive area for spoken 
language research. 
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