
SchulzeandRanked-PairsVotingAre
Fixed-ParameterTractable toBribe,

Manipulate,andControl
Lane A. Hemaspaandra, Rahman Lavaee, and Curtis Menton

Problem
Schulze and ranked-pairs elections have
been proven resistant to bribery and many
cases of control (the attack problems are
NP-complete).

Is it possible to carry out these attacks (or
to find out that it is impossible to attack)
using algorithms that for each fixed num-
ber of candidates run in time O(nk), where
k is independent of the number of candidates?

In other words, are the attack prob-
lems fixed parameter tractable (FPT) when
parameterizing on the number of candidates?

Results
Bribery, all the control cases, and
manipulation are in FPT for Schulze
and ranked pairs, parameterized on the
number of candidates.

Approach
The main idea is to find a structure that
on one hand is rich enough to specify the
exact winner set, and yet on the other hand
is so restrictive that the number of such
structures is bounded purely as a function of
the number of candidates.

This allows us to loop over all the struc-
tures that satisfy the goal of the attack
and for each of those directly wedge it into
an integer linear programming feasibility
problem (ILPFP) to see if that structure
can be achieved by setting up the attack
appropriately. The attack itself has to be
formulated within the ILPFP.

The number of constraints and variables in
the integer linear program is guaranteed to be
bounded as a function of the number of can-
didates. Thus we can solve it using Lenstra’s
algorithm and achieve FPT performance over-
all. For both Schulze and ranked pairs we find
this type of structure.

Schulze Voting
Voters cast their votes:

: � � �

: � � �

: � � �

: � � �

: � � �

: � � �

We build the Weighted Majority Graph (WMG) based on
these preferences (the weight of the WMG edge from a to
b is the number of voters preferring a to b minus the ones
preferring b to a).

Let the strength of a path
be the weakest link in that
path. Each candidate a
whose strongest path to
every other candidate b is
at least as strong as every
path from b back to a is
a winner. Here is the
unique winner.

4

0

0

2

20
2

0

Schulze Winner Set Certification Framework
How can it be certified in a succinct way that the Schulze winner set is { }?

We do this using Schulze winner set certification framework (SWCF). Such a structure specifies
for each winner a a strong path γab to every other candidate b that is at least as strong as every
simple path from b back to a (in each such path it specifies a weak link that is dominated by
every edge in γab).

4

0

0

2

20
2

0

path to

4

0

0

2

20
2

0

path to

4

0

0

2

20
2

0

path to

Also, for each nonwinner b, it specifies a path from some candidate to b that is strictly stronger
than any simple path from b to that candidate (here the same paths above satisfy this criterion).

Integer Linear Programming Feasibility Problems
Every SWCFmerely consists of inequalities between the weights of the WMG edges. The challenge
is then how to represent these weights in our linear programs. If j is the number of candidates
then there are j! different types of votes. The weight of the edge from a to b equals

D(a, b) =
(∑
{i | 1 ≤ i ≤ j! and the
vote type i prefers a to b}

vi

)
−
(∑
{i | 1 ≤ i ≤ j! and the
vote type i prefers b to a}

vi

)
,

where vi is the number of votes of type i. In order to handle various types of attacks we will
introduce variables and constants to allow vi to be replaced with an appropriate expression.

Example: Bribery
Suppose that we want to bribe one of the voters to make a Schulze winner. We need to find out which voter to bribe and which vote we want her
to cast instead. While looping over SWCFs, we reach the one shown below.

To formulate the constraints into an integer lin-
ear programming feasibility problem, we replace
each vi with ni −

∑
1≤`≤j!mi,` +

∑
1≤`≤j!m`,i

where ni is the number of votes of type i in the
original election andmi,` is a variable represent-
ing how many voters will be bribed from casting
a vote of type i to cast a vote of type `.
We solve the resulting integer linear program
and get m〈 � � � 〉,〈 � � � 〉 = 1. So

we can accomplish our goal by bribing to

vote � � � .

4
0

2

2 4

0

2

path to

D(,) ≥ D(,)

D(,) ≥ D(,)

4
0

2

2 4

0

2

path to

D(,) ≥ D(,)

D(,) ≥ D(,)

4
0

2

2 4

0

2

path to

D(,) ≥ D(,)

D(,) ≥ D(,)

D(,) ≥ D(,)

