



# Measuring Feature Diversity in Native Language Identification

Shervin Malmasi

**Aoife Cahill** 

Macquarie

Educational

University

**Testing Service** 

Australia

USA

### ML for NLI

- Predicting the native language of a writer based on a piece of English writing
- Typically solved using supervised-ML: multiclass classification
- Previous Work has investigated the predictive power of individual feature classes
- No systematic analysis of feature interaction

# Beyond NLI System Performance

- Context: language teaching and learning
- Goal: identify L1-specific usage patterns and errors
- Improve teaching methods, instructions and learner feedback
- Previous work shows that the features capture different pieces of information
- How diverse are the features? How can we measure the diversity?

# Feature Types for NLI

#### **Lexical**

- character n-grams
- word n-grams
- lemma n-grams
- function words

#### **Syntactic**

- POS n-grams
- syntactic dependencies
- TSG fragments
- CFG rules
- Adaptor grammars

### Data

- ETS Corpus of Non-Native English Writing (TOEFL 11)
- 11 L1s: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu, Turkish
- 1100 essays per L1, 900 train, 100 dev/test
- 8 prompts
- Train on train+dev, Evaluate on test

# Accuracy of Individual Features



# Measuring Feature Diversity

- Measure agreement between each pair of features for predicting labels on the same dataset
- Idea: the higher the agreement, the lower the diversity of those two features
- Yule's Q-coefficient statistic

### Yule's Q-coefficient

- Correlation coefficient for binary measurements
- Range from -1 to +1

|                          | C <sub>k</sub> Correct | C <sub>k</sub> Incorrect |
|--------------------------|------------------------|--------------------------|
| C <sub>j</sub> Correct   | N <sup>11</sup>        | N <sup>10</sup>          |
| C <sub>j</sub> Incorrect | N <sup>01</sup>        | N <sup>00</sup>          |

$$Q_{j,k} = \frac{N^{11}N^{00} - N^{01}N^{10}}{N^{11}N^{00} + N^{01}N^{10}}$$

# Q-coefficients (171 pairs)



# **Q-coefficient Matrix**



# Words and Dependencies

- Naively not thought to be strongly related
- Liu (2008) reports 51% of deps are adjacent
- How does this relate to k-skip word bigrams?



# **Q-coefficient Matrix**



# L1 and Word Usage

- Hypothesis: learners tend to use words similar in form and meaning to words in their L1
- Test: Extract English words from Etymological WordNet
  - Germanic roots
  - Latin roots
- Train 2 classifiers with just word unigrams
  - 2 SVMs each trained on different features

# L1 and Word Usage Results



# **Q-coefficient Matrix**



# **Extending CFG Rules**

Parent Annotations (Johnson, 1998)



### Parent-Annotated CFG Rules

```
ROOT \rightarrow S^<ROOT>

S^<ROOT> \rightarrow NP^<S> VP^<S>.

NP^<S> \rightarrow DT JJ JJ NN

VP^<S> \rightarrow VBD PP^<VP>

PP^<VP> \rightarrow IN NP^<PP>

NP^<PP> \rightarrow DT JJ NN
```

Building an NLI system with these features yields accuracy of 55.6%, a +1.3% increase over the standard CFG rules feature.

### Conclusions

- Q-coefficient provides a method for measuring feature diversity for high-dimensional feature spaces
- Experiments with NLI on TOEFL data show interesting feature correlations
- Analysis of feature diversity can help suggest new features