Using Learner Data to Improve Error Correction in Adjective-Noun Combinations

Ekaterina Kochmar and Ted Briscoe

The ALTA Institute, Computer Laboratory University of Cambridge

Cambridge ALTA

- 4 同 6 4 日 6 4 日 6

Overview Challenges Algorithms

Error detection and correction (ED&C): State-of-the-art

Attracted much attention recently:

- books [LEACOCK et al., 2014; LEACOCK et al., 2010]
- shared tasks [NG et al., 2014; NG et al., 2013; DALE et al., 2012, DALE AND KILGARRIFF, 2011]
- multiple papers and dissertations
- multiple workshops (10th anniversary of BEA!)

However, so far:

- major focus on grammatical errors, errors in articles and prepositions
- fewer address other error types [Kochmar and Briscoe, 2014; NG et al., 2014; Rozovskaya et al., 2014; Sawai et al., 2013; Dahlmeier and NG, 2011]

Cambridge ALTA

Overview Challenges Algorithms

Our work: Focus

Errors in content words (ANs in particular)

• Frequent error types [LEACOCK et al., 2014; NG et al., 2014]

← cover 20% of learner errors in the CLC [TETREAULT AND LEACOCK, 2014]

- notoriously hard to master
- yet, important for successful writing [LEACOCK AND CHODOROW, 2003; JOHNSON, 2000; SANTOS, 1988]

Cambridge ALTA

<ロ> <同> <同> <同> < 同> < 同>

Overview Challenges Algorithms

Content word errors: Challenges

- Lack of strictly defined rules:
 - powerful computer ↔ strong computer
 - powerful tea \leftrightarrow strong tea
- Sources of confusion:
 - similarity in meaning:
 - \triangleright powerful \sim strong
 - similarity in spelling:
 - \triangleright classic \sim classical
 - overusing words with general meaning:
 - ▷ big vs broad|wide|long|...
 - L1-related confusions

pood humor vs good mood (cf. French bon humor)

Cambridge ALTA

・ロト ・ 日 ・ ・ ヨ ト

Overview Challenges Algorithms

ED algorithms: General overview

Function vs Content Words

Function words

- Multi-class classification using number of possible alternatives
- Availability of finite confusion sets
- ▷ Error detection and correction possible to do simultaneously

Content words

- ▷ What are the multiple classes?
- Confusion sets depend on the original word choice
- ▷ Error detection independent of error correction [KOCHMAR AND BRISCOE, 2014]

(D) (A) (A) (A) (A)

Cambridge ALTA

Basic algorithm Coverage This work

Basic EDC algorithm

Three-step algorithm [LEACOCK et al., 2014]:

- ① ∀ X look for more *fluent/native-like* Y's
- Output of the second second
- **(3)** if $\exists Y_i$ more fluent than $X \Rightarrow X$ is an error, Y_i is a correction

Basic algorithm Coverage This work

Basic EDC algorithm performance

Basic algorithm Coverage This work

Different sources

- Reference databases of known learner errors and their corrections [WIBLE *et al.*, 2003; SHEI AND PAIN, 2000]
- Semantically related: WordNet, dictionaries and thesauri [ÖSTLING AND KNUTSSON, 2009; FUTAGI et al., 2008; SHEI AND PAIN, 2000]
- Spelling alternatives and homophones [DAHLMEIER AND NG, 2011]
- L1-specific confusion sets [Dahlmeier and Ng, 2011; Chang *et al.*, 2008; Liu, 2002]
- Wikipedia revisions [MADNANI AND CAHILL, 2014]

<ロ> (日) (日) (日) (日) (日)

Basic algorithm Coverage This work

Our work: Contributions

In this work

We treat error detection and error correction as separate steps,

and focus on error correction

Contributions

- Explore different ways to construct the correction sets and to rank the alternatives
- Obemonstrate how error patterns extracted from learner text can be used to improve the ranking of the alternatives
- **1** Present an EDC system for AN combinations
- Explore the usefulness of augmenting sets of alternatives for an EC system

Datasets Summary

Datasets

Cambridge ALTA

- the AN dataset extracted from the Cambridge Learner Corpus (CLC) and annotated with respect to the learner errors http://ilexir.co.uk/media/an-dataset.xml
- the AN dataset extracted from the CLC-FCE dataset http://ilexir.co.uk/applications/adjective-noun-dataset/
- the AN dataset extracted from the CoNLL-2014 Shared Task on Grammatical Error Correction training and development sets http://www.comp.nus.edu.sg/~nlp/conll14st.html

Datasets Summary

Datasets

Annotated dataset

- 340 unique errors
- $\bullet\,$ annotated with the error types for adjectives and nouns (S, F and N)

CLC-FCE dataset

- 456 ANs that have adjective-noun combinations as corrections
- no annotation for error types

NUCLE dataset

- 369 ANs that have adjective-noun combinations as corrections
- no annotation for error types
- smaller number of L1s, different set of topics, etc.

Cambridge ALTA

Datasets Summary

All datasets

Distribution of errors in the choice of adjectives (A), nouns (N) or both words

Cambridge ALTA

Э

Word alternatives Ranking Confusion probabilities

Error Correction Algorithm

Key points

Explore resources to retrieve alternatives and report coverage

 coverage – proportion of gold standard corrections covered by the resources

2 Rank AN alternatives and assess the quality of ranking (MRR)

- **quality** ability of the algorithm to rank the more appropriate corrections higher than the less appropriate ones
- 3 Use confusion sets extracted from the learner data

Word alternatives Ranking Confusion probabilities

Resources

- Levenshtein distance (Lv): form-related confusions, F E.g.: *electric society → electronic society important *costumer → important customer
- WordNet (WN): semantically related confusions, S
 E.g.: *heavy decline → steep decline good *fate → good luck
- Confusion pairs from the CLC: cover L1-related confusions, N E.g.: *strong noise \rightarrow loud noise

historical *****roman \rightarrow historical novel

Cambridge ALTA

・ロン ・回と ・ヨン・

Word alternatives Ranking Confusion probabilities

Coverage

Coverage of different sets of alternatives

Setting	Ann. data	CLC-FCE	NUCLE
Lv	0.1588	0.0833	0.0897
WN	0.4353	0.3904	0.2880
CLC	0.7912	0.8684	0.5625
CLC+Lv	0.7971	0.8706	0.5951
CLC+WN	0.8558	0.8904	0.6141
All	0.8618	0.8925	0.6467

Cambridge ALTA

Э

・ロト ・回ト ・ヨト ・ヨト

Word alternatives Ranking Confusion probabilities

Alternative ANs

ANs generation

Evaluation

$$MRR = \frac{1}{|N|} \sum_{i=1}^{|N|} \frac{1}{\operatorname{rank}_i}$$
(2)

N – total number of erroneous ANs

Cambridge ALTA

・ロト ・回ト ・ヨト ・ヨト

Э

Word alternatives Ranking Confusion probabilities

Ranking

Cambridge ALTA

(ロ) (同) (E) (E) (E)

Word alternatives Ranking Confusion probabilities

MRR for the alternatives ranking (I)

Setting	Ann. set	CLC-FCE	NUCLE
CLC _{freq}	0.3806	0.3121	0.2275
CLC _{NPMI}	0.3752	0.2904	0.1961
(CLC+Lv) _{freq}	0.3686	0.3146	0.2510
(CLC+Lv) _{NPMI}	0.3409	0.2695	0.1977
$(CLC+WN)_{freq}$	0.3500	0.2873	0.2267
(CLC+WN) _{NPMI}	0.3286	0.2552	0.1908
All _{freq}	0.3441	0.2881	0.2468
All _{NPMI}	0.3032	0.2407	0.1943

3

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Cambridge ALTA

Word alternatives Ranking Confusion probabilities

Exploitation of confusion probabilities

Use the **confusion probabilities (CP)** from the CLC – probabilities associated with the words used as corrections given the original (incorrect) word choice

Formula refinement

$$M' = M \times CP(a_{orig} \rightarrow a_{alt}) \times CP(n_{orig} \rightarrow n_{alt})$$
 (5)

• *M* – a measure of choice

•
$$CP(a_{orig} \rightarrow a_{alt=orig})$$
 and $CP(n_{orig} \rightarrow n_{alt=orig})$ set to 1.0

Cambridge ALTA

Word alternatives Ranking Confusion probabilities

Example: *big enjoyment \rightarrow great pleasure

CLC confusion pairs

Original	Alternatives	$CP(orig \rightarrow alt)$
big	great	0.0144
	large	0.0141
	wide	0.0043
	significant	$5.1122 * 10^{-5}$
enjoyment	pleasure	0.0938
	entertainment	0.0313
	fun	0.0104
	happiness	0.0052

Э

Cambridge ALTA

Word alternatives Ranking Confusion probabilities

Example: *big enjoyment \rightarrow great pleasure

Basic ranking algorithm (raw frequency)

System: great fun (7759 in the native corpus) **GS**: great pleasure (2829 in the native corpus)

Refined ranking algorithm (frequency')

System & GC: great pleasure (*Freq*' = 3.8212)

great fun (Freq' = 1.1620)

Freq' vs freq

fluency in the native data + appropriateness of a correction

Cambridge ALTA

Word alternatives Ranking Confusion probabilities

Quality (II)

MRR for the alternatives ranking (II)

Setting	Ann. set	CLC-FCE	NUCLE
CLC _{freq}	0.3806	0.3121	0.2275
CLC _{NPMI}	0.3752	0.2904	0.1961
(CLC+Lv) _{freq}	0.3686	0.3146	0.2510
(CLC+Lv) _{NPMI}	0.3409	0.2695	0.1977
(CLC+WN) _{freq}	0.3500	0.2873	0.2267
$(CLC+WN)_{NPMI}$	0.3286	0.2552	0.1908
All _{freq}	0.3441	0.2881	0.2468
All _{NPMI}	0.3032	0.2407	0.1943
All _{freq}	0.5061	0.4509	0.2913
All _{NPMI}	0.4843	0.4316	0.2118

Э

Cambridge ALTA

Results breakdown System augmentation Error detection & correction

Further analysis of the results

- Breakdown of the results
 - Top N coverage
 - Error types
- ② System augmentation
- **3** Error detection + correction

Results breakdown System augmentation Error detection & correction

of errors covered by top N alternatives				
Top N	Ann. data	CLC-FCE	NUCLE	
1	41.18	34.21	21.20	
2	49.12	45.18	27.99	
3	56.77	50.88	33.70	
4	61.77	55.04	38.04	
5	65.29	58.55	40.49	
6	66.18	61.40	42.39	
7	67.35	62.28	43.21	
8	68.53	63.60	44.29	
9	69.71	65.35	45.38	
10	71.18	66.45	46.20	
Not found	25.29	19.96	48.64	

Cambridge ALTA

æ

Results breakdown System augmentation Error detection & correction

Error type analysis for the annotated dataset

Туре	S	F	N
MRR _{found}	0.6007	0.8486	0.6507
Not found	0.1990	0.1705	0.5410

Some observations

- type N (non-related confusion) the hardest to correct (not surprisingly...)
- type F (form-related) the easiest (smaller confusion sets) e.g., MRR = 0.875 for the ANs with *elder* : *elder* \rightarrow *elderly* or *older*

Cambridge ALTA

Results breakdown System augmentation Error detection & correction

NUCLE results

Cambridge ALTA

- 35% of the GS corrections not covered by any sets of alternatives
- $\bullet\,$ confusion sets from the CLC can only cover about 56%
- more limited number of L1s
- different set of topics and learner levels
- more of the type N?

*architectural development → infrastructural development medical *debt → medical bill (6)

3

Results breakdown System augmentation Error detection & correction

Augmenting sets of alternatives

Method

- Add *bill* to the set of alternatives for *debt*
- Add infrastructural to the set of alternatives for architectural
-

Cambridge ALTA

• Check whether the results of the error correction system improve

Augmented sets of alternatives results

Setting	Ann. set	CLC-FCE	NUCLE
CLC	<u>0.3806</u>	0.3121	0.2275
CLC+Lv	0.3686	<u>0.3146</u>	<u>0.2510</u>
Augm	0.4420	0.3533	0.2614

Results breakdown System augmentation Error detection & correction

Combined algorithm results

Algorithm

• Error detection [Kochmar and Briscoe, 2014]:

P = 0.6850, R = 0.5849 on the incorrect examples in the annotated dataset

- + Error correction step:
 - MRR = 0.2532 on the set of detected errors
 - 24.28% cases GS correction not found
 - $MRR_{found} = 0.6831$

Cambridge ALTA

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Results breakdown System augmentation Error detection & correction

Conclusions

In this work we:

- focused on EC in adjective-noun combinations
- experimented with 3 publicly available datasets
- looked at the coverage of resources and the quality of suggestions

and we showed:

- the confusion patterns from the learner data provide the highest coverage and improve the overall ranking
- 2 error correction system can reach an MRR of 0.5061
- Orrection set augmentation is helpful
- MRR of 0.2532 on the set of errors identified by ED algorithm

Cambridge ALTA

Contact: Ekaterina.Kochmar@cl.cam.ac.uk

Data:

annotated AN dataset

http://ilexir.co.uk/media/an-dataset.xml

 the AN dataset extracted from the CLC-FCE http://ilexir.co.uk/applications/adjective-noun-dataset/

・ 同 ト ・ ヨ ト ・ ヨ ト

References

Y.-C. Chang, J. S. Chang, H.-J. Chen and H.-C. Liou, 2008. An automatic collocation writing assistant for Taiwanese EFL learners: A case of corpus-based NLP technology. Computer Assisted Language Learning, 21(3)

D. Dahlmeier and H. T. Ng, 2011. Correcting Semantic Collocation Errors with L1-induced Paraphrases. In Proceedings of the EMNLP 2011

R. Dale and A. Kilgarriff, 2011. *Helping Our Own: The HOO 2011 Pilot Shared Task*. In Proceedings of the ENLG 2011

R. Dale, I. Anisimoff and G. Narroway, 2012. *HOO 2012: A Report on the Preposition and Determiner Error Correction Shared Task*. In Proceedings of the BEA 2012

Y. Futagi, P. Deane, M. Chodorow, and J. Tetreault, 2008. A computational approach to detecting collocation errors in the writing of non-native speakers of English. Computer Assisted Language Learning, 21(4)

D. Johnson, 2000. Just the Right Word: Vocabulary and Writing. In R. Indrisano & J. Squire (Eds.), Perspectives on Writing: Research, Theory, and Practice

E. Kochmar and T. Briscoe, 2014. *Detecting Learner Errors in the Choice of Content Words Using Compositional Distributional Semantics*. In Proceedings of the COLING 2014

C. Leacock, M. Chodorow, and J. Tetreault, 2014. Automated Grammatical Error Detection for Language Learners, Second Edition Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers

C. Leacock, M. Chodorow, and J. Tetreault, 2010. Automated Grammatical Error Detection for Language Learners. Morgan & Claypool Publishers

C. Leacock and M. Chodorow, 2003. Automated Grammatical Error Detection. In M. D. Shermis and J. C. Burstein (eds.), Automated Essay Scoring: A Cross-Disciplinary Perspective,

A Liu, 2002. A corpus-based lexical semantic investigation of verb-noun miscollocations in Taiwan learners English. Master's thesis

N. Madnani and A. Cahill, 2014. An Explicit Feedback System for Preposition Errors based on Wikipedia Revisions. In Proceedings of the BEA 2014

Cambridge ALTA

H. T. Ng, S. M. Wu, Y. Wu, C. Hadiwinoto, and J. Tetreault, 2013. *The CoNLL-2013 Shared Task on Grammatical Error Correction*. In Proceedings of the CoNLL 2013

H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant, 2014. The CoNLL-2014 Shared Task on Grammatical Error Correction. In Proceedings of the CoNLL 2014

D. Nicholls, 2003. The Cambridge Learner Corpus: Error coding and analysis for lexicography and ELT. In Proceedings of the Corpus Linguistics conference

R. Östling and O. Knutsson, 2009. A corpus-based tool for helping writers with Swedish collocations. In Proceedings of the Workshop on Extracting and Using Constructions in NLP

A. Rozovskaya, K.-W. Chang, M. Sammons, D. Roth, and N. Habash, 2014. Correcting Grammatical Verb Errors. In Proceedings of the EACL 2014

T. Santos, 1988. Professors' reaction to the academic writing of nonnative speaking students. TESOL Quarterly, 22(1)

Cambridge ALTA

・ロト ・回ト ・ヨト ・ヨト

Y. Sawai, M. Komachi, and Y. Matsumoto, 2013. A Learner Corpus-based Approach to Verb Suggestion for ESL. In Proceedings of the ACL 2013

C.-C. Shei and H. Pain, 2000. An ESL Writer's Collocation Aid. Computer Assisted Language Learning, 13(2)

J. Tetreault and C. Leacock, 2014. Automated Grammatical Error Correction for Language Learners. Tutorial, COLING 2014

D. Wible, C.-H. Kuo, N.-L. Tsao, A. Liu and H.-L. Lin, 2003. *Bootstrapping in a language-learning environment*. Journal of Computer Assisted Learning, 19(4)

H. Yannakoudakis, T. Briscoe, and B. Medlock, 2011. A New Dataset and Method for Automatically Grading ESOL Texts. In Proceedings of the ACL: HLT 2011

イロト イポト イヨト イヨト

Cambridge ALTA