
Generating Quanti�ers and Negation to Explain

Homework Testing

Jason Perry and Chung-chieh Shan

Rutgers University

June 5, 2010

Slides available at
http://paul.rutgers.edu/~jasperry/gqn_bea.pdf

http://paul.rutgers.edu/~jasperry/gqn_bea.pdf

Automated Programming Assignment Checking

Professor teaching Programming 101 types requirement:
\Every source �le compiles and `Readme.txt` mentions every source

�le."

Computer understands this requirement and automatically checks
students' �les.

Student automatically receives feedback:
\Credit was lost because `foo.c' doesn't compile and `Readme.txt'

doesn't mention `bar.c'."

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 2 / 23

Automated Programming Assignment Checking

Professor teaching Programming 101 types requirement:
\Every source �le compiles and `Readme.txt` mentions every source

�le."

Computer understands this requirement and automatically checks
students' �les.

Student automatically receives feedback:
\Credit was lost because `foo.c' doesn't compile and `Readme.txt'

doesn't mention `bar.c'."

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 2 / 23

Automated Programming Assignment Checking

Professor teaching Programming 101 types requirement:
\Every source �le compiles and `Readme.txt` mentions every source

�le."

Computer understands this requirement and automatically checks
students' �les.

Student automatically receives feedback:
\Credit was lost because `foo.c' doesn't compile and `Readme.txt'

doesn't mention `bar.c'."

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 2 / 23

Goals

Workable automated checking of basic programming assignment
requirements with a natural language interface.

A study of quanti�ers and negation in NL generation, within an
end-to-end NLP framework.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 3 / 23

Prograder NLP System Architecture Overview

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 4 / 23

Semantics of a Requirements Statement

Each requirement speci�cation is a sentence, whose truth value is
determined by checking a single student's programming assignment.

Use the types of Montague grammar, which are the base type of
entities e, the base type of propositions t, and function types notated
by !.

A domain-speci�c �rst-order language, executable in Python

and (everysourcefile (lambda x : compiles (x)) ,

everysourcefile (lambda z : mentions (z, ("Readme.txt"))))

Checking of quanti�ed statements is done through iteration over the
domain (submitted �les).

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 5 / 23

Semantics of a Requirements Statement

Each requirement speci�cation is a sentence, whose truth value is
determined by checking a single student's programming assignment.

Use the types of Montague grammar, which are the base type of
entities e, the base type of propositions t, and function types notated
by !.

A domain-speci�c �rst-order language, executable in Python

and (everysourcefile (lambda x : compiles (x)) ,

everysourcefile (lambda z : mentions (z, ("Readme.txt"))))

Checking of quanti�ed statements is done through iteration over the
domain (submitted �les).

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 5 / 23

Semantics of a Requirements Statement

Each requirement speci�cation is a sentence, whose truth value is
determined by checking a single student's programming assignment.

Use the types of Montague grammar, which are the base type of
entities e, the base type of propositions t, and function types notated
by !.

A domain-speci�c �rst-order language, executable in Python

and (everysourcefile (lambda x : compiles (x)) ,

everysourcefile (lambda z : mentions (z, ("Readme.txt"))))

Checking of quanti�ed statements is done through iteration over the
domain (submitted �les).

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 5 / 23

Semantics of a Requirements Statement

Each requirement speci�cation is a sentence, whose truth value is
determined by checking a single student's programming assignment.

Use the types of Montague grammar, which are the base type of
entities e, the base type of propositions t, and function types notated
by !.

A domain-speci�c �rst-order language, executable in Python

and (everysourcefile (lambda x : compiles (x)) ,

everysourcefile (lambda z : mentions (z, ("Readme.txt"))))

Checking of quanti�ed statements is done through iteration over the
domain (submitted �les).

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 5 / 23

Explaining Truth Values

The checking code should produce not only a truth value but also an
explanation of that value.

An explanation of a truth value may be viewed as a conjunction of a
su�cient number of evidence statements, one for each failed check, in
the same logical language:

not(compiles('foo.c'))

not(mentions('bar.c')('Readme.txt'))

Expand the type de�nition of truth value: instead of just a boolean,
use a (boolean, explanation) pair.

Summarization by grouping/quantifying over evidence statements

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 6 / 23

Explaining Truth Values

The checking code should produce not only a truth value but also an
explanation of that value.

An explanation of a truth value may be viewed as a conjunction of a
su�cient number of evidence statements, one for each failed check, in
the same logical language:

not(compiles('foo.c'))

not(mentions('bar.c')('Readme.txt'))

Expand the type de�nition of truth value: instead of just a boolean,
use a (boolean, explanation) pair.

Summarization by grouping/quantifying over evidence statements

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 6 / 23

Explaining Truth Values

The checking code should produce not only a truth value but also an
explanation of that value.

An explanation of a truth value may be viewed as a conjunction of a
su�cient number of evidence statements, one for each failed check, in
the same logical language:

not(compiles('foo.c'))

not(mentions('bar.c')('Readme.txt'))

Expand the type de�nition of truth value: instead of just a boolean,
use a (boolean, explanation) pair.

Summarization by grouping/quantifying over evidence statements

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 6 / 23

Explaining Truth Values

The checking code should produce not only a truth value but also an
explanation of that value.

An explanation of a truth value may be viewed as a conjunction of a
su�cient number of evidence statements, one for each failed check, in
the same logical language:

not(compiles('foo.c'))

not(mentions('bar.c')('Readme.txt'))

Expand the type de�nition of truth value: instead of just a boolean,
use a (boolean, explanation) pair.

Summarization by grouping/quantifying over evidence statements

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 6 / 23

Explaining Truth Values

The checking code should produce not only a truth value but also an
explanation of that value.

An explanation of a truth value may be viewed as a conjunction of a
su�cient number of evidence statements, one for each failed check, in
the same logical language:

not(compiles('foo.c'))

not(mentions('bar.c')('Readme.txt'))

Expand the type de�nition of truth value: instead of just a boolean,
use a (boolean, explanation) pair.

Summarization by grouping/quantifying over evidence statements

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 6 / 23

Prograder NLP System Architecture

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 7 / 23

Prograder Architecture - the Hard Part

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 8 / 23

Aarne Ranta's Grammatical Framework

http://www.grammaticalframework.org/

A type-theoretical framework for symmetric parsing and linearization

Supports translation through separation into an abstract grammar
and concrete grammar

Common abstract grammar, separate concrete grammar for each
language
Parse using one concrete grammar, generate using the other, and
vice-versa

Abstract grammar is functional, concrete grammar uses string
concatenation with record structures for e�ciency (context-free+)

Prograder uses one concrete grammar for parsing/generating
English, another for the Python logical form.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 9 / 23

http://www.grammaticalframework.org/

Aarne Ranta's Grammatical Framework

http://www.grammaticalframework.org/

A type-theoretical framework for symmetric parsing and linearization

Supports translation through separation into an abstract grammar
and concrete grammar

Common abstract grammar, separate concrete grammar for each
language
Parse using one concrete grammar, generate using the other, and
vice-versa

Abstract grammar is functional, concrete grammar uses string
concatenation with record structures for e�ciency (context-free+)

Prograder uses one concrete grammar for parsing/generating
English, another for the Python logical form.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 9 / 23

http://www.grammaticalframework.org/

Aarne Ranta's Grammatical Framework

http://www.grammaticalframework.org/

A type-theoretical framework for symmetric parsing and linearization

Supports translation through separation into an abstract grammar
and concrete grammar

Common abstract grammar, separate concrete grammar for each
language
Parse using one concrete grammar, generate using the other, and
vice-versa

Abstract grammar is functional, concrete grammar uses string
concatenation with record structures for e�ciency (context-free+)

Prograder uses one concrete grammar for parsing/generating
English, another for the Python logical form.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 9 / 23

http://www.grammaticalframework.org/

Aarne Ranta's Grammatical Framework

http://www.grammaticalframework.org/

A type-theoretical framework for symmetric parsing and linearization

Supports translation through separation into an abstract grammar
and concrete grammar

Common abstract grammar, separate concrete grammar for each
language
Parse using one concrete grammar, generate using the other, and
vice-versa

Abstract grammar is functional, concrete grammar uses string
concatenation with record structures for e�ciency (context-free+)

Prograder uses one concrete grammar for parsing/generating
English, another for the Python logical form.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 9 / 23

http://www.grammaticalframework.org/

Aarne Ranta's Grammatical Framework

http://www.grammaticalframework.org/

A type-theoretical framework for symmetric parsing and linearization

Supports translation through separation into an abstract grammar
and concrete grammar

Common abstract grammar, separate concrete grammar for each
language
Parse using one concrete grammar, generate using the other, and
vice-versa

Abstract grammar is functional, concrete grammar uses string
concatenation with record structures for e�ciency (context-free+)

Prograder uses one concrete grammar for parsing/generating
English, another for the Python logical form.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 9 / 23

http://www.grammaticalframework.org/

Parsing Requirements to Abstract Syntax

Non-phrase-structure aspects such such as agreement are handled in
the (English) concrete grammar.

Quanti�ed NPs are not distinguished from syntactic NPs in the
abstract syntax.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 10 / 23

Prograder NLP Architecture Revisited

Produce a logical semantic representation from the syntax tree using GF's

generation capability.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 11 / 23

Quanti�er Scoping Overview

\A �le mentions every source �le": How to implement semantics of
quanti�er scoping?

Semantic attachments to the syntax tree, in the form of lambda
expressions representing the denotation of categories
Expressions are combined with a composition rule and beta-reduced
Composition rules can be speci�ed by a functional/categorial grammar

What kind of expressions/application rules implement scoping?

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 12 / 23

Quanti�er Scoping Overview

\A �le mentions every source �le": How to implement semantics of
quanti�er scoping?

Semantic attachments to the syntax tree, in the form of lambda
expressions representing the denotation of categories
Expressions are combined with a composition rule and beta-reduced
Composition rules can be speci�ed by a functional/categorial grammar

What kind of expressions/application rules implement scoping?

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 12 / 23

Quanti�er Scoping Overview

\A �le mentions every source �le": How to implement semantics of
quanti�er scoping?

Semantic attachments to the syntax tree, in the form of lambda
expressions representing the denotation of categories
Expressions are combined with a composition rule and beta-reduced
Composition rules can be speci�ed by a functional/categorial grammar

What kind of expressions/application rules implement scoping?

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 12 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Surface Scope with Continuation Grammar Rules

Express scoping preferences directly in the grammar by means of
continuized denotations and combination rules.

Model the ability of constituents to take scope over others.

NP's have this structure in Montague Grammar: type ((e ! t)! t)
instead of e.

Continuation grammars [Barker & Shan] generalize the use of
higher-order functions in grammar rules to provide access to
continuation for all constituents.

Treat each constituent, quanti�ed or non-quanti�ed, as having access
to its own continuation.

fun ApplyS NP VP

= NP(lambda n: VP(lambda v: v(n)))

Represents surface scope: NP can take scope over VP

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 13 / 23

Abstract Syntax Tree with Semantic Attachments

Can we generate/combine such representations using GF?

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 14 / 23

Abstract Syntax Tree with Semantic Attachments

Can we generate/combine such representations using GF?
Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 14 / 23

Simulating Bounded-depth Continuations with String

Concatenation

We want to generate the logical form in GF using a concrete
grammar.

... then we get parsing for free

But GF's linearization is limited to string concatenation - no
higher-order functions allowed.

Solution: simulate higher-order functions with interleaved record �elds.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 15 / 23

Simulating Bounded-depth Continuations with String

Concatenation

We want to generate the logical form in GF using a concrete
grammar.
... then we get parsing for free

But GF's linearization is limited to string concatenation - no
higher-order functions allowed.

Solution: simulate higher-order functions with interleaved record �elds.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 15 / 23

Simulating Bounded-depth Continuations with String

Concatenation

We want to generate the logical form in GF using a concrete
grammar.
... then we get parsing for free

But GF's linearization is limited to string concatenation - no
higher-order functions allowed.

Solution: simulate higher-order functions with interleaved record �elds.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 15 / 23

Simulating Bounded-depth Continuations with String

Concatenation

We want to generate the logical form in GF using a concrete
grammar.
... then we get parsing for free

But GF's linearization is limited to string concatenation - no
higher-order functions allowed.

Solution: simulate higher-order functions with interleaved record �elds.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 15 / 23

Simulating Bounded-depth Continuations with String

Concatenation

lin foosource =

{ "", "'foo.c'", "" }

lin everysourcefile =

{ "everysourcefile(lambda x:", "x", ")" }

lin compiles =

{ "", "compiles", "" }

`Apply' functions simply interleave and concatenate the record �elds.

"compiles('foo.c')"

"everysourcefile(lambda x: compiles(x))"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 16 / 23

Simulating Bounded-depth Continuations with String

Concatenation

lin foosource =

{ "", "'foo.c'", "" }

lin everysourcefile =

{ "everysourcefile(lambda x:", "x", ")" }

lin compiles =

{ "", "compiles", "" }

`Apply' functions simply interleave and concatenate the record �elds.

"compiles('foo.c')"

"everysourcefile(lambda x: compiles(x))"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 16 / 23

Simulating Bounded-depth Continuations with String

Concatenation

lin foosource =

{ "", "'foo.c'", "" }

lin everysourcefile =

{ "everysourcefile(lambda x:", "x", ")" }

lin compiles =

{ "", "compiles", "" }

`Apply' functions simply interleave and concatenate the record �elds.

"compiles('foo.c')"

"everysourcefile(lambda x: compiles(x))"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 16 / 23

GF Generations as Semantic Attachments

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 17 / 23

Negatives as Quanti�ers

Negatives have scope too: \Every source �le doesn't compile" versus
\Not Every source �le compiles"

Important to handle negatives tastefully in the explanation to the
student

\It is not the case that not every source �le doesn't compile"

Claim: More natural-sounding sentences are generated when negation
is pushed all the way in using De Morgan's rule.
\No source �le compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 18 / 23

Negatives as Quanti�ers

Negatives have scope too: \Every source �le doesn't compile" versus
\Not Every source �le compiles"

Important to handle negatives tastefully in the explanation to the
student
\It is not the case that not every source �le doesn't compile"

Claim: More natural-sounding sentences are generated when negation
is pushed all the way in using De Morgan's rule.
\No source �le compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 18 / 23

Negatives as Quanti�ers

Negatives have scope too: \Every source �le doesn't compile" versus
\Not Every source �le compiles"

Important to handle negatives tastefully in the explanation to the
student
\It is not the case that not every source �le doesn't compile"

Claim: More natural-sounding sentences are generated when negation
is pushed all the way in using De Morgan's rule.

\No source �le compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 18 / 23

Negatives as Quanti�ers

Negatives have scope too: \Every source �le doesn't compile" versus
\Not Every source �le compiles"

Important to handle negatives tastefully in the explanation to the
student
\It is not the case that not every source �le doesn't compile"

Claim: More natural-sounding sentences are generated when negation
is pushed all the way in using De Morgan's rule.
\No source �le compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 18 / 23

\Generating" De Morgan's Rule in GF

Every statement in the logical grammar should be parsed into an
abstract tree with negation all the way in.

A grammar doesn't `know' De Morgan's rule such that it can preserve
semantics of negation (move negatives inside and
ip quanti�ers)

But we can simulate it by storing two versions of each record, one for
the original quanti�ers and one with the dual, with a `switched'
ag.

noteverysourcefile (not (not (compiles)))

"not every source file compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 19 / 23

\Generating" De Morgan's Rule in GF

Every statement in the logical grammar should be parsed into an
abstract tree with negation all the way in.

A grammar doesn't `know' De Morgan's rule such that it can preserve
semantics of negation (move negatives inside and
ip quanti�ers)

But we can simulate it by storing two versions of each record, one for
the original quanti�ers and one with the dual, with a `switched'
ag.

noteverysourcefile (not (not (compiles)))

"not every source file compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 19 / 23

\Generating" De Morgan's Rule in GF

Every statement in the logical grammar should be parsed into an
abstract tree with negation all the way in.

A grammar doesn't `know' De Morgan's rule such that it can preserve
semantics of negation (move negatives inside and
ip quanti�ers)

But we can simulate it by storing two versions of each record, one for
the original quanti�ers and one with the dual, with a `switched'
ag.

noteverysourcefile (not (not (compiles)))

"not every source file compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 19 / 23

\Generating" De Morgan's Rule in GF

Every statement in the logical grammar should be parsed into an
abstract tree with negation all the way in.

A grammar doesn't `know' De Morgan's rule such that it can preserve
semantics of negation (move negatives inside and
ip quanti�ers)

But we can simulate it by storing two versions of each record, one for
the original quanti�ers and one with the dual, with a `switched'
ag.

noteverysourcefile (not (not (compiles)))

"not every source file compiles"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 19 / 23

Sample Output

$./runPrograder.py assn 'every source file compiles and

"README" mentions every source file'

RESULT: False, because:

a source file doesn't compile and "README" doesn't mention

every source file

"nowork2.c" doesn't compile

"nowork.c" doesn't compile

"README" doesn't mention "nowork2.c"

"README" doesn't mention "hello.c"

"README" doesn't mention "work1.c"

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 20 / 23

Conclusion

Simulating continuized grammar rules with records is a workable way
to generate logical forms of quanti�ed and negated statements for
NLP applications, while keeping parsing and generation tractable.

Grad students don't have to write as many scripts, professors don't
have to learn a new system.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 21 / 23

Conclusion

Simulating continuized grammar rules with records is a workable way
to generate logical forms of quanti�ed and negated statements for
NLP applications, while keeping parsing and generation tractable.

Grad students don't have to write as many scripts, professors don't
have to learn a new system.

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 21 / 23

Continuing Work

Testing with actual professors and students, expanding the vocabulary

Finish the general formulation of the continuation-rule-to-record
mapping, including higher-order quanti�ers e.g. `some'

Further investigation of summarization within the type-theoretic
framework

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 22 / 23

The End

Thank you!

Perry and Shan (Rutgers) Q & N for Homework Testing June 5, 2010 23 / 23

