#### Leveraging Hidden Dialogue State to Select Tutorial Moves

Kristy Elizabeth Boyer, Robert Phillips, Eun Young Ha, Michael Wallis, Mladen Vouk, & James Lester

Department of Computer Science
North Carolina State University



# Introduction





## **Tutorial Dialogue Systems**



- Geometry (Aleven et al., 2004)
- Circulatory System (Evens & Michael, 2006)
- Physics (Graesser et al., 2005; Jordan et al., 2006)
- Data Structures (Fossati et al., 2008)
- And many more...

## Challenge



# Never achieved effectiveness equal to the most effective human tutors



#### Reasons?



 Need more sophisticated natural language dialogue (Graesser et al., 1994)

#### AND/OR

 Need to facilitate mastery learning (Van Lehn, 2008)

### Possible Solution in Either Case



Data-driven authoring of tutorial dialogue system behavior



### **Hypothesized Benefits**



#### Data-driven tutorial dialogue systems:

- Reduced development time
- Increased number of hours of instruction for students
- Flexible dialogue strategies
- Reflect approaches of effective human tutors

#### Goal of This Work



#### Learn

a data-driven tutorial dialogue strategy

as evidenced by

predicting human tutors' dialogue acts within a corpus

## Approach



#### Perform

sequence prediction

with models that leverage

hidden dialogue state

### Related Work



#### Data-driven dialogue policy creation through:

- Reinforcement learning
- Direct corpus-based extraction

## Reinforcement Learning



- Markov assumption (Levin et al. 2000)
- Reinforcement learning (Frampton & Lemon, 2009)
- Challenges include sparse data and large state spaces (Ai et al., 2007; Tetreault & Litman, 2008; Henderson et al., 2008; Heeman, 2007; Young et al., 2009)
- Comparing specific tutorial dialogue tactic choices (Chi et al., 2008)

### Corpus-Based Extraction



Assumes that a good dialogue policy is realized in successful human-human dialogues

- Financial domain (Hardy et al., 2006)
- Catalogue ordering (Bangalore et al., 2008)
- Maptask conversational game (Poesio & Mikheev, 1998)

## Strategies in Tutorial Dialogue



#### Data-driven exploration

- CIRCSIM-TUTOR (Evens & Michael, 2006)
- ITSPOKE (Forbes-Riley, Rotaru, Litman, & Tetreault, 2007; Forbes-Riley & Litman, 2009)
- KSC-PAL (Kersey, Di Eugenio, Jordan, & Katz, 2009)

## **Hidden Dialogue State**



- Learned by hidden Markov models (Boyer et al., 2009a)
- Qualitative resemblance to tutorial dialogue strategies (Boyer et al., 2009b)
- Hypothesized to boost prediction of tutor moves

### Corpus Study



- 48 Human-human tutoring dialogues
- Domain: introductory computer programming
- Task-oriented, separate, parallel task event stream

# Corpus Collection





# Remote Tutoring Environment





#### Corpus



- 1,468 student utterances and 3,338 tutor utterances
- 3,793 semantic student task actions
- Significant learning gain from pretest to posttest (7% average, p<0.0001)</li>
- Annotated with dialogue act tags and task/ subtask structure

### Dialogue Act Annotation



- Scheme inspired by tags for
  - Conversational speech (Stolcke et al., 2000)
  - Task-oriented dialogue (Core & Allen, 1997)
  - Tutoring (Litman & Forbes-Riley, 2006)
- Inter-rater reliability on 10% of corpus was  $\kappa$ =0.80.

# Dialogue Act Tags



| Description                                                 |
|-------------------------------------------------------------|
| Request for feedback on task or conceptual utterance.       |
| Asides not relevant to the tutoring task.                   |
| Acknowledgement/thanks.                                     |
| Negative assessment with explanation.                       |
| Lukewarm assessment of task action or conceptual utterance. |
| Negative assessment with explanation.                       |
| Negative assessment of task action or conceptual utterance. |
| Positive assessment with explanation.                       |
| Positive assessment of task action or conceptual utterance. |
| Task or conceptual question.                                |
| Task or conceptual assertion.                               |
|                                                             |

#### **Task Annotation**



- Corpus includes 97,509 keystroke-level student task events
- Manually aggregated into 3,793 subtask actions
- Annotated with task/subtask structure
- Marked for correctness

## **Subtask Structure Annotation**





#### Task Annotation Results



- Subtask annotation (66 leaves)
  - Inter-rater reliability study on 20% of corpus
  - Simple kappa = 0.58
  - Weighted kappa = 0.86
- Correctness annotation (4 tags)
  - Correct, Buggy, Incomplete, and Dispreferred
  - Simple kappa = 0.80

# Tagged Excerpt



| Time Stamp          |          | Dialogue Stream                              | <b>Task Stream</b> |        |
|---------------------|----------|----------------------------------------------|--------------------|--------|
|                     |          | so do i have to manipulate the array this    |                    |        |
| 2008-04-11 18:23:45 | Student: | time? [Q]                                    |                    |        |
| 2008-04-11 18:23:53 | Tutor:   | this time, we need to do two things [S]      |                    |        |
|                     |          | first, we need to create a new array to hold |                    |        |
| 2008-04-11 18:24:02 | Tutor:   | the changed values [S]                       |                    |        |
| 2008-04-11 18:24:28 |          |                                              | i                  | ]      |
| 2008-04-11 18:24:28 |          |                                              | n                  | 1-a-l  |
| 2008-04-11 18:24:28 |          |                                              | t                  | Buggy  |
| 2008-04-11 18:24:28 |          |                                              | \sp                |        |
| 2008-04-11 18:24:35 |          |                                              | \del               | _      |
| 2008-04-11 18:24:36 |          |                                              | \sp                |        |
| 2008-04-11 18:24:36 |          |                                              | d                  | 1      |
| 2008-04-11 18:24:36 |          |                                              | 0                  |        |
| 2008-04-11 18:24:36 |          |                                              | u                  |        |
| 2008-04-11 18:24:36 |          |                                              | b                  | 1-a-i  |
| 2008-04-11 18:24:37 |          |                                              | 1                  | Correc |
| 2008-04-11 18:24:37 |          |                                              | е                  |        |
| 2008-04-11 18:24:37 |          |                                              | \sp                |        |
| 2008-04-11 18:24:39 |          |                                              |                    |        |

# Sequence Modeling Task





#### Three models



- First-order Markov models (MMs)
- Hidden Markov models (HMMs)
- Hierarchical Hidden Markov models (HHMMs)

# Markov model





# **HMM**





# HHMM





## Portion of Learned HMM





## Portion of Learned HHMM





# Prediction Results by Model





# HHMM Results by Subtask





#### Results in Context



- Catalogue ordering domain
  - Flat model 55% accuracy (Bangalore et al., 2008)
  - Hierarchical model 35.6% accuracy (Bangalore & Stent, 2009)
- Our domain, tutoring for introductory computer programming
  - Flat model 48% accuracy
  - Hierarchical model 57% accuracy

#### Conclusions



- Hidden dialogue state useful; HMMs outperform MMs
- Task/subtask structure useful; HHMMs outperform HMMs
- Understand Problem phase very challenging to model
- Extra-domain conversation most straightforward to predict

#### **Future Work**



- Maintain multiple hypotheses for tutorial moves
- Leverage learner characteristics
- Develop fully unsupervised dialogue models
- Ultimate goal: create highly effective datadriven tutorial dialogue systems

# A Shameless Plug



# The Third Workshop on Question Generation

QG 2010



#### www.questiongeneration.org/QG2010

June 18, 2010, Pittsburgh

#### **Acknowledgments**























**NC STATE UNIVERSITY** 



Contact: keboyer@ncsu.edu