Predicting Prerequisite
Structure in Wikipedia

% R \IPET e |

P
I&\ .' 5

P 4

| =

Partha Pratim Talukdar William W. Cohen
(CMU) (CMU)

7t Workshop on Innovative Use of NLP for Building Educational Applications (BEA7)
NAACL-HLT 2012, June 7, 2012



Need to Comprehend: Conditional Random Field



Need to Comprehend: Conditional Random Field

Google
Search

Everything
Images
Maps
Videos
News
Shopping

More

Pittsburgh, PA
Change location

Show search tools

conditional random field

M 40 personal results. 2,550,000 other results (0.32 seconds)
- V.

Scholar] ticles f jiti | | field
Conditional random fields: Probabilistic models for .., - Lafferty - Cited by 4507
A conditional random field word segmenter for sighan ... - Tseng - Cited by 122
... sSegmentation system with conditional random field - Zhao - Cited by 75

Conditional random field - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Conditional_random_fleld

Conditional random fields (CRFs) are a class of statistical modelling method often
applied in pattern recognition and machine learning, where they are used for ...

» Description - Software - See also - References

(roF) Conditional Random Fields: An Introduction
www.inference.phy.cam.ac.uk/hmw26/papers/crf_intro.pdf

File Format: PDF/Adobe Acrobat - Quick View

by HM Wallach - 2004 - Cited by 169 - Related articles

Conditional Random Fields: An Introduction. «. Hanna M. Wallach. February 24, 2004.
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This page contains material on, or relating to, conditional random fields. | shall
continue to update this page as research on conditional random fields advances, ...
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Featured content 2011)
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BRI Conditional random fields (CRFs) are a class of statistical modelling method often applied in pattern recognition
Donate to Wikipedia and machine learning, where they are used for structured prediction. Whereas an ordinary classifier predicts a label
for a single sample without regard to "neighboring" samples, a CRF can take context into account; e.g., the linear
¥ Interaction chain CRF popular in natural language processing predicts sequences of labels for sequences of input samples.
:::n Wikipedia CRFs are a type of discriminative undirected probabilistic graphical model. It is used to encode known relationships
Community portal between observations and construct consistent interpretations. It is often used for labeling or parsing of sequential
Recent changes data, such as natural language text or biological sequences!' and in computer vision.'?) Specifically, CRFs find
Contact Wikipedia applications in shallow parsing,!® named entity recognition!?! and gene finding, among other tasks, being an
b Toobox alternative to the related hidden Markov models. In computer vision, CRFs are often used for object recognition and
image segmentation.
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PRI random variable conceptually does not have a single, fixed value (even if unknown), rather, it can take on a set of 3 See alto @
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e All hyperlinks are not prerequisites.
e Given a hyperlink, classify whether it is a prerequisite
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Data Preprocessing:
Target Concepts

Target Concept #Nodes  #Edges #Edits
Global Warming 19,170 501,608 1,490,967
Meiosis 19,811 444,100 880,684
Newton’s Laws of Motion 15,714 436,035 795,988
Parallel Postulate 14,966 363,462 858,785

Public-key cryptography 16,695 371,104 1,003,181

Table 1: Target concepts used in the experiments.

Sample up to 400 edges from each subgraph
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Gold Prerequisite Judgements
using Mechanical Turk

Determine the Prerequisite Concept

In many situtations, we need to read and understand the main concept in one Wikipedia page before we can understand the main
concept in another Wikipedia page. For example, in order to understand Acceleration, one should first read and understand Velocity,
as Velocity is a prerequisite for Acceleration. However, the reverse is not true. Similarly, Atom is a prerequisite for molecule.

e Below, you will be asked to compare two concepts from Wikipedia, and determine whether one is a prerequisite for the other.
Clicking on a concept will take you to its corresponding Wikipedia page.

o If you are unsure about the concepts, or whether one is a prerequisite of the other, please select "I don't know the answer”
option.



Gold Prerequisite Judgements
using Mechanical Turk

Determine the Prerequisite Concept

In many situtations, we need to read and understand the main concept in one Wikipedia page before we can understand the main
concept in another Wikipedia page. For example, in order to understand Acceleration, one should first read and understand Velocity,
as Velocity is a prerequisite for Acceleration. However, the reverse is not true. Similarly, Atom is a prerequisite for molecule.

e Below, you will be asked to compare two concepts from Wikipedia, and determine whether one is a prerequisite for the other.
Clicking on a concept will take you to its corresponding Wikipedia page.

o If you are unsure about the concepts, or whether one is a prerequisite of the other, please select "I don't know the answer”
option.

Select only ONE of the following:

O Is Chromosome a prerequisite for Spirochaete?
O Is Spirochaete a prerequisite for Chromosome?
O Related but one is not a prerequisite of the other.
O The two concepts are unrelated.

O Ido not know the answer.

Please provide comments or feedback below:

_Submit )
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concept in another Wikipedia page. For example, in order to understand Acceleration, one should first read and understand Velocity,
as Velocity is a prerequisite for Acceleration. However, the reverse is not true. Similarly, Atom is a prerequisite for molecule.

e Below, you will be asked to compare two concepts from Wikipedia, and determine whether one is a prerequisite for the other.
Clicking on a concept will take you to its corresponding Wikipedia page.

o If you are unsure about the concepts, or whether one is a prerequisite of the other, please select "I don't know the answer”
option.

Select only ONE of the following:

O Is Chromosome a prerequisite for Spirochaete?

O Is Spirochaete a prerequisite for Chromosome?

O Related but one is not a prerequisite of the other. w_

~ The two concepts are unrelated. R
~ Ido not know the answer.

Added based on
Please provide comments or feedback below: Tu r’ke r feed bac k

_Submit )
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Agreement among Turkers

] Time (s)/ | Worker

N Fviloation | FHET |*o00n| %

Meiosis 38 3 400 0.50
Public-key Cryp. 26 3 200 0.63
Parallel Postulate 41 3 200 0.55
Newton’s Laws 20 > 400 0.47
Global Warming 14 D 400 0.56
Average 27.8 - - 0.54

Table 2: Statistics about the Gold-standard data prepared
using Amazon Mechanical Turk. Also shown are the
averaged k statistics-based inter-annotator agreement in
each domain. The last row corresponds to the x value
averaged across all five domains.



Agreement among Turkers

Time (s)/ | Worker

Sl Evaluation | /HIT s &

Meiosis 38 3 400 0.50
Public-key Cryp. 26 3 200 0.63
Parallel Postulate 41 L 200 0.2
Newton’s Laws 20 > 400 0.47
Global Warming 14 5 400 0.56
Average 218 - - 0.54

Table 2: Statistics about the Gold-standard data prepared
using Amazon Mechanical Turk. Also shown are the

averaged k statistics-based inte
each domain. The last row co Total cost; $2/8,

averaged across all five domains completed in 2 week.
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Classifier: Maximum Entropy

Feature Function

¥

eXP(W ' (LE, y))
y' €Y exp(W ¢(33> y'))

P(ylz) = 3= R =4t

Prerequisite

’
!
4
!
4
’

;
CRF




Features

Wiki Editor



Features

Wiki Editor

Features over PageContent:
* Wiki category of HMM page
e Name of first CRF section in which
the hyperlink occurs

e Category overlap between pages
o #times HMM is referenced from CRF
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e Random Walk with Restart (RVVR)
score of a topic
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* Wiki category of HMM page
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F e at u re S Features over Hyperlink Graph:
e Random Walk with Restart (RVVR)
score of a topic

Feature over WikiEdits Graph: * Pagerank score of source

e RWR score of a topic from CRF * Pagerank score of target

Features over PageContent:
* Wiki category of HMM page
e Name of first CRF section in which
the hyperlink occurs

R » Category overlap between pages
Wiki Editor e #times HMM is referenced from CRF

.muimmmlt l’“
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Experiments

® Can we train a classifier for prerequisite
classification!?

® How effective is out-of-domain training?

® VWhat are the effects of different features?

All evaluations in leave-one-target-out setting
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Performance Comparison for Prerequisite Prediction
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" Random Baseline - MaxEnt Classifier

70

Accuracy
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Trained classifier achieves 8.6% absolute
Improvement in accuracy
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Effect of Out of Domain vs In Domain Training

80

B Out of Domain Training [ In Domain Training

70

Accuracy
o
o

Close to optimal (93%) performance possible in
out-of-domain training.

Meiosis Public Key Para. Postulate Newton’s Laws Global Warming Average
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Effect of Different Features
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MaxEnt model with different features
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Incorrect Classifications

® Mass is not a prerequisite for Physics

® Quantum mechanics is not a prerequisite
for Bohr-Einstein debates

® Global warming is a prerequisite for
Nitrous Oxide

® Carbon Dioxide is not a prerequisite for
Carbon Sequestration



Examples of Discriminative
Features



Examples of Discriminative
Features

® |s Target title a substring of Source title?



Examples of Discriminative
Features

® |s Target title a substring of Source title?

® |s there category overlap between source and
target pages!



Examples of Discriminative
Features

® |s Target title a substring of Source title?

® |s there category overlap between source and
target pages!

® |dentity of category overlap between pages.



Examples of Discriminative
Features

® |s Target title a substring of Source title?

® |s there category overlap between source and
target pages!

® |dentity of category overlap between pages.

® |dentity of source section from where target
is linked.
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Conclusion

® Novel task: prerequisite structure prediction

- Demonstrated that relatively reliable features exist

® Future work

- feature engineering

- controlled data collection

® Ongoing work

- full comprehension plan generation using predicted
prerequisite structure



Thank You!



