
Sentence-level Rewriting Detection

3. Our work
• Data preparation

• 2 undergraduate paper assignments from a “Social Implications of Computing Technology” course
• Collected via a web-based peer review system[2], each paper has two drafts

• Manual annotation

• Sentence alignment: two annotators annotate on one paper, kappa: 0.794
• Edit sequence generation: annotate edit sequence from the first draft
• Edit sequence merging: annotates “consolidation”, “permutation” currently

• Automatic sentence-level revision detection in 3 steps
 Sentence alignment
 Method: adapting Nelken’s approach[3]

 Logistic regression classifier using sentence similarity score (Word Overlap, TF*IDF, Levenshtein Distance)
 Global alignment based on sentence order (Needleman-Wunsch[4])
 Evaluation: accuracy (percentage of sentences that are correctly aligned)

 Performance
 Baseline: Hashemi’s word-based approach (as in section 1), performance collected by manual inspection

 Edit sequence generation
 Method: Rule-based approach
 Evaluation: Word error rate (WER), rate of segments to be modified to match with the correct sequence
 Performance

 Baseline: Hashemi’s word-based approach (as in section 1), performance collected by manual inspection

 Edit sequence merging
Method: Rule-based approach, now only recognizes “Distribution” and “Consolidation”
Evaluation: accuracy (percentage of the “Distribution” and “Consolidation” cases recognized)
Performance: The 9 consolidation and 5 distribution cases are all successfully recognized (100% accuracy)

Fan Zhang1, Diane Litman1,2 {zhangfan, litman}@cs.pitt.edu

1Department of Computer Science, University of Pittsburgh | 2Learning Research and Development Center, University of Pittsburgh

2. Why do we need sentence-level rewriting detection?

• Revision detection at word-level

• Our approach: revision detection at sentence-level in 3 steps
 Sentence alignment: align sentences of the revised document to the ones of the original document

• Allows many-to-one and one-to-many alignments
• For the example above:

 *Line 65 aligned to Line 54, 66 aligned to 55,56, and 67, 68 are aligned to 57

 Edit sequence generation: generate the edit sequence from the original document to the revised
• 4 basic primitives: Add, Delete, Modify, Keep
• For the example above:

 Edit sequence merging: merge the basic primitives into more meaningful advanced edit primitives

• Advanced edit primitives: permutation, distribution, consolidation
• For the example above:

4. Future work
• Improve the accuracy of current algorithm
• Replace rule-based approach used in edit sequence generation phase with approach based on edit

distance, and then infer advanced edits based on the automatic generated sequence
• Identify more meaningful advanced rewriting operations
• Conduct user study comparing the utility of sentence versus word-level rewriting detection References

[1] Homa B. Hashemi and Christian D. Schunn. 2014. A tool for summarizing students’ changes across drafts. In International Conference on Intelligent Tutoring Systems (ITS)
[2] Cho K, Schunn C D. Scaffolded writing and rewriting in the discipline: A web-based reciprocal peer review system[J]. Computers & Education, 2007, 48(3): 409-426.
[3] Rani Nelken and Studart M Shieber. 2006. Towards robust context-sensitive sentence alignment for monolingual corpora. In EACL
[4] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3): 443-453

Overwhelming information of changes

Likely to make mistakes when
detecting changes based on word-
level edit distances

 Result from Hashemi’s work[1], where a word-level based text compare
tool(CompareSuite) is applied, green for recognized modifications, blue for
insertions and red for deletion

of pairs # of sentences in the
first draft

of sentences in the
second draft

Average words in
one sentence in C1

Average words in
one sentence in C2

Corpus1 11 761 791 22.5 22.7

Corpus2 10 645 733 24.7 24.5

Sentence Index (Final) 65 66 67 68

Sentence Index (First) 54 55,56 57 57

Group Levenshtein Distance Word Overlap TF*IDF Baseline

Cross validation on corpus 1 0.9811 0.9863 0.9931 0.9427

Cross validation on corpus 2 0.9649 0.9593 0.9667 0.9011

Train on corpus 1 and test on corpus 2 0.9727 0.9700 0.9727 0.9045

Train on corpus 2 and test on corpus 1 0.9860 0.9886 0.9798 0.9589

Corpus1 Corpus2

Baseline 0.091 0.153

Rule-based method 0.035 0.017

Rule-based on alignment results 0.067 0.025

This research is supported by the Institute of Educational Sciences, U.S. Department of Education, through Grant R305A120370 to the University of Pittsburgh. The opinions
expressed are those of the authors and do not necessarily represent the views of the Institute or the U.S. Department of Education

1. Our goal
• Current goal: Help to have a better understanding of the rewriting process
• Ultimate goal: Provide automatic revision suggestions

Example: Text fragments from the original document Text fragments from revised document, notice
the yellow and green boxes represent the
sections that have been revised

Sentence Index (First) 54 55 56 57

Edit Operations Keep Modify Delete Modify, Add

Sentence Index (First) 54 55,56 57

Edit Operations Keep Consolidation Distribution

*Line 54 is not modified, line 55 is tagged as modified to 66 while line 56 got
deleted, line 57 considered to be modified to line 67 and then add new line 68

 *All the algorithms achieved high accuracy, TF*IDF achieves the best performance among all similarity metrics

 * Rule-base approach achieved a much better performance of edit sequences comparing to baseline, the result is
still better than the baseline even applied on the automatic aligned results from the first step

*Operation on line 55,56 is actually merging them together to line 66, and
line 57 is split to line 67 and line 68

