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Abstract—Autonomous machines, such as Autonomous Vehi-
cles (AV), are vulnerable to a variety of different faults such as
radiation-induced soft/transient errors, adversarial attacks, and
software bugs, which all jeopardize the reliability of autonomous
machines. How vulnerable the AV software stack is to different
error sources, however, remains an open question.

This paper performs comprehensively fault injections to study
how the AV software stack behaves under different error sources.
We show that algorithms in an AV software stack inherently
possess different forms of masking mechanisms. Based on the
characteristic of the inherent fault tolerance mechanisms, we
formalize the notion of Fault Tolerance Level (FTL), which
quantifies how faults in an algorithm can be masked and/or
attenuated without affecting the actuator commands, providing
opportunities to relax fault protection.

Leveraging the FTL formulation, we propose a dynamic
protection system, which, at the high level, spends the limited
protection budget (e.g., spatial/temporal redundancy) on the most
vulnerable parts of the AV software (i.e., with the lowest FTL).
Using Autoware as a case study, we show that our system reduces
the error rate of AV software stack by more than 90% with
negligible performance overhead.

I. INTRODUCTION

Autonomous machines are not reliable. With the rapid
growth of the autonomy inside drones, robotics and vehi-
cles [1]-[3], the unreliability of hardware and software in au-
tonomous machines have also resulted in many crashes of the
systems. Among them, the reliability of autonomous vehicles,
which are vehicles executing driving tasks autonomously, is
crucial, as faults that happen in autonomous vehicle systems
could lead to severe consequences [4], [5].

Despite numerous efforts in improving the safety of AV
products [6]—[8], a myriad of sources threatening AV safety
still exist. A single bit-flip of the transistors inside the hard-
ware caused by thermal irregularities or cosmic rays [9]-[11]
can result in a silent data corruption (SDC) of an arbitrary
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algorithm in the AV software stack. The SDC can propagate to
the following software and influence the behavior of the vehi-
cle. Carefully designed adversarial attacks on traffic signs and
traffic lights are proved to be able to mislead the perception
module of the AV [12]-[14] easily. Software bugs [15], [16]
in the AV software stack can also be the source of unreliability.

Existing fault-tolerance techniques are expensive. Tra-
ditional protection mechanism such as modular redun-
dancy [17]-[19], anomaly detection and recovery [20]-[23],
and re-execution [24], [25] introduce spatial and/or temporal
overhead, challenging the real-time nature of AV.

We propose BRAUM, a dynamic protection system rooted in
the understanding of the inherent fault tolerance mechanisms
of autonomous software. Using the popular Autoware AV
software as a case-study [26], we observe that many algorithms
in an AV software have inherently error-masking and/or error-
attenuation capabilities through operations such as operator
union and low-pass filtering. BRAUM systematically identifies
these error-masking mechanisms and leverages these mecha-
nisms to selectively provide error protection to AV software
with minimal overhead.

To identify the error-masking capability of AV algorithms,
we conduct a large-scale fault injection into the AV software
stack and use program analysis techniques to trace how
faults propagate and are masked by each algorithm in the
AV software. Our fault injection framework synthesizes and
injects faults that mimic different forms of potential faults
an AV software could encounter, including transient errors,
adversarial attacks, and software bugs. The fault injection
framework is lightweight so as to minimize the impact on
the behavior of the original software stack.

Our fault injection and analysis reveal many mechanisms for
error masking and/or error attenuation possessed by different
algorithms in the AV software stack. Building on top of
these inherent mechanisms, we propose the notion of Fault
Tolerance Level (FTL), which describes whether and how the
output error of an individual algorithm will be masked before
reaching the actuator. We show an iterative algorithm that
calculates the FTL of an algorithm in an AV software stack.

Leveraging the FTL calculation, we propose a dynamic
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Fig. 1: An overview of AV system.

protection system that selectively elides and/or relaxes pro-
tection of certain algorithms in the software. Intuitively, if an
algorithm has a “high FTL”, e.g., its output errors can always
be masked before reaching the actuator, there is no need to,
for instance, re-execute that node to avoid soft errors.

In summary, we make the following contributions:

« We propose a lightweight fault injection framework to
synthesize and inject representative faults that an AV
could encounter.

o We analyze the fault injection results to identify inherent
error masking/attenuation mechanisms in AV software.

o« We propose the notion of FTL to intuitively describe
how invulnerable an algorithm is, and provide an iterative
algorithm to calculate the FTL of each algorithm in the
software stack.

« We design a dynamic protection system that selectively
elides/relaxes protection for high-FTL algorithms.

« We implement our protection system on Autoware, a
widely-used AV software. Experimental results show that
we reduce error propagation rates by 90.1% compared
with a baseline without any protection and reduces the
execution overhead by 47.2% compared to a baseline that
provides always-on protection.

II. BACKGROUND

We briefly introduce the design of AV software in Sec. II-A,
the source of threats to the reliability of AV software in
Sec. II-B and existing protection mechanism in Sec. II-C. We
discuss common protection methods in Sec. II-C.

A. Autonomous Vehicle Software Stack

Fig. 1 shows a high-level overview of an AV system which
consists of a computing system and a mechanical system. At
each time frame, the computing system takes input from the
sensors (e.g., cameras, LiDAR, GPS) to infer an actuation
(e.g., throttle, brake, steering wheel angle) to the actuators
and further control the mechanical components of the AV.

The computing system runs a complicated software system
on the hardware. Typical AV software stacks such as Auto-
ware [26] and Baidu Applo [27] perform three major tasks
that enable the autonomous driving capability: perception,
localization and control. The perception module detects and
interprets the environments with the information provided by
the cameras and LiDARs. The localization module locates the
current position of the AV on the map with the input of GPS
and IMUs. Planning digest both results from perception and
localization module to plan for the trajectory and control the
actuators. Usually each module contains multiple algorithms.
Different algorithms are connected in a consumer-producer
fashion, formulating a complicated computational graph.

B. Source of Threats to AV Software

AV software is not running in a safe and reliable environ-
ment. In reality, when the vehicle is driving autonomously on
the road, different sources of threats exist. We briefly describe
the three main error sources that this paper focuses on.

Soft errors. Soft error is a type of error that changes the
states of a logic device (e.g., a SRAM cell). A soft error
can be caused by cosmic rays or thermal impact. Multiple
works [28]-[30] have shown that a bit-flip caused by the
soft error can easily result in incorrect outputs of a program,
i.e., Silent Data Corruption (SDC). SDC can take place in
stage/algorithm in an AV software stack. An SDC occurring
at one stage could propagate and eventually corrupt the output
of the entire software stack, crashing the vehicle [31].

Adpversarial attacks. Unlike soft error and software bugs
that take place unintentionally, adversarial attacks are carefully
crafted manipulations of the input of certain algorithms that
cause an algorithm to misbehave. The most well-studied
example is the adversarial attack on the input image to the deep
learning-based perception module. Negligible perturbations to
an input image can lead a perception DNN to mispredict, e.g.,
recognizing a stop sign as a green light [32]-[36]. Adversarial
attacks have also been extended to other sensor input such as
point cloud data [37], [38].

Software bugs. Software can be buggy. Even with ex-
perienced programmers and extensive testing techniques, AV
software is vulnerable to different kinds of bugs. Previous
work [15] found 499 bugs in the two widely-used AV Software
Autoware [26] and Baidu Applo [27]. These bugs exist in
the perception, localization, planning and actuation of the AV
software. 10.6% of the bugs will lead to a crash of the AV
system in the end [15], showing that software bugs can be a
serious threat to the safety of AVs.

C. Common Protection Mechanisms

Redundancy. Redundancy, both temporally and spatially,
serves as an effective way of countering the threats to the
AV software. Temporal redundancy refers to executing a part
of the code more than once [39]-[41]. Redundant executions
can help alleviate the threat of SDC caused by soft errors as
they are transient. Temporal redundancy introduces significant



performance overhead. Executing each software module twice
effectively halves the performance.

Spatial redundancy refers to executing the same algorithm
using different physical hardware instances [42], [43]. For
instance, Tesla’s Full Self-Driving (FSD) chip makes two
copies of the entire processing logic, effectively introducing a
dual modular redundancy [44]. Modular redundancy has been
shown to be effective against software errors [45] and adversar-
ial attacks [46]. Modern processors usually provide hardware
support to minimize the performance overhead of executing
on identical hardware copies [47], [48]. As a result, the main
overhead of special redundancy comes from the added silicon
area and the associated non-recurring engineering costs, which
are expected to increase as AV platforms are increasingly
integrating specialized accelerators [49], [50].

Anomaly detection. As an alternative to redundancy,
anomaly detection shields the errors at the sources. Unlike
much traditional software, Av software process temporal in-
puts, i.e., sequences of sensors inputs, which exhibit strong
temporal consistency. For example, when a car is driving in a
straight lane, it is unlikely that the path planning module will
issue a sudden acceleration to the actuator. Therefore, errors in
AV software sometimes are manifested as outliers that break
the temporal consistency. Different techniques on anomaly
detection [51], [52] are proposed to detect outliers in AV
software. Anomaly detection, however, introduces overhead
due to the execution of the detection algorithm.

III. UNDERSTANDING INHERENT FAULT TOLERANCE IN
AUTONOMOUS MACHINE SOFTWARE STACK

We first describe our error injection methods (Sec. III-A).
We then analyze how the fault propagates (Sec. III-B) to
identify different masking mechanisms (Sec. III-C). From
individual nodes’ masking mechanisms, we describe how the
fault-tolerance level of each node is derived (Sec. III-D).

A. Error Definitions and Injection

Autoware is a widely used AV software stack. We apply
Autoware into the simulation platform of CARLA [53] to
form realistic AV driving scenarios. Autoware is built with the
support of Robotic Operating System (ROS), where different
algorithms in Autoware is represented by a separate process or
ROS node. Different ROS nodes communicate through ROS
messages which is the output of each algorithms. All the ROS
nodes and ROS messages formulate a large directed graph
which we will refer to ROS graph in the following context.
The ROS graph is a strict equivalence of Autoware. The error
injection happens on our server with 8 Intel(R) Xeon(R) W-
2123 CPUs and a Nvidia Quadro RTX 4000 GPU and is tested
on the Ubuntu 18.04.5 system.

The goal of BRAUM error injection framework is to mimic
different kinds of errors AV software may encounter while
being lightweight enough to not influence the regular execution
of AV software. We achieve this by injecting three types of
errors in Autoware.

Soft errors. To mimic soft error-induced SDC, we leverage
architectural-level register error injection. During BRAUM
error injection, the selected victim ROS node will send out
its process ID (PID) to the error injection process so that the
injection process can attach to the victim ROS node via ptrace
system call. The pt race system call allows us to manipulate
the register files of the selected victim ROS node. First, we
randomly pick a general-purpose or floating point register and
randomly pick a bit to flip. Second, we use ptrace and the
PID of the running process to pause the execution, obtain the
register value, inject the fault, and resume the execution. This
architecture-level register error injection has little overhead, as
shown in previous error injection tools [54], [55].

Adversarial attacks. To mimic potential adversarial at-
tacks, our strategy is carefully corrupt the output of relevant
ROS nodes. For the perception module, which mainly per-
forms object detection and tracking, we emulate two common
types of adversarial attacks [32], [33], non-targeted attack
and targeted attack. For non-targeted attacks, we randomly
change the detected object class to another class that exists in
the dataset. For targeted attacks, the detected object class is
randomly changed to another class commonly seen in AV (e.g.,
person, stop signs). To emulate corruptions in bounding boxes,
we either create a very large bounding box (i.e., 240 x 240
pixels) when the ground truth is an empty box or remove the
bounding box altogether if otherwise.

Adpversarial attacks on the localization and planning mod-
ules are much less common in literature. We create our best-
effort localization and planning attacks by assuming that an
attack on localization moves the vehicle position away from
the ground truth anywhere between 5m and 300m, similar
to prior work [56], [57]. Attacks on planning are similarly
emulated except we move the predicted future, rather than
current, position of the vehicle.

Software bugs. To emulate software bugs, a randomly
generated error is applied (added) to a node’s output signal.
Both adversarial attacks and software bugs are implemented by
using the ROS topic publish mechanism with little overhead.

Summary. In total we cover 23 ROS nodes (and 26
ROS topics) as shown in Tbl. I. A campaign of 14,196 error
injections was performed over 30 days. The 26 ROS topics
cover virtually all the output topics, including localization,
perception, planning and control in Autoware; the only topic-
s/nodes that are not covered are those that are specific to the
simulator itself (e.g., Ul, saving data, visualization).

B. Error Propagation Analysis

Goal. We analyze the results of the fault injection campaign
to understand how different forms of faults in different nodes
are propagated to the output of the AV software. In particular,
we have three goals. First, we aim to identify, for each injected
error, whether it is propagated to the end of the ROS graph
and, thus, corrupts the actuator commands. Second, in case
an error is masked, i.e., invisible to the actuator, we aim to
locate where the error is masked. Finally, we aim to identify
the fault masking mechanism used to mask that error.



TABLE I: List of ROS nodes this paper analyzes.

Module ROS node EPR
Sensor Preprocessing rjg;eglr_(j;?g:gg 8;‘;
can_odometry 0%

L ndt_matching 23.4%

Localization

pose_relay 8.7%

vel_relay 2.4%
vision_darknet_detect 0%
vision_beyond_track 0%
detection_lidar_detector 0%
Perception detection_lidar_tracker 0%
range_vision_fusion 0%
naive_motion_predict 0%
costmap_generator 0%
astar_avoid 0%

velocity_set 36.3%

decision_maker 100%

pure_pursuit 17.8%
Planning and Control lane_stop 0%

lane_rule 26.9%

twist_filter 69.2%

twist_gate 80.6%
lane_select 0%

waypoint_planner 0.68%
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Fig. 2: Error propagation
rate when injecting error into

node twist_gate which does
not have inherent masking.

Fig. 3: One signal in the in-
structions to the actuators has
been affected by the error.

Note that corruption in the actuator commands might not
actually cause a safety issue, mainly because the closed-loop
control in the software stack would very likely mitigate a
transient command error in the current frame and re-align the
vehicle back to the correct trajectory. In this sense, what is
reported here is a conservative analysis of AV safety.

Establishing ground truth. To analyze whether and how
errors are propagated, we must first obtain the ground-truth,
i.e., fault-free results. To that end, we use the same input
scenario used in fault injection to drive Autoware and record
the output of each ROS node under analysis. To accommodate
natural run-time variance, the same run is repeated 5,000 times
to capture a distribution for each node’s output.

Analyzing results. For each fault injection run, if the
AV software stack provides no error masking mechanism, the
output of the ROS graph, i.e., the actuator commands, will
necessarily be corrupted. In contrast, if the actuator commands
are uncorrupted (according to some metric), some form of
error masking must have taken place between the node where

the fault is injected and the output node. Our goal in this
section is to identify the masking node. Next section describes
the actual masking mechanisms we identified.

We first define that an ROS node is deemed to be corrupted
by the fault, i.e., the error is propagated to this node, if
the node output is “out of distribution”, which is empirically
defined as lying outside the bounds of the fault-free range by
over three times of the mean value. This criterion is similar
to what is used in prior work [58].

We analyze each fault injection run in a backward fashion,
starting from the output node of the ROS graph and check
if the fault propagates to this node. If not, the error injected
must have been masked somewhere before the node. We then
check whether the parent nodes are corrupted. We repeat this
process until we reach the node where the fault is injected.
This process help us to precisely locate the node, if any, that
masks the injected fault.

Once we identify a fault-masking node, we then identify
the actual masking mechanism in the node. This is done in
a semi-automated way. We statically instrument the code to
monitor how each input variable is used in the code. We then
re-run the fault injection to capture the statement that masks
the error. We then manually examine the code to understand
how the error is actually masked. We discuss our findings next.

C. Masking Mechanisms

We classify the masking pattern exist in Autoware into four
different categories: No Masking (NM), Attenuation (A), Un-
conditional Masking (UM), and Conditional Masking (CM).
We characterize how often errors propagate to the actuator
command using Error Propagation Rate (EPR). Tbl. I shows
the EPR of all the nodes we inject.

No masking. Some nodes have no inherent masking
mechanisms. Fig. 2 shows the EPR of the twist_gate node,
where the x-axis shows the amplitude of error injection. For
example, “10%” on the x-axis means the value after error
injection is with in the range of 90% to 110% of the original
value. “O_base” means the original value is 0.

Almost all the injected errors are propagated to the output
because of a lack of inherent masking in twist_gate. The
overall EPR is 82.1%. Fig. 3 shows an example, where an
error injected into twist_gate causes drastic changes to the
actuator commands.

Attenuation by low-pass filter. Attenuation mechanisms
exist commonly in the source code of Autoware. Low-pass
filter is a traditional way of filtering out high-frequency
signals. Autoware uses a low-pass filter at the end part of the
entire compute graph to smooth the output signals and avoid
sudden changes. The carefully-designed low-pass filter will
degrade the signal with a sudden change in its output, which
is effective to errors with low amplitude. Fig. 4 shows the
error propagation rate when the low-pass filter is applied. The
EPR is significantly lower (59.7% in “10%” error value range,
67.0% in “20%” error value range) when the error amplitude
is low but remains 100% when the error value range increase.
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TABLE II: All the errors injected into the nodes that prepro-
cess LIDAR point cloud data are masked.

# of faulty

ROS node # of input points points injected EPR
Ray_ground_filter [1682,4019] [0,80] 0%
Voxel_grid_filter [915,1349] [0,80] 0%

Fig. 5a shows an example of the use of the low-pass filter. The
error amplitude is significantly reduced from 62.1% to 35.4%.

Attenuation by integral computation. Another typical
way of attenuation in Autoware is integral computation.
For example, in the localization module, specifically the
ndt_matching node, the new estimation of pose and localiza-
tion is calculated by an addition of the previous pose and the
difference on distance and pose. The difference is calculated
using the velocity estimation and interval on time. An error
occurs on the velocity estimation node is largely attenuated as
the time step is very small. Fig. 5b shows an example where
the error is significant on the estimated velocity but attenuated
to a small value afterwards.

Unconditional masking in sensor input preprocessing.
We find there exist unconditional masking inside AV software
which complete mask the errors happen in certain nodes.
Unconditional masking technique exists in sensor input pre-
processing node. Sensor input preprocessing nodes edit sensor
input and sometimes remove redundant parts. For example,
raw point cloud data from LIDAR sensor will be first filtered
the points representing the ground and then used in point cloud
object detection node. Such preprocessing nodes will generate
massive sensor data that is naturally robust to errors. We inject
errors into a LIDAR point cloud preprocessing node. The point
cloud filter will filter out the points that represent the ground.
The errors we inject manipulate the coordinates of the points
after filtering. We change up to 80 points and monitor the
output of the node that consume the faulty point cloud data.

We find that with the increase of faulty points injected into
the point could filter node, all the outputs of the consumer node
are not impacted with a relative standard deviation (RSD) of
0.002, -0.018 and 0.09 respectively.

Tbl. II shows the effect of injecting errors into the LIDAR
point cloud preprocessing nodes. For each time, we inject an
error that changes the coordinates of a certain number of points
with an upper bond of 80 (2.9% and 6.7% of total output point

cloud respectively). We find that all of these errors are masked
and the final output to the actuators are not influenced.

Unconditional masking through multi-sensor fusion.
Another unconditional masking technique utilized in AV soft-
ware is multi-sensor fusion. AV software usually uses more
than one source of sensor input during perception tasks such as
detection and tracking. Both LIDAR and camera will capture
the objects’ information around the vehicle and usually the
multi-sensor information will be fused together for higher
accuracy and robustness [59], [60].

We find such a process is utilized in Autoware and illus-
trated in Fig. 6. The output object sequences from the vision
branch and the LIDAR branch are first fused through a fusion
node and used in the prediction module. The results of the
prediction module will be fused again with the raw point cloud
data in the costmap generation node afterwards. The costmap
generation node will use the results of the second fusion to
guide the vehicle to search for a path through the obstacle
objects. Two continuous fusion techniques ensure that errors
in the related perception nodes can be tolerated.

Fig. 7a illustrate the first fusion — between vision detection
and tracking with LIDAR detection and tracking. The fusion
algorithm first check whether the bounding boxes captured by
both branches agree on the object label, position, and area.
If so, as in the benign case, the fusion algorithm will keep
the vision branch’s bounding box and those LIDAR bounding
boxes that do not have a match. When the vision branch is
faulty, the fusion algorithm can not find matching bounding
boxes, and the vision bounding box will be discarded. Thus,
the faulty vision bounding box is masked.

Fig. 7b illustrates the second fusion case. The perception
module will produce a sequence of bounding boxes after
detection, tracking and prediction. The bounding boxes will
be fused with the raw point cloud data to produce a map for
the planning module. In the second fusion, a union operation
will be performed on the bounding boxes and point cloud raw
data to create the map. Thus, even if the faulty bounding boxes
are not masked by the first fusion process, the error will be
masked in the second process.

The EPR results verify the unconditional masking through
multi-sensor fusion. We inject three kinds of errors, which
are label errors, bounding box location errors and size errors,
into all the nodes related to vision perception and LIDAR
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perception branch. All of them are masked and will not
influence the output signal to the actuators.

Conditional masking in state machine. Error masking
under conditions also exists in Autoware. One of the most'
common examples is the conditional masking in the state:

6
8
9
0
1

machine of Autoware. Autoware manages the vehicle status i

with three complicated state machines: mission, motion and'
behavior state machine. Fig. 8 shows an illustration of thel
motion state machine. Eight different states with various trans-
formation conditions consist of the motion state machine and
provide enormous conditional masking patterns. For example,

if in one frame the current state is Wait Engage, all the errors -
happen on the signals related to the Go, Stop and Wait states’

6

9

are masked as they are irrelevant to the Wait Engage state. .

Thus, all the nodes that produce these signals will not influence -

the final outputs as well.

Conditional masking in If statements.
create conditional masking patterns. Listing. 1 shows the?
snippet of the velocity_set node, which has has eight input
signals and three output signals. With a driving scenario
where both conditionl and condition2 are not satis-
fied, obstacle_point and stopline_point will not
be read — even if they are corrupted.

To confirm this, Fig. 9 shows the EPRs when faults
are injected to three nodes that generate inputs to the ve-
locity_set node. In our particular runs, conditionl and
condition?2 are not satisfied; thus, faults in pose_relay and
velocity_relay are naturally masked by velocity_set. However,
condition3 holds in certain runs; thus, the EPR under

If statements -

(a) Vision detection and tracking results (b) The fusion results of vision and LI-
are fused with corresponding LIDAR DAR branch is further fused with the raw
branch. Mask the wrong results of vision point cloud data.

Fig. 7: Detail procedure of two fusion processes.

astar_avoid is not zero. Fig. 10 shows the execution traces.
Fig. 10a compares the values of obstacle_point, an
output of velocity_set, when a fault is injected to astar_avoid.
Fig. 10b shows the value of final_point, another output
of velocity_set, when a fault is injected into pose_relay. One
can see that faults in the former are masked by velocity_set
but faults in the latter are not.

Inputs: signal: current_pose,
points_no_ground,
detection_range, cross_walk,
decelerate_obstacle_point,

obstacle_point, stopline_point,

current_vel,

safety_point
2
function: f,g, mpl, mp2, mp3
Outputs: obstacle_point, stopline_point, final_point
function velocity_set () {

Bool conditionl, condition2, condition3;

conditionl = f (detection_range, cross_walk);
condition2 = f (detection_range, cross_walk);
condition3 = g(decelerate_obstacle_point);
if (conditionl || condition2)

{

obstacle_point mpl (current_pose, current_vel
, points_no_ground) ;
stopline_point mp2 (current_pose,

, points_no_ground) ;

current_vel

(condition3)

final_point

mp3 (safety_point);
}
}

return obstacle_point,

}
Listing 1: Error masked by conditional if-statements

stopline_point, final_ point

Summary. The understanding of different fault masking/at-
tenuation mechanisms allow us to classify the fault tolerance
level of an Autoware node. This is shown in Tbl. III. Among
them, only two nodes (twist_gate and decision_maker) have
no masking patterns. Both of them are at the end part of the
Autoware graph and directly contributed to the output of the
AV software. Two nodes have attenuation mechanisms. All
the nodes in the perception pipeline are with unconditional
masking mechanisms using two fusion operations. The rest
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nodes have conditional masking mechanisms.

We show the EPR in the last column. Not surprisingly, nodes
without any masking mechanisms have the highest propagation
rate, both are above 80%. Attenuation with a low pass filter
can prevent a small number of errors from propagating and
reduce the EPR to 69.2%. Integration shows a much stronger
masking effect, only 17.8% of the errors finally propagate to
the end and most of them are with large error values. Nodes
with unconditional masking inherently are robust and have 0%
EPR for all seven nodes. Nodes with conditional masking have
various EPR, ranging from 0% to 36.3%.

D. Calculating Fault Tolerance Level

After each node is assigned with its inherent masking
pattern, we can derive a node’s fault tolerance level (FTL),
which indicates whether/how a node’s output errors can be
masked/attenuated before reaching the actuator. Let us use a
simple graph in Fig. 11, where we aim to calculate the FTL
of node NO, to describe the intuition behind our algorithm.

First notice that NO’s sub-graph has two separate paths:
N1 — N2 — N4 and N3 — N4. That is, there are two paths
for NO’s output error, if any, to be propagated to the output.
Therefore, the FTL of NO is the weaker of the two paths.
Given a path, say, N3 — N4, the error masking mechanisms
of all nodes on the path are applied sequentially; therefore,
the FTL of a path is the strongest FTL of all the nodes on
the path. For instance, if N3 has inherent attenuation and
N4 has inherent unconditional masking, the FTL of the path
N3 — N4 is unconditional masking, because the attenuation
effort is “overwritten” by the unconditional masking. The
overwriting behavior of unconditional masking, a stronger
masking, takes place regardless of whether it occurs before
or after attenuation, a weaker masking.

(a) Faults in pose_relay are masked.
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(b) Faults in astar_avoid are not masked.

Fig. 10: Outputs of the velocity_set node when faults are injected into its two producers
pose_relay and astar_avoid.

Formally, we define a partial order “weaker than”, denoted
=<, between three masking mechanisms:

NM <A < UM

Note that a conditional masking node, by definition, will be
dynamically resolved to either no masking or unconditional
masking depending on whether the node is triggered.

Given the intuition above, the FTL of NO in Fig. 11,
F(NO), is calculated by the following equation:

F(N0) = min(maz(F(N1), F(N2), F(N4)),
max(F(N3), F(N4))) (1)

Notice how the equation is inherently iteratively defined:
calculating F'(NO) requires first calculating F(N1), F(N2),
F(N3), and F(N4). This suggests that to calculate the FTL
of a node one must start from the output node of the graph.
In practices, we reverse all the directions in the ROS DAG,
start from the output node to perform a breath-first search, and
calculate the FTL of all the nodes in a single traversal pass.
The FTL of the output node is NM.

Tbl. III shows the FTL of all the nodes. We make two ob-
servations from Tbl. III. First, a node’s FTL might be different
from its inherent masking mechanism. This is because the FTL
of a node, say P, depends on all other nodes between P and
output. Second, the FTL of certain nodes vary at run time if
there exists a CM node on the path to the output.

IV. THE BRAUM PROTECTION SYSTEM

Based on the fault tolerance characterization, we propose
a dynamic protection system based on analyzing the node
vulnerability in the Autoware software stack. We first discuss
a baseline protection mechanism (Sec. IV-A), followed by our
protection scheme that reduces the protection overhead with
little accuracy impact (Sec. IV-B).

A. Baseline Protection Mechanism

We first describe a baseline protection strategy, which is
representative of those commonly found in literature [55]
and provides strong protections at the cost of high overhead.
Our work, however, does not fundamentally depend on this
baseline scheme. Fig. 12 illustrate the baseline protection
system described here.



TABLE III: Fault tolerance level (FTL) of all the Autoware
ROS nodes under evaluation.

Node Masking mechanism FTL
twist_gate NM NM
decision_maker NM NM
twist_filter A A
pure_pursuit A A
vision_darknet_detect NM Um
vision_beyond_track NM Uum
detection_lidar_detector NM UM
detection_lidar_tracker NM uM
range_vision_fusion NM UM
naive_motion_predict NM UM
costmap_generator NM NM/UM/A
ray_ground_filter UM UM
voxel_grid_filter UM Um
astar_avoid CM NM/UM
velocity_set CM NM/UM
lane_stop CM NM/UM
lane_rule CM NM/UM
waypoint_planner CM NM/UM
ndt_matching CM NM/UM/A
can_odometry CM NM/UM/A
pose_relay CM NM/UM/A
vel_relay CM NM/UM/A
lane_select CM NM/UM/A

The protection strategy operates at a node granularity. The
basic idea is to monitor the output of a node and detect if
the output is an outlier based on certain distribution. If an
outlier is detected, we then re-execute the node (i.e., temporal
redundancy). We call this “output outlier detection and re-
execution” (OODR). In particular, we use a Gaussian-based
Anomaly Detector (GAD). We maintain a mean value and a
standard deviation ¢ in a fixed size window of 10 frames.

When the value of the output is N standard deviations
away from the mean value, the recovery will be triggered.
Critically, N is configurable based on the nature of the nodes.
For example, we could use a larger N if a node’s FTL is A,
since slight fluctuation in the output is likely attenuated by
the subsequent nodes. N would be higher or lower for nodes
classified as NM and UM, respectively. The particular recovery
scheme we consider is to re-execute the current node.

In addition to detecting the output outliers (and re-executing
an abnormal node), we also detecting input outliers. In partic-
ular, we use the same GAD to detect any outlier in the inputs.
If an outlier is detected, we replace the input with the an input
value that is within the N sigma distance. We call this “input
outlier detection and resetting” (IODR).

Sharp readers might wonder why such an input outlier
detection and resetting is necessary: wouldn’t protecting every
node’s output effectively protect every node’s input? The
reason is three-fold. First, it is possible that not all the nodes’
outputs are protected, especially when a node’s implementa-
tion is provided by a third-party library or when protecting
a node is simply to costly (e.g., re-execution takes too much
time). Second, re-execution does not fundamentally mitigate

void ChangeWp(const VelocitySetinfo& vs_info, float
IODR safety_wp): +
final
Outlier? double deceleration = 0.0; waypoints
double velocity_set =0.0;
cond1 = detect(vs_info); OODR
if (cond1)
{
final_wp = change(safety_wp);
}
Safet.y else
waypoints {
final_wp = change(safety_wp);
)

Fig. 12: Baseline protection system in BRAUM.

faults introduce by software bugs or adversarial attacks, for
which input outlier detection and resetting is known to be
effective [55]. Finally, a fault-free output could be corrupted
during data transmission.

B. Our Protection System

They key insight behind our protection system is that if
errors/faults in node’s output can be inherently masked or
attenuated later, one can relax the protection strength of the
node and thus reduce the protection overhead. Algo. 1 shows
the overall protection system.

At run time once a node finishes its execution, we first
calculate the dynamic FTL of the node using the algorithm
described in Sec. III-D (an example is shown in Equ. 1). Recall
that this step must be executed dynamically for each frame,
since a node’s fault tolerance mechanism depends on how a
CM is resolved at run time.

Calculating the FTL of a node requires us to resolve all
the yet-to-be executed CM nodes in the sub-graph of the
current node. Thus, we must predict how each downstream
CM is resolved. For simplicity, we use a last-value predictor,
i.e., using the resolution of CM in the last frame as the
prediction of the current frame. This is inspired by recent work
that shows that autonomous machine states have temporal
consistency [61], where sudden state changes are rare.

If a node’s dynamic FTL is NM, the outlier detection and
temporal re-execution is triggered as usual. However, if a
node’s FTL is stronger than NM, we could potentially elide the
re-execution. Specifically, if a node’s dynamic FTL is UM, we
can skip outlier detection and temporal re-execution altogether,
since any output error is expected to be masked down the line.
If a node’s FTL is A, we relax the outlier detection threshold
(use a larger NV in Sec. IV-A) in that slight change in output
could be attenuated later in the execution. Relaxing the outlier
detection threshold could reduce the frequency of node re-
execution, improving performance.

Handling Mis-predictions. Just like a mis-prediction in
a processor must be dealt with to avoid incorrect pipeline
execution, the mis-prediction of a CM node’s resolution must
be taken care of as well. In particular, mis-predicting the
resolution of a CM node P could alter the FTL of a node that
P depends on. For instance in Fig. 11, if N2 is a CM node that
should have been resolved to NM but, instead, is predicted as
UM, both N0 and N1’s FTL should be re-calculated, resulting
in different protection schemes for both nodes.



Algorithm 1: BRAUM protection system.

Base m Braum Base m Braum

Input: Current node T; T'(-) represents the execution
of the node; fault masking mechanism of each
node in ROS graph; output outlier detection
threshold NV; slack in outlier detection k.

Resolve all the CM nodes in the graph;

FTLt < Calculate the FTL of the current node T;

if FT Ly is UM then

VO
end

if F'T Ly is NM then
Run input outlier detection and resetting with

threshold N;
T(-);
Run output outlier detection and re-execution with

threshold N;
end

if FT Ly is A then
Run input outlier detection and resetting with

threshold V;
T(-);
Run output outlier detection and re-execution with

threshold N + k;
end

if fault masking mechanism of T is CM then

if T’s resolution target is mis-predicted then
Re-evaluate the FTL for all the nodes that are

before 7' in the ROS graph;
Re-execute the current frame from the first
nodes whose actual FTLs are weaker than

previous predicted;
end

end

Our observation is that before entering a CM node we
know exactly whether it would be resolved as UM and NM,
from which we know whether we have mis-predicted the
resolution target of this CM node. Upon a mis-prediction,
we will recalculate the FTLs of all the nodes whose FTLs
depend on ths CM node. If the actual FTL of a node, say P,
is weaker than the predicted FTL, that means the protection
strategy applied to P should have been stronger.

To deal with mis-predictions, we identify the first node in
the entire ROS graph whose actual FTLs are weaker than what
were previously predicted and re-execute the current frame
from there. Note that while mis-prediction does increase the
frame latency, it does not affect a vehicle’s behavior because
the output of mis-predicted execution would not have reached
the vehicle actuator yet when the mis-prediction is detected.

V. EVALUATION

We first describe the evaluation setup (Sec. V-A) and
demonstrate the effectiveness and overhead (Sec. V-B).
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BRAUM protection is applied. tection is applied.

A. Evaluation Setup

Nodes with protection. As a proof of concept, we pick
four representative ROS nodes to implement our protection
system, assuming that faults take place in only those nodes.

o twist_gate, whose FTL is NM.

o twist_filter, whose FTL is A.

o detection_lidar_detector, whose FTL is UM.

o velocity_set, whose FTL is either NM or UM, since one
of its subsequent nodes has conditional masking.

Baselines. We compare with four different baselines.

« Base: the vanilla AV software without any fault protec-
tion.

« IODR+OODR: a system that performs both input outlier
detection and resetting (IODR) and output outlier detec-
tion and re-execution (OODR).

« IODR: a system with only IODR.

+« OODR: a system with only OODR.

Implementation. Our protection system is implemented
at the software level by modifying the Autoware source code
after the analysis is performed. The source code of the four
vulnerable nodes is enhanced with our protection mechanism
and Autoware is then re-built from source. For evaluation,
we inject the exact same errors as in Sec. III to test the
effectiveness of BRAUM protector.

B. Protection Results and Overhead

Faults in twist_gate. Fig. 13 compares the EPR before
and after the protection scheme is applied. BRAUM reduces
the error propagation rate from 80.6% down to 8.3%. Fig. 15a
shows a concrete example of how the protection scheme masks
the error in twist_gate. We inject a significant error at frame
220 and BRAUM successfully detects the error and recovers the
correct value. Both IODR and OODR are unable to achieve
similar protection result. They reduce the EPR to 35.7% and
40%, respectively. IODR+OODR achieves same protection
effectiveness compared to BRAUM.

The reason EPR is not further reduced is that in certain
cases, the input signal does have a sudden change, yet the
protector treats it as an outlier and replaces it with the average
value in the previous window. An error created by the protector
thus will propagate and result in a non-perfect protector. For
example, in twist_gate, 97.3% of the protection failure cases
are caused by false positives. The data is 94.5% for twist_filter.

Faults in twist_filter. The FTL of rwist_filter is A (Tbl. III),
for which we empirically loose the output outlier detection
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Fig. 15: Concrete examples of how the BRAUM protection works.

threshold to 6 sigma. Loosening the detection threshold can
help reduce the frequency of re-execute the code, thus saving
protection overhead. BRAUM protection reduces the EPR of
twist_filter by 87.6%, IODR is able to reduce the EPR by
56.6% and the result for OODR is 50.1%. Fig. 15a shows an
example of how the protection scheme works. IODR+OODR
achieves slight better EPR (8.1%) compared to BRAUM.

Faults in velocity_set. Fig. 13 shows the error propagation
rate after the protection is applied on velocity_set. The EPR
reduce from 36.3% to 7.6%. We also find that the simple
predictor we implemented has a very high accuracy. The
mis-prediction rate is only 2.7%. Fig. 15c shows a concrete
example of error mitigated in velocity_set.

Faults in detection_lidar_detector. Although we do not
perform any protection on detection_lidar_detector, the EPRs
are all 0 due to unconditional masking patterns.

Protection on unseen errors. We evaluate our protection
method on a set of unseen errors with the same scenarios. The
unseen errors has the same amount compared to the original
evaluation and within the same range of error amplitude.

For the new error set, the EPR (lower the better) in the 4
nodes are 8.2%, 7.2%, 8.3%, and 0%, similar to the current
results reported in the paper (8.3%, 8.8%, 7.6% and 0%),
indicating our method is still effective in unseen errors. We
also perform another evaluation on the protection method by
using a different scenario with a different error set compared
to the analysis phase. As an example, if faults take places in
the node twist_gate, our protection method reduces the EPR
to 9.1%, similar to the 8.3% results we currently have.

Protection overhead. BRAUM protector is lightweight
and brings minimum overhead to the AV systems. We show
the average runtime comparison between the baseline and
after applying BRAUM protector in Fig. 14. For twist_gate
and twist_filter, the overhead is relatively higher (50.1% in
twist_gate and 43.3% in twist_filter). This is because those
two nodes are extremely lightweight that do not perform any
complicated computation, both have an average runtime of less
than 0.6ms. The overhead reduce to 11.2% in velocity_set. 0%
overhead is introduced on detection_lidar_detector.

As compared to IODR, BRAUM has an average 2.5% higher
runtime overhead as the use of output protection. However, the
runtime is saved by 47.2% compared to OODR, as the always
re-execution adds enormous overhead. IODR+OODR has the
highest protection protection overhead, BRAUM saves runtime

by 55% compared to IODR+OODR.

As a comparison with existing protection methods, we
compare with DeepFense [46] and Dual-core Lock Step
(DCLS) [62]. DeepFense utilizes redundancy to protect per-
ception modules. BRAUM achieves the same protection accu-
racy with 93.75% less run-time overhead. DCLS is a hardware
mechanism to detect and recover from hardware transient
faults. BRAUM reduces the error protection rate from 35.2%
to 7.9%. DCLS requires two times hardware area overhead,
whereas BRAUM requires none.

VI. RELATED WORK

Error injection into software. Simulating the errors that
can possibly happen in software has been studied by prior
works. Such errors include soft errors [54], [55], adversarial
attacks [32], [33], [63] and software bugs [15]. Most of
these works try to relate errors they simulate with a metric
such as mission success rate and quality of service (QoS) to
demonstrate the errors injected do create reliability issues. We,
however, instead of only caring about how many errors finally
propagate to the end with EPR metric, also try to understand
what types of fault tolerance mechanisms successfully mask
the errors at the software level.

Masking of the errors. The masking of soft errors takes
place at circuit level [64], [65], micro-architecture level [30],
[66], and architecture level [67], [68]. We go one step further
to understand the inherent fault masking of the entire AV
software stack. We show that even with all the error masking
down the system stack, specific operations (i.e., integration) or
interactions from multiple algorithms (i.e., fusion) in the AV
software present new fault masking opportunities.

Protecting AV software. To counter errors happen in
AV software, two categories of protection methods have been
proposed. The first one is utilizing modular redundancy, both
temporal [39]-[41] and spatial [42], [43]. The second category
is to detect anomaly outputs and recover [55]. Most methods
are agnostic to all the nodes in AV software and bring heavy
overhead. We propose selective protection, which spends lim-
ited resource on the most vulnerable nodes such as the ones
with no fault tolerance mechanisms inherently.

VII. DISCUSSIONS

Other AV software and machines. Our work focuses on
Autoware. The core idea of this work, which is to identify



software-inherent error masking capabilities and relax protec-
tion overhead, is generalizable. However, we do not claim that
the exact conclusions obtained on Autoware generalize to other
software stacks such as Baidu Apollo. For example, the fusion
algorithm in Baidu Apollo fuses perception results from three
different sensors and uses a more complex fusion algorithms
compared to that in Autoware. Thus, the perception module
in Apollo might be even stronger than that in Autoware.
In addition, the infrastructure-vehicle cooperative paradigm
presents new challenges and opportunities for reliability [69].

Similarly, our overall method of analyzing and selectively
protecting faults applies to other autonomous machines such as
drones and mobile robots, but details might vary. For example,
if a mobile robot operates in an environment where adversarial
attacks are rare, the fault injection campaign could be more
focused on the other two sources of faults. In addition, what is
defined as an error might vary: drones might care about arrival
percentage and quality of flight [55].

Implication to robust AV system design. We show that
an AV system can spend limited resources on protecting the
vulnerable nodes, which reveals broad opportunities space for
designing robust and efficient AV system. For instance, if
the costs of trusted execution, encryption, and decryption are
limited, they should be prioritized over the most vulnerable
components in the software (i.e., with high FTLs).

VIII. ACKNOWLEDGEMENT

This work was supported in part by Semiconductor Re-
search Corporation (SRC) Artificial Intelligence Hardware
(AIHW) program. Yuhao Zhu and Jingwen Leng are corre-
sponding authors.

IX. CONCLUSION

AV software is vulnerable to different sources of errors such
as hardware soft errors, adversarial attacks and software bugs.
Instead of blindly protecting the entire software stack, BRAUM
proposes selectively protecting software modules based on
their fault tolerance levels in order to reduce the protection
overhead. We demonstrate protection can be effective yet with
low overhead, opening up large opportunities for dynamic
protection on AV software.
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